
2	 Copublished by the IEEE CS and the AIP	 1521-9615/11/$26.00 © 2011 IEEE� Computing in Science & Engineering

S cie n t i f ic P r o g r a m m i n g

Editors: Konstantin Läufer, laufer@cs.luc.edu

Konrad Hinsen, hinsen@cnrs-orleans.fr

Active Documents
with Org-Mode
By Eric Schulte and Dan Davison

O rg-mode is implemented as a
part of the Emacs text editor.1
It was initially developed as

a simple outlining tool intended for
note taking and brainstorming. It was
later augmented with task manage-
ment tools—letting researchers trans-
form notes into tasks with deadlines
and priorities—and with syntax for
the inclusion of tables, data blocks,
and active code blocks. Users new to
Org-mode often start with its simple
plain-text note-taking system, then
move on to increasingly sophisti-
cated features as their comfort level
permits.

In reproducible research (RR), re-
searchers publish scientific results
along with the software environment
and data required to reproduce all
computational analyses in the publi-
cation.2 Reproducibility is essential
to peer-reviewed research, but sci-
entific publications often lack the in-
formation required for reviewers to
reproduce the analysis described in
the work. As Jonathan Buckheit and
David L. Donoho noted,3

An article about computational sci-
ence in a scientific publication is not
the scholarship itself, it is merely
advertising of the scholarship. The
actual scholarship is the complete
software development environment
and complete set of instructions,
which generated the figures.

Org-mode supports RR with syntax
for including inline data and code,

mechanisms for evaluating embedded
code, and publishing functionality
that might be used to automate the
computational analysis and genera-
tion of figures. Here, we focus on the
Org-mode features that support the
practice of RR; information on other
aspects of Org-mode can be found
in the manual (http://orgmode.org/
manual)4 and in the community wiki
(http://orgmode.org/worg).

The plain text Org-mode source of
this article is available for download
at https://github.com/eschulte/CiSE/
raw/master/org-mode-active-doc.org
(see the sidebar “How to Download this
Document” for more information).
Readers with the requisite open-source
software can execute the source code
examples—which analyze a dataset
and create graphics—as well as export
the complete paper to one of several
output formats.

Syntax
Org-mode documents are plain text
files organized using a hierarchical
outline defined by a number of simple
syntactical rules.

Outlines
The outline can be folded and ex-
panded, hiding or exposing as much
of the document as wanted. Using this
facility, even very large documents
can be comfortably navigated in a
manner similar to that of a file system.
Headlines are indicated by leading *’s,
as in the folded view of this article in
Figure 1.

The ellipses at the end of each line
indicate that the heading’s content
is hidden from view. Notice that the
heading beginning with the keyword
COMMENT is not included in the ex-
ported document. Org-mode uses
many such keywords for associating
information with headlines.

Code and Data
Using a simple block syntax, both
code and data can be embedded in
Org-mode documents as follows:

First a data block.

#+begin_example

 raw textual data

#+end_example

Second a code block.

#+begin_src sh

 echo "shell script code"

#+end_src

Code and data blocks can be named,
allowing their contents to be refer-
enced from elsewhere in the Org-
mode file. Figure 2 shows an example,
in which the shell script references the
data block’s content.

Cross references between an Org-
mode file’s code and data elements turn
Org-mode into a powerful, multilingual
programming environment in which
data and code expressed in many differ-
ent programming languages can interact.

Evaluation
Code and data references make
chained evaluation strings possible.

Org-mode is a simple, plain-text markup language for hierarchical documents that allows the intermingling
of data, code, and prose.

CISE-13-3-SciProg.indd 2 25/03/11 5:32 PM

May/June 2011� 3

Figure 3 shows the series of actions
that result when the analyze code
block is evaluated interactively or
during export.

1.	 The analyze code block is evalu-
ated. The :var data=data head-
er argument causes Org-mode to
evaluate the data reference.

2.	 To resolve this reference, the
data code block is located in the
Org-mode file and is evaluated.

3.	 The :var raw=raw header argu-
ment causes Org-mode to resolve
the raw reference.

4.	 The raw code block is evaluated
causing the :var url=http://
data.org header argument to be

evaluated as a literal value that’s
assigned to the url variable and
passed to the shell script. The
shell script then downloads data
from the external url and makes
these data available to Org-mode.

5.	 The results of the shell script
are assigned to the raw variable,
which is passed to the Python

How to Export
this Document

This article was originally composed as an Org-mode docu-
ment; the raw plain-text version is available for download

at https://github.com/eschulte/CiSE/raw/master/org-mode-
active-doc.org. All of the examples presented in this article
can be interactively recreated from the original document.

Requirements
The first step is to ensure that you have installed on your
system recent versions of Emacs (www.gnu.org/software/
emacs) version 23 or greater and Org-mode (http://orgmode.
org) version 7.5 or greater. To evaluate the code blocks
in our article, you also need the following programming
languages installed on your system:

•	 Python (www.python.org),
•	 R (www.r-project.org),
•	 Emacs speaks statistics (ESS; http://ess.r-project.org)
•	 gnuplot (www.gnuplot.info), and
•	 gnuplot-mode (www.emacswiki.org/emacs/GnuplotMode)

Configuration
Next, you can evaluate the emacs-lisp code block to
configure Org-mode to export our article (see Figure A).

Export
After installing all required software, you can export the
article to several different back ends in three steps.

First, open this document in Emacs. Second, evaluate
the “Configuration” emacs-lisp code block immediately
previous in this document. This can be done with C-c C-v p
to jump to the previous code block, then C-c C-c to
evaluate the code block where C-c means press “c” while
holding the control key, C-v means press “v” while hold-
ing the control key, and so forth.

Finally, use C-c C-e to open the Org-mode export
dialog, which displays a number of backend options and
the key which should be used to export to that backend,
for example, press “d” to export this document to a .pdf
and open the resulting file in your document reader, or
press “b” to export this document to .html and open the
resulting file in your Web browser.

#+source: configuration

 #+begin_src emacs-lisp :results silent

 ;; first it is necessary to ensure that Org-mode loads support for the

 ;; languages used by code blocks in this article

 (org-babel-do-load-languages

 'org-babel-load-languages

 '((sh . t)

 (org . t)

 (emacs-lisp . t)

 (python . t)

 (R . t)

 (gnuplot . t)))

 ;; then we'll remove the need to confirm evaluation of each code

 ;; block, NOTE: if you are concerned about execution of malicious code

 ;; through code blocks, then comment out the following line

 (setq org-confirm-babel-evaluate nil)

 ;; finally we'll customize the default behavior of Org-mode code blocks

 ;; so that they can be used to display examples of Org-mode syntax

 (setf org-babel-default-header-args:org '((:exports . "code")))

 #+end_src

Figure A. The emacs-lisp code block to configure Org-mode to export this article.

CISE-13-3-SciProg.indd 3 25/03/11 5:32 PM

S cie n t i f ic P r o g r a m m i n g

4� Computing in Science & Engineering

code in the body of the data
code block.

6.	 This code is passed to an external
Python interpreter, which evalu-
ates the Python code and returns
its result to Org-mode.

7.	 The data code block’s results are
then assigned to the data variable
and passed to the R code in the
body of the analyze code block.

8.	 This code is then passed to an ex-
ternal R interpreter, which gen-
erates a figure that is written to
the file specified in :file fig.
pdf.

9.	 A reference to this figure is then
passed from the analyze code
block back to Org-mode, which
inserts a link marked by double
square brackets into the body of

the Org-mode document. On ex-
port to HTML, ASCII, LaTeX,
or another Org-mode supported
format, the linked figure will
be embedded into the exported
document.

Example Application
To illustrate Org-mode’s application
to RR, we use an analysis of base-
ball statistics. The ordered nature of
baseball games makes them particu-
larly amenable to statistical analysis.
Baseball players’ performance and the
course of baseball games are routinely
captured in a few statistics that are
comparable across games and seasons.

In this example, we analyze the
correlation of several common offen-
sive statistics with the attendance at

Major League Baseball (MLB) games
in the 2010 season. We hypothesize
what every baseball fan wants to
believe: that large crowds spur the
home team to superior performance
levels. We found and report on
the offensive statistic that has the larg-
est correlation with high attendance.

Download External Data
Our example correlates home team
offensive statistics with attendance for
the 2010 MLB season (see Figure 4).

As Figure 5 shows, this first code
block, named url, translates the
numerical 2010 season into the url
for the retrosheet.org website (we ob-
tained this copyrighted information
free of charge; see www.retrosheet.
org). The website is devoted to col-
lecting and curating MLB statistics.

As Figure 6 shows, with the raw-
data shell code block, the zip file of
statistics located at the specified url
is downloaded and its contents are
unpacked into a local text file named
2010.csv. The cache yes header
argument ensures that this code block
is run only once and the data aren’t
downloaded again every time the code
block’s results are referenced.

Next, the stat-headers Python
code block returns a list of the names
of the offensive statistics that we’ll
test for correlation with attendance
(see Figure 7).

Parsing
The next two shell code blocks,
offensive-stats and attendance,
collect the offensive statistics and the
attendance from the raw data file pro-
duced by the raw-data code block.

Analysis
The analysis code block uses the
R statistical programming language
to calculate correlations between the

* Introduction...

* Syntax...

** Outlines...

** Code and Data...

* Evaluation...

* Example Application...

** Download External Data...

** Parsing...

** Analysis...

** Display...

* Conclusion...

* COMMENT How to Export this Document...

* Footnotes...

Figure 1. The folded view of this article. Headlines are indicated by leading *’s.

First a data block.

#+results: raw-data

#+begin_example

 raw textual data

#+end_example

Second a code block.

#+begin_src sh :var text=raw-data

 echo $text|wc

#+end_src

#+results:

: 1 3 17

Figure 2. The shell script referencing the data block’s content. By naming code and
data blocks, you can reference their contents from elsewhere in the Org-mode file.
data block’s content.

CISE-13-3-SciProg.indd 4 25/03/11 5:32 PM

May/June 2011� 5

outputs of the offensive-stats
and attendance code blocks, whose
values are saved into the stats and
attendance variables respectively.

The most correlated column,
intentional walk, can be men-
tioned in the text using an inline
code block. The code below shows
the Org-mode syntax for an inline
block. The results indicate that the
fans’ belief in the effects of a large
crowd is shared by the visiting team,

which chooses to walk a danger-
ous home-team hitter rather than
take the chance that the crowd will
spur him to a potentially damaging
performance.

Display
Using gnuplot, we can plot the num-
ber of forced walks and the atten-
dance for the five games with the
most forced walks (see Figures 10
and 11).

#+Title: Example Org-mode File

* Data Source
Data was gathered from... prose ...

#+source: raw
#+begin_src sh :var url=http://data.org
curl url...

#+end_src

* Data Processing
Format data by... prose ...

#+source: data
#+begin_src python :var raw=raw
def format

...
#+end_src

* Data Analysis
Analyze and graph data ... prose ...

#+source: analyze
#+begin_src R :var data=data :�le �g.pdf
names(data)
...
hist(data)

#+end_src

#+Caption: Histogram of Data
#+results: analyze
[[�le:�g.pdf]]

External
data
source

Raw data

Python
interpreter

Formatted
data

R
interpreter

Figure

Resolve
reference

raw

Resolve
reference

data

1

2

3

4

5

6

7

8

9

Export

HTML
<title>
Example Org-mode File

</title>

<h1>Data Source</h1>
<p>Data was gathered from...

ASCII

Example Org-mode File
=====================

Data Source

Data was gathered from...

LaTeX/ PDF

\title{Example Org-mode File}

\section{Data Source}

Data was gathered from...

Figure 3. Active Org-mode document. Variables of the analyze code block reference the results of previous code blocks
(shown of the right), in resolving these references the referenced code blocks are evaluated, and their results are passed back
to the analyze code block (on the left side).

#+source: season

#+begin_src emacs-lisp

:exports none

 2010

#+end_src

Figure 4. The example application
will correlate home team offensive
statistics with attendance for the
2010 Major League Baseball
season.

CISE-13-3-SciProg.indd 5 25/03/11 5:32 PM

S cie n t i f ic P r o g r a m m i n g

#+source: url

#+begin_src sh :var season=season :exports none

 echo "http://www.retrosheet.org/gamelogs/gl$season.zip"

#+end_src

Figure 5. The URL code block. This block translates the numerical 2010 season into the URL for the website that collects
Major League Baseball statistics.

#+source: raw-data

#+headers: :exports none

#+begin_src sh :cache yes :var url=url :file 2010.csv

 wget $url && \

 unzip -p gl2010.zip > 2010.csv && \

 rm gl2010.zip

#+end_src

Figure 6. The raw-data shell code block. The zip file of statistics located at the specified url is downloaded and its contents
are unpacked into a local text file named 2010.csv.

#+source: stat-headers

#+headers: :exports none

#+begin_src python :results list :cache yes :return fields

 import urllib2

 url = 'http://www.retrosheet.org/gamelogs/glfields.txt'

 fp = urllib2.urlopen(url)

 fields = []

 for line in fp:

 if line.find('Visiting team offensive statistics') != -1:

 line = fp.readline()

 while line.find('Visiting team pitching statistics') == -1:

 if line[13] != ' ':

 fields.append(line.strip().split('.')[0].split('(')[0])

 line = fp.readline()

#+end_src

#+results[97fdb2368b66e48faa6afb8b6eff34e00f05633b]: stat-headers

- at-bats

- hits

- doubles

- triples

- homeruns

- RBI

- sacrifice hits

- sacrifice flies

- hit-by-pitch

- walks

- intentional walks

- strikeouts

- stolen bases

- caught stealing

- grounded into double plays

- awarded first on catcher's interference

- left on base

Figure 7. The stat-headers Python code block. This block returns a list of the names of the offensive statistics to test
for correlation with attendance.

CISE-13-3-SciProg.indd 6 25/03/11 5:32 PM

May/June 2011� 7

As this example demon-
strates, commingling code and
prose lets authors collect all
relevant information into a sin-
gle place. This practice bene-
fits readers, who can reproduce
the calculations performed
in the work and also extend
the analysis, possibly within
Org-mode itself. For exam-
ple, readers of this article can
rerun the analysis for another
season by simply changing
the value of the season code
block above and re-exporting
the file.

O rg-mode has many features
that make it a good choice

for reproducible research; some
of these are essential for any RR
tool, and others alleviate com-
mon burdens of practicing RR.

Of the essential properties,
arguably the most important
is that, as part of Emacs, the
Org-mode copyright is owned
by the Free Software Founda-
tion.5 This ensures that Org-
mode is now and always will
be free and open source soft-
ware. This directly relates to
two RR goals. First, Org-mode

#+source: analysis

#+headers: :var headers=stat-headers :var stats=offensive-stats

#+begin_src R :var attendance=attendance :exports none

 # apply the headers to the list

 colnames(stats) <- headers

 ## The following lines are required because parsing bugs are causing

 ## corrupt data in these two rows.

 badrows <- c(141, 674)

 stats <- stats[-badrows,]

 attendance <- attendance[-badrows,]

 attendance <- as.integer(attendance)

 # perform a simple correlation of each column with the attendance

 corrln <- cor(stats, attendance)

 # return the name of the most correlated column

 rownames(corrln)[which.max(corrln)]

#+end_src

Figure 9. The analysis code block. This block uses the R statistical programming language to calculate correlations between
the outputs of the offensive-stats and attendance code blocks (see Figure 7) whose values are saved into the stats
and attendance variables respectively.

#+source: offensive-stats

#+headers: :exports none

#+begin_src sh :var file=raw-data

 awk '{for (x=50; x<=66; x++) { printf "%s ", $x } printf "\n" }' FS="," \

 < $file

#+end_src

#+source: attendance

#+headers: :exports none

#+begin_src sh :var file=raw-data

 awk '{ print $18 }’ FS="," < $file

#+end_src

Figure 8. The offensive-stats and attendance shell code blocks. These blocks collect the offensive statistics and
attendance from the raw data file produced by the raw-data code block (see Figure 6).

0

1

2

3

4

5

6

COL-SFN

SLN-ATL

SFN-LAN

LAN-ARI

NYN-ARI

0

10,000

20,000

30,000

40,000

50,000

Fo
rc
ed

w
al
ks

A
tt
en

da
nc

e

Forcedwalks Attendance

Figure 10. Forced walks and attendance for the
top five games by forced walks. Results indicate
that the visiting team shares the fans’ belief in the
effects of a large crowd.

CISE-13-3-SciProg.indd 7 25/03/11 5:32 PM

S cie n t i f ic P r o g r a m m i n g

8� Computing in Science & Engineering

is available free of charge to install
by any user on any system, which
ensures access to the software envi-
ronment required for reproduction.
Second, the source code specifying
Org-mode’s inner workings is open to
inspection, ensuring that the mecha-
nisms through which Org-mode
generates scientific results are open
to review and verification.

In addition to its open source ped-
igree, Org-mode benefits in other
ways from its Emacs relationship.
Emacs is one of the world’s most
widely ported pieces of software,
with versions that run on all major
operating systems. This ensures
that Org-mode documents can be

incorporated into almost any com-
puter work environment. Emacs is also
widely used by the scientific com-
munity for editing both prose docu-
ments and source code. By leveraging
existing Emacs editing support, Org-
mode can offer its users a comfortable
and familiar editing environment for
all content types. Finally, given Org-
mode’s implementation in the Emacs
extension language, Emacs Lisp,6
users can customize Org-mode’s behav-
ior to their particular needs and support
arbitrary new programming languages;
Org-mode currently supports more
than 30 programming languages.

Org-mode addresses many com-
mon problems in RR practice. Given

that a single Org-mode document can
be used for every stage of a research
project—from brainstorming, soft-
ware development, and experimenta-
t ion to publicat ion—Org-mode
largely relieves authors of the burden
of tracking resources required for
reproducing their work. Although
this information volume can result
in extremely large files, Org-mode
documents’ hierarchical folding lets
users comfortably read and edit such
files. The files themselves are encoded
in plain text, which enhances their
portability and makes them easy to in-
tegrate with version control systems,
allowing for revision tracking and
collaboration.7

Org-mode documents run the gam-
bit from simple collections of plain-
text notes, to complex laboratories
housing data and analysis mechanisms,
to publishing desks with facilities for
displaying and exporting scientific re-
sults. There’s a friendly community of
Org-mode users and developers who
communicate on the Org-mode mail-
ing list (http://lists.gnu.org/mailman/
listinfo/emacs-orgmode). By answer-
ing questions and helping each other
master Org-mode’s many features,
this community helps to solve one of
the largest hurdles posed by any RR
tool—learning how to use it.�

References
1.	 R.M. Stallman, “Emacs the Extensible,

Customizable Self-Documenting Dis-

play Editor,” ACM Sigplan Notices,

vol. 16, no. 6, 1981, pp. 147–156.

2.	 S. Fomel and J.F. Claerbout, “Repro-

ducible Research,” Computing in Science

& Eng., vol. 11, no. 1, 2009, pp. 5–7.

3.	 J.B. Buckheit and D.L. Donoho,

“Wave-Lab and Reproducible

Research,” Wavelets and Statistics,

Springer-Verlag, 1995.

#+source: top-8

#+begin_src sh :var data=raw-data :exports none

 cat $data|awk '{print $60,$18,$7"-"$4}'

 FS=","|sed 's/"//g'|sort -rn |head -5

#+end_src

#+source: figure

#+begin_src gnuplot :var data=top-8 :file plot.png

:exports results

 # set term tikz

 # set output 'plot.tex'

 set yrange [0:6]

 set y2range [0:50000]

 set key above

 set y2tics border

 set ylabel 'forced walks'

 set y2label 'attendance'

 set style fill pattern

 set style data histogram

 set style histogram clustered

 set auto x

 set xtic rotate by -45 scale 0

 plot data using 1:xtic(3) title 'forced walks', \

 data using 2 axes x1y2 title 'attendance'

#+end_src

#+label: fig:top-5

#+attr_latex: width=0.8\textwidth

#+Caption: Top 5 games by forced walks, with forced walks

and attendance shown.

#+results: figure

[[file:plot.png]]

Figure 11. The code for the number of forced walks and the attendance for the five
games with the most forced walks.

CISE-13-3-SciProg.indd 8 25/03/11 5:32 PM

May/June 2011� 9

4.	 C. Dominik et al., The Org Mode 7

Reference Manual, Free Software

Foundation, 2010.

5.	 R. Stallman, “Free Software Founda-

tion,” Encyclopedia of Computer Science,

John Wiley & Sons, 2003, pp. 732–733.

6.	 B. Lewis, D. LaLiberte, and R. Stallman,

GNU Emacs Lisp Reference Manual, 3rd ed.,

Free Software Foundation, 2010.

7.	 K. Hinsen, K. Läufer, and G.K.

Thiruvathukal, “Essential Tools:

Version Control Systems,” Computing

in Science & Eng., vol. 11, no. 6, 2009,

pp. 84–91.

Eric Schulte is a doctoral student at the

University of New Mexico, where he is a

research assistant in the Adaptive Systems

Lab. His research interests include the natu-

ralization of computer software systems,

both in exploring novel distributed architec-

tures that avoid privileged points in space

and time and automated program repair

using evolutionary techniques. Schulte has

a BA in mathematics from Kenyon College.

Contact him at eschulte@cs.unm.edu.

Dan Davison is a senior scientist at Counsyl.

His research interests include computational

biology, population genomics, reproduc-

ible research, and machine learning. Davi-

son has a PhD in population genetics from

the University of Chicago. Contact him at

davison@ocunsyl.com.

Selected articles and columns from
IEEE Computer Society publica-

tions are also available for free at http://
ComputingNow.computer.org.

CISE-13-3-SciProg.indd 9 25/03/11 5:32 PM

