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1 Introduction

Real world instances of complex systems often exhibit complex dynamical behavior that is
not well characterized as either periodic or random. Indeed, many such systems exhibit
chaotic or quasi-periodic behavior. Systems which exhibit chaotic dynamics may be broken
into mathematical models, many of which like the logistic map or the Lorenz equations are
well understood, and real world systems. Chaos in real world systems is significantly more
difficult to both model mathematically and explore experimentally. This is due not only to
the inherent variability which chaotic behavior creates, but also the inherent difficulties in
acquiring good time series measurements. Noise and low sampling rates present problems,
as does the fact that there may only be a single stream of data that can be measured in a
real system, while in a mathematical model, all variables of interest can be analysed.

Willem Malkus and Lou Howard [1] in the 1970s at MIT improvised the waterwheel, a
mechanical analogue of the Lorenz equations. Surprisingly, the waterwheel has remained a
largely unexplored system, with what little work has been done focusing on simplifications
of the mathematical model [2, 3]. The beauty of the waterwheel is in its simplicity. Water
is poured into the system at a steady rate from the top of the tilted wheel. Each cup has
a hole drilled in the bottom which allows water to leak out of the system. Some damping
is introduced into the rotation of the wheel. By varying only two parameters, the inflow
rate of water and friction applied to the wheel, one can cause the wheel to exhibit simple
periodic behavior (either unidirectional behavior where the wheel rotates continuously in one
direction, or bi-directional behavior in which the wheel reverses direction periodically) or
unpredictable transitions between these two simple behaviors. In this paper we describe an
experimental and modeling study of the Malkus waterwheel system.

2 Experimental Setup

Our experimental setup (Figure1) consisted of a tilted bicycle wheel with a variable number
of removable cups (maximum of n = 12 cups) suspended above an underlying pool of water.
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Figure 1: Experimental setup. The apparatus was covered in black for acquiring time series
data to in order to optimize the image-tracking software’s ability to track the rotation of the
wheel.

Table 1: Model parameter values
Parameter Value Units Description

N 12 number of cups
M 0.4 kg maximum mass in a cup
n 1000 exponent on sin term in Equation 5

rleak 0.0014 m radius of leak hole in cup
r 0.03325 m radius of cup
g 9.8 m/s2 acceleration due to gravity
R 0.25 m radius of wheel
ρ 998 kg/m3 density of water
φ0 15 ◦ angle of wheel to horizontal

Water was pumped from the pool to an inflow pipe located at the highest point on the
wheel. Apparatus measurements are given in Table 1. A fluorescent ball was mounted on
the waterwheel to allow reliable tracking of the wheel’s motion [5].

Image tracking software grabbed still-frames of the wheel’s state every 500 ms using a
color CCD camera mounted with a fish-eye lens. The shutter speed was 1/2000 s to minimize
the blurring of the pictures. Object tracking was done in the blue channel where the ball
location had a much higher intensity compared to all other pixel elements of the waterwheel
setup. The output of the ball-tracking software was a series of (x, y) screen locations. From
these screen positions, the angular location θ of the ball were derived. The resultant θ(t)
time series was then interpolated to a finer resolution and numerically differentiated using a
second order centered differencing scheme, producing an ω(t) time series.

3 Governing Equations

The equations of motion for an N -cup Malkus waterwheel can be written, using a Lagrangian
description, in terms of N + 2 equations. One equation describes the rate of change of one



cup’s angular position:

dθ1

dt
= ω (1)

Here, θ1 is the angular position of the first cup and θ = 0 is located at the lowest point of
the rotation, opposite the inflow point. The angular positions of the remaining N − 1 cups
are a fixed fraction of 2π from this cup as the angular speed ω is the same for all the cups.

N equations describe the rate of change of mass in each cup. Two terms affect this change
for the ith cup; the first term characterizes the rate of mass acquisition as the cup passes
under the faucet, while the second describes the rate of mass loss as water continuously drains
from the cup:
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where mi is the instantaneous mass of the ith cup. The first term describes a flow rate
Q, which adds mass to cups with angle −r

R
≤ θi ≤

r
R

, where H represents the Heaviside

step function1. For simplicity, the function
(

sin
(

θi

2

))n
was used in place of the pair of H

functions within Q. This function peaks about θ = (2k + 1)π for k ∈ Z, with a width that
narrows as n is increased. We used n = 1000 in our simulations. The second term, denoting
the leak rate, was derived from Bernoulli’s equation, which assumes inviscid laminar flow.
Our representation was confirmed experimentally by measuring the drain rate of a cup as
it emptied2. Finally, the initial step function limits the total mass of liquid in each cup as
mi ≥ M results in that cup overflowing.

The rotation of the waterwheel is driven by the nonzero net torque which is a consequence
of: the unequal mass distribution around the tilted wheel; the damping applied to the wheel;
and the angular momentum gained and lost as mass is transferred into and out of the cup.
One equation is needed to describe the rate of change of torque on the wheel:

dω

dt

N
∑

i=1

miR
2 + ω

N
∑

i=1

dmi

dt
R2 = Rg sin(φ0)

N
∑

i=1

mi sin θi − αω (3)

where the first two terms are the angular momentum derivatives - both the angular velocity
ω and the moment of inertia I are non-constant functions of time. The right hand side of
the equation describes the torques acting on the system due to damping and the mass and
location of each cup.

These equations differ from those originally derived for the Malkus waterwheel [1]. Typ-
ically, the system is modeled by assuming a continuous ring of water around the wheel (i.e.
the limit of infinite cups), where no volume restriction is placed on the cups and leak rate
is assumed to be linearly dependent on the mass in a cup. From these assumptions, the
equations of motion can be handled analytically, recovering the Lorenz equations through
Fourier analysis.

4 Numerical Model

Our numerical simulation of the waterwheel equations offered the following benefits:

1. it provided a method for quantitatively matching our mathematical model of the un-
derlying processes with observable dynamics;

1The Heaviside step function is a reasonable approximation to the convolution between the angular width

of the cup and that of the water stream from the faucet, given the relative narrowness of the faucet
2Although our experimental characterization of the leak-rate was convincing enough for our continued

usage of the sublinear term in Equation 2, a more robust characterization would be desirable.



2. it allowed for the more efficient search of parameter space for interesting behavior and
thus guide our empirical work;

3. it provided high resolution, noise-free data which facilitated the development and test-
ing of data analysis techniques.

The governing equations were non-dimensionalised to reduce the number of parameters
to three dimensionless numbers. The dimensionless variables are

m∗

i =
mi

M
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t

T
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and the non-dimensional equations are
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where the dimensionless parameters are:
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These equations were solved numerically using Matlab’s ordinary differential equation
solver, ode45 3. For N = 12 cups, the model consists of fourteen ordinary differential equa-
tions: twelve equations to represent the cup masses, one equation for the angular velocity of
the wheel and one equation for the cup angular position.

Most simulation parameters could be measured directly from the experimental setup.
Although the number and position of the cups could be varied in the experiment and model,
we only present results for twelve cups separated uniformly. Generally, only the flow rate Q

and the friction applied to the wheel α were varied in simulation and experiment4; all other
parameters were held constant and are given in Table 1.

Simulations generated time series for each cup’s mass mi(t), the angular velocity of the
wheel ω(t) and the angular displacement for a cup θi(t). Further model validation is required;
however, our initial comparisons between measurements and model are promising, with good
agreement between measured and modelled ω(t) (Figure 2).

We observed three qualitatively different regimes in ω(t), determined by the choice of Q

and α. We refer to these regimes as unidirectional, regular bi-directional and chaotic. The
Q and α values used to illustrate these regimes are given in Table 2, and the corresponding
times series ω(t) and mi(t) are shown in Figure 3. The angular velocity time series are
reminiscent of those generated from the Lorenz equations for periodic and chaotic regimes.

5 Phase Space Reconstruction

Takens’ embedding theorem gives us a theoretical basis for assuming that we can, with a single
time series from our chaotic system, completely reconstruct the phase space of the system
dynamics [6, 7]. The embedding theorem does not allow us to reconstruct the original phase
space, but rather an equivalent one.

3All model results presented here used ode45, using the default settings for integration accuracy
4In practice, the friction was difficult to vary in a reliable manner and was also held constant for most

experimental trials.
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Figure 2: Comparison between modeled (solid line) and measured (dashed line) ω(t).

Table 2: Parameter values used to illustrate three observed regimes.
Regime name Q (kg/s) α (kg m2/s)
Unidirectional 0.3 0.005

Regular bi-directional 0.11 0.005
Chaotic 0.55 0.04

The phase space reconstruction is done in two parts. One must first determine the delay

coordinate τ which correctly samples the dynamics of the system. Then one may unfold the
attractor from the time series to find the correct global embedding dimension dE . Given τ

and dE , the systems phase space and characteristic attractor may fully reconstructed. We
employed the popular average mutual information (AMI) algorithm to determine τ and the
false nearest-neighbors (FNN) algorithm to unfold the attractor and determine dE [8]. Thus,
we chose τ as the first minimum of

I(τ) =
∑

ω(t),ω(t+τ)

P [ω(t), ω(t + τ)] log2

[ P [ω(t), ω(t + τ)]

P [ω(t)] · P [ω(t + τ)]

]

(9)

where the angular velocity of the wheel ω(t) was the time series used for the reconstruction,
P [ω(t), ω(t + τ)] is the joint probability of the values ω(t) and ω(t + τ) occurring a time τ

apart and P [ω(t)] is the probability of the value ω(t) occurring. We selected dE by choosing
the first value of d for which the following falseness estimator was below a threshold:

√
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We sample the time series ω(t) in the following manner to reconstruct the phase space,
given τ and dE :

y(t) =
[

ω(t), ω(t + τ), . . . , ω(t + (dE − 1)τ)
]

(11)
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Figure 3: (a) Sample output of ω(t) for three different regimes. (b) Sample output of water
mass in each cup mi(t) for unidirectional and regular bi-directional regimes.

6 Results

Using the aforementioned algorithms for phase space reconstruction, we reconstructed at-
tractors for numerical data generated by the Lorenz equations and our numerical simulation
of the waterwheel to illustrate the strong agreement between the original system of equations
and our model. Figure 4 illustrates periodic and chaotic regimes for the Lorenz equations,
while Figure 5 illustrates equivalent regions of behavior from the simulation. Further strong
agreement was found between the numerical model and empirical data, as shown in . These
attractors illustrate the system’s transition to chaos behavior, as one can see some degree of
complexity in the form of the attractor. From exploring the numerical model, we conjecture
that the region of parameter space is large over which the system displays complex but non-
chaotic behavior; thus, the waterwheel system may be particularly well suited to for studying
the transition between periodic and quasi-periodic regimes.

Although such experiments are extremely difficult to conduct, numerical simulations allow
for the exploration of sensitivity to initial conditions through local Lyapunov exponents.
We observed sensitivity to initial conditions in our model and constructed an animation
demonstrating the rapid divergence in reconstructed phase space of two time series with
almost identical initial conditions5 [9]. We leave exact characterization of the Lyapunov
exponent for later work.

7 Conclusions

Using the experimental setup, we recorded empirical time series for periodic, quasi-periodic
and chaotic waterwheel behavior. We derived the equations of motion for the waterwheel;
these equations differ from those usually associated with the waterwheel [1] in that they
include more realistic assumptions (discrete number of cups, finite cup volume and more
realistic leak rate). These equations were solved numerically and initial comparisons sug-
gest good agreement between empirical and modeled data. Further, applying phase space
reconstruction methods to simulated data from the Lorenz and our waterwheel simulation

5The initial conditions were differentiated by one gram in one cup.
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Figure 4: Reconstructed attractors from the periodic (a) and chaotic (b) regimes of the
Lorenz equations. (a) dE = 3 and τ = 0.1178s. (b) dE = 3 and τ = 0.17295s.
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Figure 5: Reconstructed attractors from the periodic (a) and chaotic (b) regimes of the
numerical simulation of the waterwheel equations. (a) dE = 3 and τ = 0.4s. (b) d3 = 3 and
τ = 1.5s.
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Figure 6: Reconstructed attractors from the near-chaotic regime of the (a) numerical simula-
tion and (b) from empirical data. The numerical simulation was run using parameters taken
from the experimental setup which produced (b).



and empirical data revealed a qualitative similarity in the resultant attractors and regimes of
behavior. It is left for later work to analyse remaining empirical data6, calculate the model’s
Lyapunov exponents and the fractal dimension for model time series.
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