
Scheduler Activations: Effective Kernel Support ! 63

ACM Transactions on Computer Systems, Vol. 10, No. 1, February 1992.

event, the kernel takes the processor that had been running thread 1 and

performs an upcall in the context of a fresh scheduler activation. The user-

level thread scheduler can then use the processor to take another thread off

the ready list and start running it.

At time T3, the I/O completes. Again, the kernel must notify the user-

level thread system of the event, but this notification requires a processor.

The kernel preempts one of the processors running in the address space

and uses it to do the upcall. (If there are no processors assigned to the

address space when the I/O completes, the upcall must wait until the

kernel allocates one). This upcall notifies the user level of two things: the I/

O completion and the preemption. The upcall invokes code in the user-

level thread system that (1) puts the thread that had been blocked on the

ready list and (2) puts the thread that was preempted on the ready list. At

this point, scheduler activations A and B can be discarded. Finally, at time

T4, the upcall takes a thread off the ready list and starts running it.

When a user level thread blocks in the kernel or is preempted, most of

the state needed to resume it is already at the user level—namely, the

thread's stack and control block. The thread's register state, however, is

saved by low-level kernel routines, such as the interrupt and page fault

handlers; the kernel passes this state to the user level as part of the upcall

notifying the address space of the preemption and/or I/O completion.

We use exactly the same mechanism to reallocate a processor from one

