
Adaptive Mobile Agents: Modeling and a Case Study
Supranamaya Ranjan

Department of Electrical & Computer Engineering
Rice University

Houston, Texas - 77005

Arobinda Gupta Anupam Basu Anand Meka Abhishek Chaturvedi

Department of Computer Science and Engineering
Indian Institute of Technology

Kharagpur – 721302

ABSTRACT
Mobile agents have been proposed as a novel and useful
paradigm for designing distributed applications. Mobile
agent based distributed applications are specially suited
for mobile computing environments involving different
types of devices because of better bandwidth
conservation, support for disconnected operations, easier
device/user-specific customization etc. As a mobile agent
migrates from machine to machine in a heterogeneous
network, the environment in which it operates changes
and it may encounter unexpected events like faults etc.
The ability to adapt to dynamic environment and
unexpected events is a key issue for mobile agents. In
this paper, we first present a model of adaptive mobile
agents. We then discuss the implementation of a task
execution system based on adaptive mobile agents and
present results to show that adaptation can be very useful
for mobile agent based distributed applications.

Keywords: Mobile, Agent, Distributed, Environment,
Adaptation

1 INTRODUCTION

Mobile agents have been proposed as a novel and useful
paradigm for designing distributed applications. A
mobile agent is a program that autonomously migrates
from machine to machine in a heterogeneous network,
interacting with services at each machine to perform
some desired task on behalf of a user. An agent can,
under its own control, suspend its execution, migrate to a
new machine, and continue execution at the new machine
from the point it left off. A distributed application can be
viewed as a collection of mobile agents that
independently move around in a network and
communicate with each other to achieve some predefined
goals.

Implementing distributed applications using mobile
agents can have several advantages [3]:
• Bandwidth conservation: In scenarios where a

client is connected by a low bandwidth link to one or

more servers from which it needs to download and
then process a large amount of data, it is
advantageous to send the processing code in a
mobile agent to the servers rather than download the
large volume of data over a low bandwidth link. The
processing code can operate on the data at the
servers and then just send the final results back to
the client.

• Support for disconnected operations:
Conventional distributed systems communicating
with RPC like mechanisms require a connection to
be maintained during a client server interaction.
However, in mobile computing applications, a
mobile client may not have a continuous connection
because of noisy links or power conservation
reasons. In such scenarios, mobile agents can be
launched from the client to perform the desired
services and the user can disconnect while the
services are being performed. The results can be sent
back to the user when reconnection occurs.

• Better customization: A server may want to
provide customized services to a client based on the
capabilities of the client (for ex., different device
types) or user profiles. An agent with the
customization code can be supplied by the client
itself which can move to the server to customize the
service for the client. The server just needs to
provide an interface to the services.

• Dynamic deployments: Software services can be
easily deployed by administrators dynamically by
launching mobile code from a central system that
migrate and reside at different servers, rather than
installing copies of the software at all servers
individually.

• Load balancing: Mobile agent based systems
provide a mechanism for load balancing. Agents can
clone themselves to share the load and can migrate
from an overloaded machine to an underloaded
machine autonomously.

The number of different types of devices that are
connecting to the web is growing rapidly and it is
expected that this number will grow even more in future

with a myriad of household and handheld devices coming
into the market. These devices are expected to have low
computing and storage capabilities, and will connect to a
host of services through low bandwidth wireless links.
Given the heterogeneous devices and their capabilities,
mobile agents will be a strong contender as a general
framework for designing distributed applications because
of the above advantages. Mobile agents have already
been used to build many distributed applications by
various research groups, including information retrieval,
collaborative work [9], resource allocation [8], network
routing [6], brokerage applications, auction sites etc.

Since a mobile agent roams from machine to machine in
order to achieve its objectives, the environment in which
it has to execute may change considerably. Examples of
such changing environment parameters can be change in
CPU load, available network bandwidth, fault conditions,
availability of other required resources etc. The
environment is also dynamic and changes with time. For
example, the CPU load of a machine can change while an
agent is executing there because of arrival of other jobs
from outside. Or the agent may move to a part of the
network with low network bandwidth. In addition to
changing environments, a mobile agent may also have to
react effectively to unexpected events. For example,
consider an application in which users launch mobile
agents from handheld devices to search for items meeting
certain criteria in different auction sites. The agents
inform the user if any such item is found. The user then
bids for the item of his choice. A mobile agent, while
visiting the auction sites, may find an item that is highly
suited to the user’s needs and is being bid aggressively
by agents of other users. The link back to the user may be
temporarily down and trying to inform the user may take
a long time, by which time the item may be gone.

In order to work in changing environments and react to
unexpected events, a mobile agent may need to adapt to
the current environment in order to achieve its goals
correctly and/or efficiently. As an example, consider a
mobile agent launched to search and retrieve images
matching a particular criteria from image databases on
the web. Under normal circumstances, the agent will
download the images found to the user. However, if the
agent determines that the network path back to the client
is noisy and poor at this point of time, it may decide to
send only a low resolution image (if available) to the user
now, leaving the full retrieval for later. As another
example of adaptation, in the auction-bidding example
above, the agent may autonomously decide (based on
various possible factors including degree of autonomy
granted by user, bidding history and financial status of
the user etc.) to bid for the item anyway on behalf of the
user without informing the user first. The ability to adapt
to changing environments and unexpected events will be
a key factor in the design of mobile agent based systems.

In this paper, we first present a model of an adaptive
mobile agent. The model specifies the components of an
adaptive mobile agent and their behaviors with respect to
the current environment. The model is based on earlier

work by Goodwin [2] on modeling robotic agents and on
work by Luck et. al. [5] on modeling autonomy of an
agent, and our work borrows some concepts and
terminology from them. We then describe the design of
an adaptive mobile agent based task scheduling system
that we are currently implementing. The task scheduling
system shows the feasibility and advantages of
integrating adaptation into mobile agents. The
organization of the rest of this paper is as follows.
Section 2 introduces the model of an adaptive mobile
agent. Section 3 describes the details of the task
scheduling system. Section 4 discusses related works,
Finally, section 5 contains some concluding remarks and
scope for future work.

2 MODELING AN ADAPTIVE MOBILE AGENT

An agent can be viewed as satisfying an ordered set of
goals to achieve some overall objective. The agent takes
a sequence of actions in order to satis fy the next goal in
the set. Adaptation can be viewed as changing the goal
set. The effect of the change can be a new set of actions
to achieve the same overall objective as before, or it may
even result in a new overall objective if the original
objective cannot be achieved anymore in the current
environment.

In our model, a mobile agent consists of two
components, a Mechanism and an Adapter. The
Mechanism is the interface of the mobile agent to the
environment. The Mechanism contains sensors that
periodically sense the environment parameters and report
their findings to the Mechanism. It also contains effectors
that can take actions to change the environment the agent
is in. The Adapter is the component that decides whether
adaptation is necessary and if yes, how best to adapt to
the current environment. The Mechanism senses the
environment through the sensors, analyses them, and
creates a view of the environment called a percept. The
percept is passed on to the Adapter, which uses it to
decide whether adaptation is necessary or not. If
adaptation is needed, a new set of goals is passed on to
the mechanism, which then transforms the set of goals
into a set of actions to be carried out, and then carries out
the actions. The effectors are used to make any
environment change specified in an action. Figure 1
shows the basic structure of an adaptive mobile agent and
their interactions. We next discuss each component in

 Mechanism Adapter

 Mobile Agent

Sense Action

Goals

Percept

Figure 1. Components of a mobile agent

more details.

2.1 THE MECHANISM

The state of the Mechanism can be specified by a 3-tuple
<S, L, T>. S is the behavioral state of the Mechanism
which identifies what the Mechanism is doing currently,
L is the current location of the agent, and T is the
duration the Mechanism has spent in its current state.
The state variable S can take one of three possible values:
extractGoal, executeCommand, and eval. In the
extractGoal behavioral state, the Mechanism picks up
the current goal to be executed, and generates the set of
commands for it. In the executeCommand behavioral
state, the generated commands are carried out. In the eval
behavioral state, the Mechanism senses the environment
and forms a current view of the environment to be
passed on to the Adapter.

Figure 2 (shown at the end of the paper) shows the
different states the Mechanism can be in and the possible
state transitions. The Mechanism normally rotates
between the Normal_1=<extractGoal, L, T> and
Normal_2=<executeCommand, L, T> states, where L
contains the current location of the agent, and T is reset
to 0 every time a state transition occurs. The state
Normal_1 is entered initially on receiving an ordered set
of goals from the adapter. The commands for the next
goal in the ordered list is generated, and a transition to
state Normal_2 occurs. In state Normal_2, the commands
are executed, and transition occurs back to state
Normal_1 in order to generate the commands for the next
goal in the list of goals. The process continues until all
the goals in the list are executed. However, the
Mechanism may go to the Eval_Env =<eval, L, T> state
from any of the Normal_1 or Normal_2 states if any of
the following happens: a timeout, a fault, or an explicit
command in the application code itself. We will refer to
the third cause as Coded Adaptation, since the
application code asks for the environment to be sensed
explicitly possibly for adaptation reasons. A timeout can
happen if an action is not carried out within a specified
time in the Normal_2 state, which can be detected by the
T component of the Mechanism state. This may indicate
changed environment and may force the agent to sense
the environment and reevaluate if adaptation is
necessary. In the Eval_Env state, the environment is
sensed and a percept is sent to the Adapter to see if any
adaptation is necessary. Note that the environment can
also be sensed in the Normal_1 and Normal_2 states if
necessary, but in those states, the values sensed are used
internally and no interaction with the Adapter occurs.

2.2 THE ADAPTER

 The Adapter state consists of a tuple <S, T>, where S is
the behavioral state which can only take the value adapt,
and T is the time spent in the adapt state. Thus the state
diagram of the Adapter is very simple and is shown in
Figure 2.

In order to describe how the adaptation process works,
we first need a few definitions. An attribute is a
perceivable feature of the environment. A percept is a set
of attributes. Thus, a percept is nothing but a view of the
environment. An adaptation method is a single mapping
from a percept to a set of goals. An adaptation policy is a
set of adaptation methods. Thus, the adaptation policy
specifies the possible ways in which the mobile agent
adapts to different environments.

Given an environment, there may be different ways an
agent can adapt. Thus some type of ranking of the
adaptation methods in the adaptation policy is necessary.
This is achieved by a motivation degree function.
Motivation was defined by Kunda [4] as “any desire or
preference that that can lead to the generation and
adoption of goals and which affects the outcome of the
reasoning or behavioral task intended to satisfy the goal”.
We associate with each adaptation method a motivation
degree, which is the probability of success in achieving
the final goal if the set of goals corresponding to the
adaptation method is selected as the current set of goals.
The Adapter then selects the adaptation method with the
highest motivation degree corresponding to the current
environment. Note that the set of adaptation methods (the
adaptation policy) and the motivation degree funcion can
be hardcoded by the user or can be learnt dynamically
from history. Usually it will be a combination of both
where the user specifies an adaptation policy and a
motivation degree function, which then can be modified
dynamically as well.

Thus, on receiving a percept from the Mechanism, the
Adapter goes through the set of adaptation methods,
looking for the ones that match the percept. The one with
the highest motivation degree is then chosen, and the
current set of goals is modified to be the one
corresponding to that adaptation method. The new goal
set is passed to the Mechanism, which then generates and
executes commands for the set of goals. If no adaptation
method matches the current environment, adaptation is
deemed unnecessary and no change to the goal set
occurs. Thus, no adaptation can also be viewed as a
special adaptation method.

2.3 THE AGENT STATE

The state of the mobile agent is the 3-tuple <M, A, App>,
where M is the Mechanism state, A is the Adaptor state,
and App is the Application-specific state for the mobile
agent. Thus, an adaptive mobile agent can be completely
described at any point of time by its state, the adaptation
policy, and the motivation degree function.

3 CASE STUDY: A TASK SCHEDULING
SYSTEM

We implemented a simple task execution system based
on adaptive mobile agents. The input to the system is a
task graph for a job consisting of multiple tasks. Each
individual task has some resource requirements, all of
which have to be satisfied before the task can be started.

A task also has a given duration for which the task runs.
The task graph is to be executed on a heterogeneous
network of servers, each of which has a (possibly
different) set of resources. The set of servers and the
resources they have are static, and this information is
available at all servers. However, the load conditions at
the servers can vary with time. The aim of the system is
to complete all the tasks on the network as fast as
possible subject to dependency and resource constraints.

The basic execution process proceeds as follows. A task
is executed by a mobile agent. A single mobile agent
may execute multiple tasks or may clone itself to handoff
some tasks to the cloned agents to be done in parallel. A
mobile agent executing a task migrates to a server that
has the resources that are required by the task, and tries
to acquire all the necessary resources. If the resources
are acquired immediately, the task is executed.
Otherwise, the lo ad condition of the server is sensed to
get an idea about the time the task may have to wait to
acquire all resources. The agent relies on history to make
this adaptation decision. The agent looks at the average
waiting time of tasks with similar resource requirement
in the recent past. If the migration time to a remote server
(with the required resources), plus the expected waiting
time at that server is less than the average waiting time at
the current server, the agent decides to migrate to the
remote server. If the average waiting time is less, the
agent decides to wait and retry to acquire the resources at
the current server itself for a duration equal to the
expected waiting time. If the resources are still not
acquired at the end of this duration, a timeout occurs,
forcing the agent to sense the current environment (the
expected waiting time) again and make an adaptation
decision whether to migrate or not. The process is
repeated till all the tasks are completed. The expected
waiting time at the current server and at the remote server
is provided by an underlying environment sensing
system. In our implementation, we have implemented a
simulator that simulates this environment sensing system.
The migration time between servers is static and fixed a-
priori in the current implementation. The details of the
implementation are omitted here due to space constraints.

3.2 EXPERIMENTAL RESULTS

We implemented the task execution system following the
model we proposed. The agent framework for creation,
migration, and cloning of mobile agents is also
implemented by us. There are 3 servers, N1, N2, and N3
in our setup, with zero or more copies of three resources
r1, r2, and r3. The load conditions of the servers are
varied in the simulator. Each server can be underloaded,
normally -loaded, or overloaded. For a fixed resource
structure and load conditions of the servers, we executed
a number of task graphs in the system, varying the
migration time between servers for each task graph. We
measured the number of migrat ions and the completion
time of the task graph in each case. The tables below
show some of the results. The task graphs, along with
the resource requirement of each task, are generated
randomly.

Table 1 shows the behavior of the system when all
required resources for any task in the task graphs are
available at all the servers, all three servers are
overloaded, and the migration time between servers is
very high. As expected, the number of migrations is 0
(since the migration time is very high), all tasks finish at
the same server (the server at which the job is launched),
and the completion time is high since the server is
overloaded. The time is indicative of the cost of
executing the job at a single overloaded server.

Task
Graph

No. of
Tasks

No. of
Migrations

Completion
Time (sec.)

T1 35 0 232
T2 39 0 430
T3 40 0 281

Table 1. All servers overloaded with same resources
and high migration time

Table 2 shows the case when everything is same as in the
case in Table 1, except that all the servers are
underloaded. The high migration time again prevents
any migration to remote server and all tasks are executed
at the same server. The time is much lower because the
server is underloaded. This time is indicative of the cost
of executing the job at a single underloaded server.

Task
Graph

No. of
Tasks

No. of
Migrations

Completion
Time (sec.)

T1 35 0 90
T2 39 0 151
T3 40 0 93

Table 2. All servers underloaded with same resources
and high migration time

Table 3 (shown at the end of the paper) shows the case
when all resources are again available at all the servers.
However, now servers N1 and N2 are overloaded, while
server N3 is underloaded. The job is launched at server
N1. The migration time between servers is varied from
100ms to 300,000ms. As is expected, we see that for low
migration times, most of the tasks migrate to the
underloaded server N3 due to adaptation. The number of
such migrations due to adaptations decreases as the
migration time increases, as the higher cost of moving
the task to a remote server makes it less advantageous to
migrate. The completion times of the task graphs are in
between those in Table 1 and 2.

Table 4 (shown at the end of the paper) shows results for
a different scenario. The servers N1, N2, and N3 now
have different resources. N1 has 3 copies of r1, 3 copies
of r2, and 3 copies of r3; N2 has 1 copy of r1, 2 copies of
r2, and 3 copies of r3; and N3 has 2 copies of r1, 2 copies
of r2, and 3 copies of r3. Servers N1 and N2 are
overloaded and server N3 is underloaded. The job is
initially launched at N1. The migration time is again
varied from 100ms to 300,000 ms. Now a task may
migrate because the current server does not have all the
resources that it needs, or it may migrate due to
adaptation. The first type of migration is unavoidable,
even with very high migration time. As expected, the

number of migrations due to adaptation decreases as the
migration time increases. The completion time of the
tasks compare favorably with those in Table 2.

An analysis of the system logs shows some interesting
points. First, for low migration times, it is often found
that an agent at the beginning migrates from a server X to
another server Y and back. This is a useless migration.
This happens because initially the agent has no
knowledge of the average waiting time at the remote
server Y, and optimistically assumes it to be 0. However,
on arrival at Y, if Y is overloaded, it may find that the
expected waiting time at Y is much larger, and it was
better to move back to X. This extra migrations for a
number of tasks add an unnecessary component to the
completion time of the job. We are planning to
implement a system wide dynamic resource monitoring
system that can provide up-to-date information about the
load condition of the remote servers. This is expected to
significantly improve the performance.

The second point we noted from our analysis is that in
most cases, when the simulator reported an expected
waiting time of w to an agent, the agent did acquire the
required resources within that time. However, there are
quite a few cases where the agent waited much less or
much more to acquire the resources. This is because of
the simple scheduling policy we used for the resources.
An agent requiring a set of resources simply tries to
acquire all the resources within a lock; if it acquires all
the resources, it goes ahead and executes the task, else it
just retries (if it decides not to migrate). Thus, there is no
fair scheduling policy for allocation of the resources. An
agent may get the resource within a very small number of
tries even at an overloaded server, or it may have to wait
for a long (longer than the expected waiting time) time
even at an underloaded server. Implementing a fair,
bounded -wait scheduling policy can circumvent this
problem.

4 RELATED WORKS

Although adaptation has been studied in the context of
intelligent agents in AI [10], there has been little work in
modeling adaptive mobile agents. Goodwin [2] presents a
model of a robotic agent and the environment in which it
operates. The concept of a Mechanism to interact with
the environment is proposed by them. Our model
borrows some concepts and terminology from them.
However, their model does not consider adaptation.
Luck and d’Inverno [5] first uses the idea of motivation
as defined by Kunda [4] to define autonomy of an agent.
Their work is also restricted to specification of static
agents and does not model adaptation explicitly. Decker
et. al. [1] describe a financial portfolio management
system based on adaptive agents that use cloning for
query load distribution as the principal form of
adaptation. Though their work does not explicitly use
mobile agents, they mention how mobile agent

frameworks can be used to send cloned agents to another
processor.

5 CONCLUSION

In this paper, we have presented a model of an adaptive
mobile agent. We have also presented preliminary results
for a task scheduling system using adaptive mobile
agents to show that integrating adaptation into mobile
agents can be beneficial in distributed applications. The
current implemention is simple, and can be improved in
many ways. This includes dynamic resource discovery
and monitoring which will allow for better adaptation to
improve performance, better resource scheduling policies
for guaranteeing bounded wait time of tasks, and better
adaptation policies. The issue of bounded wait time is
particularly important if the system is to be applied to
real time tasks with deadlines. We are also looking at
ways to model the learning of new adaptation methods
and dynamically changing the motivation degree function
based on system history.

REFERENCES

1. Decker, K., Sycara., K., and Williamson, M.,

“Intelligent Adaptive Information Agents,”
AAAI’96 Workshop on Intelligent Adaptive Agents,
1996.

2. Goodwin, R., “A Formal Specification of Agent
Properties,” Journal of Logic and Computation, 5
(6).

3. Gray, R., Kotz, D., Cybenko, G., and Rus, D.,
“Mobile agents: Motivations and state-of-the-art
systems,” Technical Report TR-2000-365,
Department of Computer Science, Dartmouth
College.

4. Kunda, Z., “The case for motivated reasoning,”
Psychological Bulletin, 108 (3), pp. 480-498.

5. Luck, M., and d’Inverno, M., “A Formal Framework
for Agency and Autonomy,” First International
Conference on Multi-Agent Systems, 1995, pp. 254-
260.

6. Minar, N., Kramer, K. H., Maes, P., “Cooperating
Mobile Agents for Network Routing,” Software
Systems for Future Communication Systems,
Springer Verlag, 1999.

7. Pham, V. A., and Karmouch, A., “Mobile Software
Agents: An Overview,” IEEE Communications, 36
(7), pp. 26-37.

8. Shehory, O., Sycara, K., Chalasani, P., and Jha, S.,
“Agent Cloning: An approach to Agent Mobility and
Resource Allocation,”, IEEE Communications, 36
(7), pp. 58-67.

9. Tripathi, A., Tanvir, A., Kakani, V., Jaman, S.,
“Distributed Collaboration using Network mobile
Agents,” Univ. of Minn.

10. Woolridge, M. J., and Jennings, N. R., “Intelligent
Agents: Theory and Practice,” Knowledge
Engineering Review, 10 (2), 1995.

Task Graph No. of
Tasks

Migration
Time (ms)

No. of
Migrations

Tasks completed
at N3

Completion
Time (sec.)

100 36 23 110
500 22 31 80

1000 15 26 82
2500 5 33 99

T1

35

300,000 0 0 326
100 35 33 83
500 34 33 101

1000 20 31 102
2500 13 35 143

T2

39

300,000 0 0 477
100 22 30 79
500 27 29 99

1000 19 35 116
2500 13 30 130

T3

40

300,000 0 0 356

Table 3. N1,N2 overloaded, N3 underloaded. All servers have same resources

Task Graph No. of
Tasks

Migration
Time (ms)

No. of
Migrations

Migrations due
to Adaptation

Completion
Time (ms)

100 44 41 77
500 38 35 90

1000 39 36 107
2500 11 7 104

T1

35

300,000 9 0 866
100 26 13 145
500 33 21 183

1000 31 18 231
2500 23 12 204

T2

39

300,000 8 0 742
100 44 42 89
500 38 37 93

1000 37 35 99
2500 16 14 140

T3

40

300,000 5 0 746

Table 4. N1,N2 overloaded, N3 underloaded. Servers have different resources

Normal_1 Normal_2

Eval_Env

Adapt

Command

Return

Timeout
Timeout

Fault Fault

 Coded
Adaptation

Send percepts to Adapter

Send modified goals
 to Mechanism

Adapter Mechanism

Figure 2: State diagram of an adaptive agent

