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Abstract

The cross-reactive immune response occurs when an immune system is exposed to one

pathogen and challenged with a related but different pathogen; for example, vaccination

with one strain of influenza and challenge with a wildtype strain. In this way immunolog-

ical memory functions as an associative memory. A discrete object model of the immune

system was built to study the cross-reactive response. Parameters of the model were derived

from immunological data, and lazy evaluation was used to make the simulation efficient.

The model was used to understand annual vaccination against influenza. Influenza ac-

counted for at least 10,000 deaths in each of the 19 epidemics in the United States between

1957 and 1986, and the medical and lost productivity cost of the epidemics in the 1960’s

was between two and four billion dollars. Vaccination against influenza is difficult because

the virus continually changes—this requires the vaccine to be updated, sometimes on a

yearly basis, and for individuals in high risk groups to be revaccinated each year. Vaccine

efficacy in first-time vaccinees is usually 70-80%. However, vaccine efficacy in repeat-
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vaccinees varies widely from 0 to 80%. This variation has been observed for 20 years, yet

is not fully understood. Experiments using the model described here offer an explanation

for this variation by showing how immunological memory to previous vaccines can inter-

fere, both positively and negatively, with subsequent vaccination. The degree, and sign,

of the interference depended on the antigenic differences between the vaccine strains and

epidemic strains used in the experiments. Currently, new strains for the influenza vaccine

are chosen to be close to the expected epidemic strains. The results reported here suggest

that vaccine strains should also be chosen to be distant from previous vaccine strains.
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Chapter 1

Introduction

We share our planet with an enormous variety of organisms, and as we live our lives the

vast majority of them ignore us. Some however, mostly microorganisms such as bacteria

and viruses, use our bodies as hosts for part or all of their life-cycles. With some we have

a symbiotic relationship; for example, the bacteria in our stomachs synthesize vitamins

and in return they get a free food supply. With others, such as the influenza virus, the

relationship is parasitic, and our immune system has evolved to recognize such organisms

and make life uncomfortable for them. Our immune system remembers pathogens it has

seen before, and if it sees them again it can often eliminate them before they cause disease.

This memory is why we only get some infectious diseases such as measles once, and is also

the basis for vaccination. Vaccines are weakened or inactivated pathogens that do not cause

disease, but which expose our immune systems to the pathogen and induce immunological

memory to the pathogen.

Some pathogens change over time, and depending on how much they change, im-

munological memory to earlier variants might still recognize them, and attack them, though

with reduced capacity. Vaccination is greatly complicated by such antigenically variable

pathogens. For example, components of the influenza vaccine have to be updated, some-

times on a yearly basis, to maintain a reasonable correspondence with the virus, and indi-

viduals at risk from death or serious illness from influenza are revaccinated annually with



the new vaccine strains. However, even then the effectiveness of annual influenza vac-

cination is highly variable. In some cases it is as good or a little better than first-time

vaccination, but in other cases it is significantly worse—in some studies, annual vaccinees

are no better protected than individuals who have never been vaccinated. The elderly are

particularly at risk from death or severe illness from influenza, but vaccine efficacy in the

elderly is often less than 50%. During the 19 influenza epidemics between 1957 and 1986,

over 10,000 excess deaths were recorded during each epidemic. The variability of influenza

vaccine efficacy in repeat vaccinees is not fully understood, though it has been observed

for over 20 years.

This is an interdisciplinary dissertation in which I bring computer science tech-

niques to the study of the immune response to antigenically variable pathogens. In par-

ticular, I address the question of annual vaccination against influenza, although the tools I

build are also applicable to other areas. My approach is to use computer modeling. I also

bring the perspective that immunological memory is a form of associative memory, and

associative memories are well studied systems in computer science. My main emphasis is

on answering questions related to public health, but along the way we will also see some

spin-offs back to computer science.

1.1 Vaccines

Vaccination is a highly successful technique in preventive medicine. For example, in 1954,

just before the introduction of the polio vaccine, there were 18,000 cases of paralytic polio

in the United States, by 1961 there were 1,000 cases, and by 1985 there were 5. Similarly

with smallpox, a sometimes deadly disease, cases dropped dramatically after the introduc-

tion of a vaccine, and it is believed that smallpox has now been eradicated from the planet.

Protection by vaccination is potentially long lasting; for example, measles vaccination con-

fers protection for life. Vaccination is also cost effective, with common vaccines costing

less than 20 US dollars per person, and because of this vaccination is one of the few health
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measures available in many developing countries. Vaccination sometimes has side effects,

sometimes very serious, and these have usually been caused by impurities in the vaccine.

Modern vaccine manufacturing and testing techniques significantly reduce these risks. Al-

though there are many cases of successful vaccines, there are many infectious diseases for

which no effective vaccine exists. As discussed above, antigenic variability makes vacci-

nation particularly difficult. Vaccination is a truly elegant process, it allows our immune

system to learn to recognize a weakened version of a pathogen so it can better cope with

the real thing. Contrast this with antibiotics that take over from our immune systems in

the midst of disease, have to be taken four times a day for two weeks, and do nothing to

protect us from future attacks. Incomplete treatment with antibiotics also risks the selection

of antibiotic-resistant pathogens.

1.2 Models

Immunologists use a range of model systems which trade off accuracy for observability,

controllability, and cost effectiveness. In vivo models are usually the most accurate, but

it is difficult to observe and control what is happening inside an animal. Mice are the

most common experimental animals, because their immune systems are similar to those of

humans, they are easy to breed, cheap to keep, easy to handle, and most people don’t get

too worked up if humans experiment on them. However, for some diseases mice do not

work well; for example, mice don’t get human influenza, so much influenza work is done

using ferrets. It is often a crucial step in studying a disease to find an animal model that

behaves similarly to humans. A major difficulty with work on HIV for example is the lack

of an animal model; chimpanzees are the closest to humans for HIV work, but chimpanzees

are an endangered species, and are difficult to breed and work with, and most people are

more concerned about humans experimenting on chimpanzees than they are about using

mice. Only 600 chimpanzees were available for all forms of medical research in the United

States in the early 1990’s.
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It is difficult to observe what is happening in vivo, primarily because the immune

system is highly complex, highly detailed, and massively distributed. For example, for over

10 years, it was generally considered that during asymptomatic HIV infection the virus was

mostly dormant, in a similar way that herpes virus lies dormant between outbreaks. How-

ever, it is now thought that a raging battle is going on during the asymptomatic period, with

enormous viral replication and T cell killing by HIV, and enormous T cell replenishment

and viral killing by the immune system. Thus, the steady state during the first 10 years is

not due to the virus being dormant, but is a dynamic steady state of great activity.

Gene manipulation and organ transplant techniques greatly increase the variety of

animal models. For instance SCID-human mice have no immune systems of their own,

and have partial human immune systems. Gene manipulation can create ”knockout” mice,

that have missing genes, and such models systems are useful to simplify aspects of the

immune system so it can be studied more easily. For example, there are knockout mice that

express only one B cell receptor specificity, whereas normal mice express 10 to 100 million

specificities. Such genetically manipulated animal models are very useful, but accuracy is

reduced from experiments in normal mice because the natural environment of the immune

system has been altered. Whether this matters depends on the experiment. Situations arise

where experiments in one model system contradict the results of another, and the reasons

are sometimes due to reduced accuracy in model systems.

Another modeling technique that simplifies the immune response is to use model

antigens. Bacteria and viruses are complex organisms, and the immune response to them is

often multifaceted. Thus, the use of a simplified antigen such as a small protein coated with

small regular chemicals called haptens simplifies the immune response and thus makes it

easier to observe. Again, accuracy is reduced, but it is a useful trade-off.

In vitro experiments are a further abstraction from in vivo experiments, as they take

place in a petri dish or a test tube. The cells under study are removed from their natu-

ral environment and thus accuracy is reduced; however, such experiments are much more

controllable and observable, and often much cheaper and faster, than in vivo experiments.
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In vitro experiments are a very useful tool, but like any model system, care must be taken

when translating the model results into what would be expected in vivo. For example, syn-

cytia formation (cells clumping together) was seen early on in the study of HIV in vitro,

and it was thought that it might be a mechanism that caused depletion of T cells in vivo. It

is now thought that this is not the case.

In machina experiments are potentially powerful new model systems for immu-

nologists. They are maximally observable and controllable—every detail of a computer

simulation can be recorded and any simulated cell or molecule can be manipulated in any

way at any time. However, they are also potentially low in accuracy. The accuracy of an

in machina model is limited by how much is programmed into the model and by immuno-

logical knowledge. Important details of the immune response, such as how the memory

population is maintained, what controls cell differentiation, and the mapping from protein

sequence to tertiary structure, are not fully understood. Thus model designers must guess

at these processes, or abstract away from them. For instance, in the in machina model

built for this study, the memory population is maintained by long-lived cells, cell differ-

entiation is a probabilistic process, and sequence and structure are equivalent; all of these

are abstractions from reality. However, such a model may still be useful—it depends on

whether the aspects of the immune system that have been abstracted away are critical for

what the model is being used to study. If the behavior of the system depends on the high

level behavior of an ensemble of components, as opposed to the details of the behavior of a

single component, and if that high-level behavior is captured in the model, then the model

can be useful. In machina experiments are particularly suited to understanding the system

level behavior of ensembles of components over time. This is because the simulation is

transparent, and can be examined at whatever level of detail is desired, without affecting

the simulation. This is in contrast to an in vivo experiment in which the animal often has to

be killed and dissected to observe what has happened.

Like in vivo animal models, genetically manipulated animal models, systems using

model antigens, and in vitro models, the results from in machina models must be treated
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carefully, and tested with more accurate models. Testing in more accurate, but difficult to

work with, models is very important, and has guided my research toward an application

that is testable with current immunological techniques. The bottom line is that if a model

is compelling, and its results can be tested, then it will be used.

1.3 The Rest of the Story

The next chapter shows that immunological memory functions as an associative memory,

and explains why it is associative. In an associative memory, recall does not require exactly

the same stimulus that was used to write to the memory; this is in contrast to a computer

memory which requires an exact match of a stimulus to recall what was written. This chap-

ter also introduces the concept of shape space and an antigen’s ball of stimulation, and

shows that the volume of the intersection of balls of stimulation is important for under-

standing cross-reactive memory. This abstract view enables prediction, at an abstract level,

the immune response to multiple cross-reactive antigens. To make this abstract view some-

what more real, I then proceed to build a model of the immune system that can be used

to simulate the cross-reactive immune response. Chapters three and four are about making

the model sufficiently accurate and computationally efficient.

In chapter three, deriving shape space parameters from immunological data, I set

parameters for the model. I show that the intersection of balls of stimulation (and thus

the cross-reactive immune response) is sensitive to the parameters of shape space, and I

derive those parameters from immunological data. The results of this derivation indicate

that a realistic-size repertoire of B cells should be used in simulations. In chapter four

I describe how lazy evaluation can be used to make simulations of such a large number of

B cells computationally tractable.

In the remainder of the dissertation I focus on application of the model. There

are potential applications wherever the understanding of pathogenesis or vaccine design is

complicated by antigenic variability of the pathogen; for example, in influenza, tuberculo-
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sis, and HIV. I have chosen to concentrate on annual vaccination against influenza, and this

is described in the fifth chapter, annual vaccination against influenza: an in machina study.

The model shows good qualitative agreement with existing knowledge, and analysis of

phenomenon seen in the model provides potential explanations of previously contradictory

experimental results, and might help in vaccine strain selection.

The sixth chapter, further work, details results on using the model for vaccine strain

selection, and for multivalent vaccine design, and also gives a mathematical analysis of

cross-reactive memory, and details wet experiments that could be done to test the predic-

tions from the influenza work.

Chapters two, three, four, and five, are written as journal publications, and are at

various stages of acceptance and submission.
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Chapter 2

Immunological Memory is Associative

Abstract

We show that immunological memory is in the class of sparse distributed associative mem-

ories along with Kanerva’s Sparse Distributed Memory, Albus’s Cerebellar Model Arith-

metic Computer, Marr’s Theory of Cerebellar Cortex, and Aleksander et. al’s WISARD.

These memories derive their associative and robust nature from a sparse sampling of a huge

input space by recognition units (B and T cells in the immune system) and a distribution

of the memory among many independent units (B and T cells in the memory population in

the immune system).

2.1 Introduction

In an associative memory, data is stored at an address and is retrieved by reading the mem-

ory at the same address, or a similar address. This process is called associative recall

and is in contrast to a point memory (such as the random access memory of a traditional

computer) in which the write and read addresses must be identical. Associative memories

are useful computational devices in noisy or imprecise environments and have been used

A prior version of this chapter was published as Smith et al. (1996)



in many applications including: speech recognition (Prager & Fallside, 1989; Danforth,

1990), character recognition (Sabourin & Mitiche, 1993; Manevitz & Zemach, 1997), and

robot control (Albus, 1981; Commuri et al., 1997). Associative memories are also typi-

cally robust, not only to noise in a read address but also to failure of components of the

memory—the signal-to-noise ratio of the output decreases proportionally to noise in the

address or the number of failed components. Many implementations of associative mem-

ory have been proposed including: Marr (1969), Albus (1981), Willshaw (1981), Hopfield

(1982), Kohonen (1984), Aleksander et al. (1984), Kanerva (1988).

Immunological memory is associative—it responds to antigens similar, but not nec-

essarily identical, to ones it has seen before. The associative memory properties of the

immune system were explicitly used 200 years ago when Jenner (1798) vaccinated with

cowpox to protect humans from smallpox. The modern investigation into associative recall

of immunological memory began with the observation that antibodies induced during an

influenza infection often had greater affinity to prior strains of influenza than to the infect-

ing strain—suggesting that the antibodies were generated by memory of prior infections—

a phenomenon was called original antigenic sin (Francis, 1953; Davenport et al., 1953).

Gilden (1963) and Fazekas de St. Groth & Webster (1966) investigated original antigenic

sin by injecting laboratory animals with one antigen and recalling the memory of that anti-

gen by injection of a related antigen. Some researchers considered associative recall “a

degeneracy in the secondary immune response” because it showed that not every exposure

was remembered uniquely (Eisen et al., 1969). However, as research continued, and asso-

ciative recall was observed in many animals with many different antigens, it became clear

that it was a general feature of immunological memory (Virelizier et al., 1974; Ivanyi,

1972; Deutsch & Bussard, 1972; Fish et al., 1989; Nara & Goudsmit, 1990; Smith, 1994).

Immunologists refer to associative recall as a cross-reactive or heterologous secondary im-

mune response. Immunological memory was explicitly identified as an associative memory

by Farmer et al. (1986).

This paper refines the observation that immunological memory is associative by
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showing that it is a member of the class of sparse distributed associative memories (Kan-

erva, 1992). We do this by showing the high level correspondences between immunological

memory and the archetypal member of the class—Sparse Distributed Memory (Kanerva,

1988). This class is characterized by, and derives its associative and robust properties from

a sparse sampling of the input space by recognition units, the activation of a subset of recog-

nition units by an input address, and a distribution of data to the activated recognition units.

When interpreted as neural networks, this class correspond to three layer networks with a

large hidden layer with fixed weights between the first and second layers. Other members of

this class include Marr (1969)’s Theory of Cerebellar Cortex, the Cerebellar Model Arith-

metic Computer (CMAC) (Albus, 1981), WISARD (Aleksander et al., 1984) and Sparse

Distributed Memory (SDM) (Kanerva, 1988) (and its variations (Jaeckel, 1989a; Jaeckel,

1989b)). The details of the implementation of each memory varies widely—from mathe-

matics and logic (SDM and CMAC), to neurobiology (Marr), to immunobiology (described

here).

2.2 Immunological Memory

The immune system recognizes a large number of cells and molecules (antigens) it has

never seen before, and decides how to respond to them. Some antigens, such as viruses,

bacteria, parasites and toxins generate mixtures of T cell and antibody responses. Other

antigens, such as those that make up the individual’s body, must not be attacked1. The

immune system remembers antigens it has seen before and when it sees them again is often

capable of eliminating them before disease occurs—this is the basis for vaccination, and the

reason why we do not get many infectious diseases more than once. The immune system

is complex, highly detailed, and not fully understood—thus the following brief exposition

is necessarily simplified and incomplete.

1Diseases such as multiple sclerosis, rheumatiod arthritis and insulin-resistant diabetes are examples of
autoimmune diseases where the immune system attacks the body it usually protects.
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Recognition. Vertebrate immune systems use a large number of highly specific B

and T cells to recognize antigens. An individual has the genetic material and randomiz-

ing mechanisms to potentially express more than distinct B cell receptors (Berek &

Milstein, 1988), and at any time actually expresses a subset of to distinct B cell

receptors (Köhler, 1976; Klinman et al., 1976; Klinman et al., 1977). The number of pos-

sible distinct antigens is difficult to calculate, but it is thought to be in the range to

(Inman, 1978). B and T cells can be stimulated by antigen if their affinity for the antigen is

above some threshold. Typically to of an individual’s B cells can be stimulated

by an antigen (Edelman, 1974; Nossal & Ada, 1971; Jerne, 1974), these B cells are said to

be in the ball of stimulation of the antigen (Perelson & Oster, 1979) (Figure 2.1a).

B or T cells
...

Ball of Stimulation

(a)

Primary Antigen

Cells involved in the
immune response

(b)

Memory Cells

(c)

Secondary Antigen

(d)

Cells in the intersection of these balls of stimulation
cause an associative recall

Figure 2.1: (a) A two dimensional illustration of (a high dimensional) sparse distribution of
B or T cell receptors ( ) in a space where distance is a measure of affinity for an antigen ( ).
B and T cells within some threshold affinity can bind the antigen and become activated. The
region the antigen activates is called the ball of stimulation of the antigen. (b) Activated B cells
replicate and mutate and the higher affinity ones are selected. (c) After the antigen is cleared
a memory population persists. (d) A second exposure to the same antigen, or here a related
antigen, restimulates the memory population and results in associative recall.
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Response. When B and T cells are stimulated by antigen they divide. The B cell

receptor sometimes mutates on cell division and this can increase the affinity of its daughter

cells for the antigen, a process called affinity maturation. Toward the end of a response,

when antigen becomes scarce, higher affinity B cells have a fitness advantage over lower

affinity B cells and are preferentially selected in a process similar to natural selection (Fig-

ure 2.1b) (Burnet, 1959). During the replication of cells in response to antigen, some B

cells differentiate into plasma cells and secrete antibodies which can eliminate the antigen.

In the case of a viral infection, some T cells differentiate into cytotoxic T lymphocytes

(CTLs), which can kill virus-infected cells.

After the antigen is cleared, the B cell and T cell populations decrease, but a per-

sistent sub-population of memory cells remains (Figure 2.1c) (discussed further in section

2.5). These memory cells implement immunological memory—if the same antigen is seen

again, the memory population is restimulated, and because of its size quickly produces

large quantities of antibodies (or CTLs). This is called a secondary immune response,

and often clears the antigen before the antigen causes disease. If the secondary antigen is

slightly different from the primary antigen, its ball of stimulation might intersect part of

the memory population created in a response to the primary antigen (Figure 2.1d). Mem-

ory cells in the intersection can bind the secondary antigen and produce antibodies and/or

CTLs to remove it. The strength of a secondary immune response is related to the number

of memory cells stimulated by the antigen (Gerhard, 1978; East et al., 1980).

2.3 Sparse Distributed Memory (SDM)

Kanerva’s SDM is a member of the class of sparse distributed associative memories (Kan-

erva, 1992). SDM, like random access memory, is written to by providing a binary address

and data, and read from by providing a binary address. Unlike random access memory, the

address space of SDM is very large, sometimes 1,000 bits, giving possible addresses.

SDM cannot instantiate such a large number of address-data locations so it instantiates
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a randomly chosen subset of say 1,000,000 address-data locations. These instantiated

address-data locations are called hard locations and are said to sparsely cover the input

space (Kanerva, 1988).

When an address is presented to the memory, hard locations that are within some

threshold Hamming distance of the address are activated. This subset of activated hard

locations are said to be in the access circle of the address (Figure 2.2a). On a write, each

...

Address Hard Locations

Access Circle

(a)

Data = 11010010100

Data counters for each hard location in the access circle
are adjusted according to the data (only 2 shown).

(b) Write

c(c) Read

+ + 

4 5 −3

3 7 −4

+ ... 

Data counters are accumulated 
and thresholded (only 2 shown)

c

5

(d) Associative Recall

Hard locations in the intersection of these access circles
cause an associative recall

Figure 2.2: (a) A two dimensional illustration of hard locations sparsely and randomly dis-
tributed in a high dimensional binary input space. Distance in the space represents Hamming
distance between hard locations. Hard locations within some radius of an input address are
activated and form an access circle. (b) Activated hard locations adjust their data counters on a
write and (c) accumulate and threshold them on a read. (d) The access circle of a similar address
might include some hard locations from the prior write and induce an associative recall.

bit of the input data is stored independently in a counter in each activated hard location. If

the data bit is a 1, the counter in each hard location is incremented by 1, if the

data bit is a 0 the counter is decremented by 1 (Figure 2.2b). On a read, each bit of the

output is composed independently of the other bits. The value of the counter of each
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activated hard location are summed. If the sum is positive the output for the bit is a 1, if

the sum is negative the output is a 0 (Figure 2.2c).

The distribution of data among many hard locations makes the memory robust to the

loss of some hard locations, and it permits associative recall of the data if a read address

is slightly different from a prior write address. If the access circle of the read address

intersects the access circle of the write address, hard locations in the intersection give an

associative recall of the write data (Figure 2.2d).

2.4 Correspondence between ImmunologicalMemory and

SDM

Table 2.1 summarizes the correspondence between immunological memory and SDM.

Both immunological memory and SDM use detectors to recognize an input. In the case

SDM Immunological memory
Hard location B/T Cell
Access circle Ball of stimulation
Hamming distance Affinity
Write Primary response
Read Secondary response
Associative recall Cross-reactive response
Address Antigen
Data B/T cell receptor,

antibody class,
T cell homing receptor,
response/tolerance.

Table 2.1: The structural and functional correspondence between immunolog-
ical memory and SDM.

of SDM, hard locations recognize an address, in the case of immunological memory, B and

T cells recognize an antigen. In both systems the number of possible distinct inputs is huge,

and due to resource limitations the number of detectors is much smaller than the number
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of possible inputs—both systems sparsely cover the input space. In order to respond to all

possible inputs, detectors in both systems do not require an exact match with the input, but

are activated if they are within some threshold distance of the input. Thus, in both systems

an input activates a subset of detectors. In SDM, this subset is called the access circle of an

input address, in immunological memory, it is called the ball of stimulation of an antigen.

In SDM the distance between a hard location and an address is defined to be Ham-

ming distance. In the immune system, the equivalent of distance is a function of the binding

affinity of an antibody, or B or T cell receptor, for an antigen. Binding is a complex physical

chemical process involving, among other things, shape and charge complementarity. Even

though the mechanism of the distance calculation in the immune system is very different

from that in SDM, the function is the same—to activate a subset of detectors that will be

involved in a read or write of the memory.

In both systems detectors store data associated with each input. In the case of SDM

the data is an exogenously supplied bit string. In the case of immunological memory the

data is the B or T cell receptor that can bind the antigen, the class of antibody or CTL

response, and whether to respond to the antigen at all.

Both systems distribute data to each activated detector. In the case of SDM the

data is used to adjust counters; in the case of immunological memory, memory cells are

created which in the case of B cells have undergone genetic reconfigurations that determine

the class of antibodies they will produce, and in the case of T cells might have homing

receptors for the part of the body which the antigen infected. Because the data is stored in

each detector, each detector can recall data independently of the other detectors. In both

memories, the strength of the output (the signal) is an accumulation of the data in each

activated detector. Thus, when only a subset of detectors are activated, either due to a noisy

address (Figures 2.1d and 2.2d) or failure of some detectors, the output signal degrades

gracefully, and the signal strength is proportional to the number of activated detectors.

Thus, the distributed storage of information makes both systems robust.

16



2.5 Discussion

We have shown that B and T cells in the immune system perform an high level function

analogous to hard locations in SDM—B and T cells perform a sparse coverage of all pos-

sible antigens in the same way that hard locations perform a sparse coverage of all possible

addresses in a SDM. Also, data are distributed among many independent B and T cells in

immunological memory as they are among many independent hard locations in a SDM.

These high level correspondences between immunological memory and SDM characterize

immunological memory as a member of the class of sparse distributed associative memo-

ries. Along with other members of this class, immunological memory is associative and

robust precisely because it is sparse and distributed.

The idiotypic network theory (Jerne, 1974) has been central in previous discussions

of the associative properties of immunological memory (Farmer et al., 1986; Gibert &

Routen, 1994). However, we regard the network theory as but one of the potential mech-

anisms that maintain the population of memory B cells; other theories include long-lived

cells (Mackay, 1993), retained antigen (Tew & Mandel, 1979; Tew et al., 1980), and cross-

reactions with environmental antigen (Matzinger, 1994). Our explanation of why immuno-

logical memory is associative is independent of whichever of these mechanisms maintains

the memory population.

A consequence of our description is to focus attention on the intersection of balls

of stimulation. The number of clones in the intersections of balls of stimulation might be

useful in explaining and predicting aspects of the cross-reactive immune response, in the

same that the number of hard locations in the intersection of access circles is useful in

explaining and predicting the behavior of SDM (Kanerva, 1988). For example, Figure 2.1d

provides a qualitative understanding of why a cross-reactive response becomes weaker as

two antigens become less alike—because the number of memory cells in the intersection

of the balls of stimulation becomes smaller. Similarly, Figure 2.3 provides a qualitative

understanding of how a prior infection can reduce the effectiveness of a vaccination against

an epidemic challenge.
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(a)

Primary Antigen
eg. prior influenza infection
or vaccination

Secondary Antigen
eg. influenza vaccine

Tertiary Antigen
eg. epidemic
influenza
challenge (b)

Secondary Antigen
eg. influenza vaccine

Primary Antigen
eg. prior influenza infection
or vaccination

Tertiary Antigen
eg. epidemic influenza
challenge

Figure 2.3: Associative recall of a prior exposure (primary antigen) can cause a vaccine (sec-
ondary antigen) to fail. If the ball of stimulation of a vaccine intersects the memory of a prior
exposure, the vaccine may be cleared by associative recall of the prior exposure and fail to make
highly specific memory to the vaccine strain. If the ball of stimulation of a subsequent epidemic
challenge (tertiary antigen) also intersects memory of the prior exposure, it too can be cleared
quickly by an associative recall (Figure 2.3a). However, if there is no intersection between the
prior and epidemic strains, there will be no memory to clear the epidemic strain quickly, and
the epidemic challenge might cause disease (Figure 2.3b).

To make these qualitative observations somewhat more quantitative, we have de-

rived approximations of the dimensionality and cardinality of the space of B cell and anti-

body receptors (Smith et al., 1997d). We showed that a five dimensional Euclidean space,

or a twenty dimensional Hamming space with a four letter alphabet, are reasonable approx-

imations given current immunological data on the cross-reactive immune response. This

allows us to approximate the number and affinity distribution of cells in the intersection

of balls of stimulation as a function of the distance between antigens. We have used the

twenty dimensional Hamming space to model and analyze the cross-reactive immune re-

sponse between two antigens (Figure 2.1) (Smith et al., 1997a) and between three antigens

(Figure 2.3) (Smith et al., 1997b). In both cases we show good qualitative correspondence

with existing data, offer explanations of data that were previously considered contradictory,

and make predictions.
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Chapter 3

Deriving Shape Space Parameters from

Immunological Data

Abstract

We present a method for deriving shape space parameters that are consistent with immuno-

logical data, and illustrate the method by deriving shape space parameters for a model of

cross-reactive memory. Cross-reactive memory responses occur when the immune system

is primed by one strain of a pathogen and challenged with a related, but different, strain.

Much of the nature of a cross-reactive response is determined by the quantity and distribu-

tion of the memory cells, raised to the primary antigen, that cross-react with the secondary

antigen. B cells with above threshold affinity for an antigen lie in a region of shape space

that we call a ball of stimulation. In a cross-reactive response, the intersection of the balls

of stimulation of the primary and secondary antigens contains the cross-reactive B cells

and thus determines the degree of cross-reactivity between the antigens. We derive for-

mulas for the volume of intersection of balls of stimulation in different shape spaces and

show that the parameters of shape space, such as its dimensionality, have a large impact

on the number of B cells in the intersection. The application of our method for deriving
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shape space parameters indicates that, for Hamming shape spaces, twenty to twenty-five

dimensions, a three or four letter alphabet, and balls of stimulation of radius five or six,

are choices that match the experimental data. For Euclidean shape spaces, five to eight

dimensions and balls of stimulation with radius about twenty percent of the radius of the

whole space, match the experimental data.

3.1 Introduction

Cross-reactive memory is observed when an individual develops memory to one strain of a

pathogen and is challenged with a related strain. Vaccination with cowpox to protect against

smallpox is an example of an early use of cross-reactive memory (Jenner, 1798; Ada,

1993). Cross-reactive memory also occurs in the natural immune response to pathogens

that mutate. Francis (1953) observed that the immune response to influenza was often a

recall of the response to a prior influenza infection, and called the phenomenon “original

antigenic sin”. Subsequent studies revealed that some memory cells specific for the pri-

mary antigen were also cross-reactive with the secondary antigen (Fazekas de St. Groth

& Webster, 1966b; Deutsch & Bussard, 1972; Gerhard, 1978; Yarchoan & Nelson, 1984).

Cross-reactive memory is often useful in that memory to a one strain of a pathogen can

protect against other strains. It has also been suggested that memory to the primary anti-

gen may be maintained by challenge with cross-reactive antigen (Angelova & Shvartsman,

1982; Matzinger, 1994). However, cross-reactive memory can also be a problem because

memory cells highly specific for the secondary antigen are not formed if the antigen is

cleared too quickly by memory cells of the primary antigen. The same effect can poten-

tially cause vaccine failure; a vaccine might be cleared by memory cells of a prior infection

without inducing memory to the vaccine components.

Most of the experimental work on cross-reactive memory has been performed using

two strains of a single organism, or two related haptens, as primary and secondary antigens.

Experiments on more than two antigens would be useful in order to better understand, for
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example, sequential infections with influenza (Angelova & Shvartsman, 1982), pathogen-

esis of HIV, and multivalent vaccine design. We have developed a model and computer

simulation of cross-reactive memory in order to perform in machina multi-antigen experi-

ments with the goal of helping to understand the immune response to mutating pathogens

and sequential multivalent vaccines. An advantage of computer simulations is that all of

the data in the simulation are easily measured; a disadvantage is that the simulation may

omit or distort important aspects of the system being modeled. We describe some of our

efforts to calibrate a model with immunological data to make it closer to the in vivo reality.

Much of the character of a cross-reactive response is determined by the quantity and

distribution of the population of memory cells, raised to the primary antigen, that also react

with the secondary antigen. Figure 3.1 shows that if we consider the cells that respond to

the primary and secondary antigens as sets, then the cells that react with both antigens, the

cross-reactive cells, lie in the intersection of the sets. If the antigens are closely related,

then there are a large number of cells in the intersection and there will probably be a strong

cross-reactive response. If the antigens are less closely related, then the number of cells in

the intersection is small, and there will probably be only a weak cross-reactive response.

Because the number and distribution of cells in the intersection plays a significant role in

the cross-reactive response, it warrants careful study in a model being used to study cross-

reactive responses. We would like to know how the intersection varies as a function of the

antigenic differences between the primary and secondary antigen. The number of cells in

the intersection will depend on how we choose to model antibody-antigen interactions, and

what parameters values we choose for this aspect of the model. In this paper we derive

parameters, from experimental data, for a model of cross-reactive memory.
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This set consists of cells
that are stimulated by the
primary antigen

This set consists of cells
that are stimulated by the
secondary antigen

The cells in the intersection of these
sets are the cross−reactive clones that
can bind with both antigens, and which
initiate a cross−reactive response.

Figure 3.1: The cells that cause a cross-reactive response are those in the intersection of the
set of cells stimulated by the primary antigen and the set of cells stimulated by the secondary
antigen.

3.2 Shape Space Model of Antibody-Antigen Interactions

Antibody-antigen binding affinity1 is based on complementarity between regions of the

antigen and antibody. An abstract model of this was introduced by Perelson & Oster (1979).

In this model antibodies and antigens are considered as points in a “shape space” and the

distance between an antibody and an antigen is a measure of their affinity for each other.

Thus, antibodies within an affinity cutoff for clonal selection by an antigen form a ball in

shape space called a ball of stimulation. In a cross-reactive response, each antigen forms

such a ball and the intersection of the balls contains the cross-reactive antibodies, thus

determining the degree of cross-reactivity between the antigens. Consequently, the Venn

diagram representation in Figure 3.1 can also be interpreted as a shape space diagram.

In order to make shape space more quantitative Perelson & Oster (1979) represented

1We refer to the binding of antibodies and antigen, however, this analysis could also be applied to the
binding of the T cell receptor with antigen presented on MHC.
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the “generalized shape” of antibodies and antigens with a set of real valued coordinates

. Thus, mathematically, each antibody and antigen could be regarded as a

point in an -dimensional real-valued space. The affinity between an antigen and antibody

was related to the distance between them, which was measured as the square root of the

sum of the squares of the distances between the values in each dimension. For example,

if the coordinates of an antibody are and the coordinates of an antigen are

, the distance between them is .

Shape spaces that use real-valued coordinates, and that measure distance this way, are

called Euclidean shape spaces (Segel & Perelson, 1988; DeBoer et al., 1992b).

An alternative to Euclidean shape space is Hamming shape space, in which anti-

gens and antibodies are represented as sequences of symbols (Farmer et al., 1986; DeBoer

& Perelson, 1991; Seiden & Celada, 1992; Weisbuch & Oprea, 1994; Hightower et al.,

1995; Perelson et al., 1996; Detours et al., 1996). Such sequences can be can loosely in-

terpreted as peptides and the different symbols as properties of either the amino acids or

of equivalence classes of amino acids of similar charge or hydrophobicity. The mapping

between sequence and shape is not fully understood, so for the purposes of this paper we

assume that sequence and shape are equivalent. This assumption is reasonable in some

situations, for example Champion et al. (1975) showed that for azurins, lysozymes, and

alpha subunits of tryptophan synthetase, that sequence difference was correlated with the

degree of antigenic difference. However, for some antigenic determinants, a single amino

acid change can cause a large change in antigenic difference. For such cases a different

type of analysis would be needed.

In order to measure the affinity between sequences, we need to define what symbols

are complementary so the Hamming distance can be calculated. Any choice is equivalent

mathematically, hence for simplicity we choose symbols to be complementary to them-

selves. For example, let CADBCADB be an antigen and CBDBCDDB an antibody, these

are “complementary” in six out of eight places, and thus have a reasonably high affinity

for each other. Shape spaces which measure contiguous complementary symbols (Percus
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et al., 1993), or use other rules for complementarity between symbol sequences (Weisbuch

& Oprea, 1994; Detours et al., 1996), have also been used.

A shape space will have different properties depending on the number of dimen-

sions, , the radius of a ball of stimulation, , and, in the case of Hamming shape space,

on the number of symbols in each dimension, . As an example of how some properties

are sensitive to and , Figure 3.2 plots the volume of the intersection of two balls of

stimulation, as a function of the sequence difference between the antigens. The formula for

the intersection volume is derived in appendix A. Thus, in a model where the volume of the

intersection is important, as in a model of cross-reactive memory, shape space parameters

must be chosen carefully.
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Figure 3.2: Panels (a), (b) and (c) show that as or increase, or as decreases, the intersection
volume, as a function of the sequence difference, falls off more quickly. Panel (a) shows that the
binary alphabet, , has an unusual property—every other increase in sequence difference does
not cause a decrease in the intersection volume (Kanerva, 1988). Panel (d) shows and set at
extreme values to illustrate how much the curves can differ.
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3.3 The Method and its Application

The method of deriving shape space parameters from immunological data consists of the

following steps: (i) determine properties that are important to represent correctly in the

model, (ii) estimate data values, from immunological experiments, that characterize these

properties, (iii) derive equations for these data values as a function of the parameters of

the model, (iv) equate the immunological data values with the model equations, and (v)

solve the equations for the model parameters. For a model of cross-reactive memory, an

important property to represent correctly is cross-reactivity, and the ideal data values would

be the number of B cells in the intersection of the balls of stimulation of antigens of varying

sequence differences.

When the sequence difference is zero, the intersection volume is the volume of a ball

of stimulation. What has been measured experimentally is the proportion of B cells that

respond to an antigen, and from this we can estimate the absolute number of B cells in a

ball of stimulation. Estimates for the proportion, , range from to (Edelman,

1974; Nossal & Ada, 1971; Jerne, 1974). The equation from the model for the proportion,

, of B cells responding, is volume of a ball of stimulation divided by the volume of the

space. Equating the experimental data values and the formula from the Hamming space

model we have

(3.1)

The size, , of the shape space needs to be sufficiently large to be able to represent

all possible antibodies. Based on the number of gene segments used to encode antibodies,

the number of possible antibodies, is thought to be at least (Berek & Milstein,

1988; Lodish et al., 1995). Including the effects of somatic hypermutation the number of

possible antibodies is many orders of magnitude higher (Lodish et al., 1995); for example

it might be as high as . Again equating the experimental data values and the formula

from the model we have

(3.2)
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Another data value that can be extracted from experiment is the sequence difference

at which the intersection volume of the balls of stimulation goes to zero, i.e. the sequence

difference at which two antigens no longer cross-react. We call this distance the “cross-

reaction cutoff”. It is more intricate than the above equations and is derived in the following

subsection.

3.3.1 Cross-Reaction Cutoff

The experimental data for the cross-reaction cutoff comes from two sources: East et al.

(1980) and Champion et al. (1975). East et al. (1980) primed rabbits2 with beef myo-

globin and split them into five groups. Each group received a second injection of myo-

globin from one of beef, sheep, pig, whale or chick. The antibody titer to beef myoglobin

was plotted against the percent sequence difference between the myoglobins given in the

primary and secondary injections. These data are almost ideal, but not quite. The antibody

titer was measured at the peak of the secondary response, however we need the number of

cells at the beginning of the secondary response. These values are related, but the dynam-

ics of the immune response makes the relation complex. When there are no cross-reactive

antibodies, the relation is simple; we can assume there were no cross-reacting cells at the

beginning of the response, and thus determine the cross-reaction cutoff. East et al. (1980)

estimate this point, , to occur in the range of 33 to 42% sequence difference between

the primary and secondary antigens.

A second source of the data value for the cross-reaction cutoff comes from Cham-

pion et al. (1975). In these experiments, seven groups of rabbits were primed with one

of seven bacterial azurins. At ten to twelve weeks the rabbits were boosted with the same

strain with which they were primed. At twenty to twenty-five weeks the rabbits were

boosted again on three successive days, with the same strain, and then bled one week later

and the antisera purified. Micro-complement fixation assays were used to determine how

2Values for our other parameters were taken from experiments in mice, however this parameter is taken
from experiments in rabbits.
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well each antisera fixed complement to each of the heterologous azurins. As with East

et al. (1980), these data are almost ideal, but not quite. The problem is that the distribution

of antibodies is not uniform, as it has been biased by affinity maturation during the hyper-

immunization. In order to use these data we would need to know the bias due to affinity

maturation, and that is not available. We can however again determine the cross-reaction

cutoff, which this time is at 40% sequence difference between the antigens.

In order to properly match the model to the experimental cross-reaction cutoff,

we need to take into account that memory B cells are more easily stimulated than naive

B cells. Fish et al. (1989) showed that clonal expansion of memory B cells required a

lower affinity antibody-antigen interaction than clonal expansion of naive B cells. In their

experiments, A/J mice primed with p-azophenylarsonate (Ars) responded predominantly

with clones derived from a single gene segment, , and when primed with p-

azophenylsulfonate (Sulf), no such clones were elicited. However, in mice primed with

Ars and challenged with Sulf, clones originally encoded by the were present. We

take this greater sensitivity of memory B cells into account by increasing the radius of the

ball of stimulation of the secondary antigen as shown in Figure 3.3. Thus, when we calcu-

late the volume of the intersection in the model, we must take the radius of the first (naive)

ball of stimulation as , and the radius of second (memory) ball of stimulation as .

Two further factors need to be taken into account before relating the cross-reaction

cutoff in experiments with that in the model. First, vertebrate immune systems only ex-

press a portion of their total number of possible B cell specificities at any one time. For the

mouse, this number, the expressed repertoire, , is in the range to (Köhler,

1976; Klinman et al., 1976; Klinman et al., 1977). In contrast the formulas in the model

give answers in terms of the number of all possible B cell specificities. Second, an exper-

iment might not be able to detect less than a critical number of B cells in the intersection

of balls of stimulation, whereas the model can detect a single B cell. We take these factors

into account by equating the ratio of the intersection volume and shape space volume in the
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The VHIdCR gene segment exists in this   
region; inside the ball of stimulation of Ars, 
outside the naive ball of stimulation for  Sulf, 
and within the memory ball of stimulation 
of Sulf.

Due to the extra sensitivity of memory 
B cells, the ball of stimulation for memory 
B cells is larger than that for naive B cells.

Ball of stimulation for naive B cells.

Secondary antigen (Sulf).Primary antigen (Ars).

Figure 3.3: The extra sensitivity of memory B cells results in a ball of stimulation for the
secondary antigen that is larger than that of the primary antigen. The amount that the memory
ball of stimulation is greater than the naive ball of stimulation is the value as explained in
the main text.

model, with the ratio of the number of B cells an experiment can detect in the intersection

(which we assume to be a single B cell specificity) and the size of the expressed repertoire.

Thus we have

(3.3)

where ranges from 33 to 42% sequence difference, and where the intersection volume, ,

is defined in appendix A.

3.3.2 Solving for Shape Space Parameters

Given values from experiments for , , , and , Equations 3.1 through

3.3 can be solved3 for the Hamming shape space parameters and . For example, rea-
3We obtain solutions be considering ’s in the range 2 to 20, and for each , derive a real valued from

Equation 3.2, select an integer that gives a ball of stimulation closest to the desired size from Equation 3.1,
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sonable values to choose from current immunological data are

and which give shape space parameters

or . Table 3.1 shows solutions for

different values of the immunological data.

6-13-3 5-17-5 4-23-7 4-27-9
7-12-3 6-15-5 5-20-7 5-23-8
8-11-3 8-13-4 6-18-6 6-21-8

9-13-4 7-17-6 8-18-7
10-12-4 8-16-6 9-17-7
11-12-4

3-21-4 3-25-6 3-34-10
4-17-3
2-33-6 2-47-10 2-53-13
2-33-6 2-40-8 2-47-10
3-21-4 3-25-6
4-17-3 4-20-5

2-47-9 2-53-11
2-33-6 2-40-8 2-47-10

Table 3.1: The values for , and , that satisfy the immunological data, in a Hamming shape
space, for different values of , , , and . Multiple entries indicate multiple
solutions and blank entries indicate no solutions.

3.4 Using the Same Method on Euclidean Shape Space

The method for deriving shape space parameters can be applied to other shape spaces, other

experimental data, and other properties we choose to satisfy. As an example, we now use

the method to derive parameters for a Euclidean shape space.

After Perelson & Oster (1979), we place a limit on the magnitude of each shape

space parameter and normalize distances with respect to this distance, so that radii are in

find values for that bound the right hand side of Equation 3.3 (using rounded to an integer), interpolate
for an exact , and accept solutions that give between 0.33 and 0.42.
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the range zero to one. We map sequence difference directly onto the Euclidean distances 0

to 1.4 We use for the normalized radius and for the normalized cross-reaction cutoff.

For Euclidean shape space, equation 3.1 becomes

(3.4)

where the left hand side of this equation is derived at the end of appendix B, and equation

3.3 becomes

(3.5)

where ranges from 0.33 to 0.42, is now the Euclidean intersection volume and Ball

is the volume of the n-dimensional Euclidean shape space normalized to radius 1; both

quantities are derived in appendix B.

7/0.19 8/0.24 9/0.28
6/0.15 7/0.19 8/0.24
5/0.16 5/0.16 6/0.22
5/0.16 5/0.16 6/0.22
7/0.19 7/0.19 8/0.24
6/0.15 7/0.19 7/0.19
5/0.16 5/0.16 6/0.22
5/0.16 5/0.16 5/0.16
6/0.15 7/0.19 8/0.24
6/0.15 6/0.15 7/0.19
5/0.16 5/0.16 5/0.16
4/0.10 5/0.16 5/0.16

Table 3.2: Solutions of Equations 3.4 and 3.5, for the model parameters and , that satisfy
the immunological data in a Euclidean shape space, for different values of ,
and .

Solutions of Equations 3.4 and 3.5 (Table 3.2) indicate that , the number of di-

mensions, is not very sensitive to the biological values; five to eight dimensions is about
4An alternative Euclidean space would wrap each dimension and have a toroidal total volume. This has

the advantage of eliminating edge effects of the spherical total volume.
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right for a Euclidean shape space that satisfies the immunological data for a cross-reactive

memory model. In general, the number of dimensions increases as: increases,

decreases, decreases, or decreases.

3.5 Discussion

The intersection volume between balls of stimulation for primary and secondary antigen

encounters plays an important role in cross-reactive memory responses. Choices of shape

space parameters have a significant effect on the intersection volume predicted by our

model. Thus, care must be taken when choosing shape space parameters. We have se-

lected immunological data that are important for a model of cross-reactive memory, and

have shown how we can derive shape space parameters from these data. A comparison

of our findings for Euclidean and Hamming shape spaces (Figure 3.4) shows agreement

in the intersection volume at zero sequence difference and zero intersection as would be

expected as these were the data points for which the equations were solved. However, the

intersection volumes differ between these points.

Experiments could be done to test the qualitative relationships in this paper, if we

assume that antigenic difference is proportional to sequence difference. Ideal data would

give the intersection volume, at various sequence differences, for multiple antigens. As an

example, Gerhard (1978) measured the degree of cross-stimulation between various strains

of influenza with known sequence differences. Such data could be used to further determine

the appropriate choice of shape space parameters.

In prior work, Perelson & Oster (1979) estimated the number of dimensions for a

Euclidean shape space to be between five and ten. This agrees well with our calculations

which suggest five to eight dimensions (Table 3.2). Percus et al. (1993) used a variation on

Hamming shape space in which the complementary symbols had to be contiguous. Using

self-nonself discrimination arguments, they predicted about a fifteen symbol binding region

for strings made from a three symbol alphabet, and a nineteen symbol binding region when

31



E u c l i d e a n  n = 8 ,  r = 0 . 2 4 .

H a m m i n g  n = 2 0 ,  k = 4 ,  r = 5 .

P e r c e n t  S e q u e n c e  D i f f e r e n c e
0 20 40 60 80 100

In
te

rs
ec

ti
on

/B
al

l 
V

ol
um

e

0

0.2

0.4

0.6

0.8

1

Figure 3.4: A comparison of the intersection volume, as a function of sequence difference,
for a Euclidean and Hamming shape space. For both spaces, the shape space parameters were
derived from the immunological data ,
and, for Hamming space, .

the complementary symbols could be in two contiguous regions. Here we find that a twenty

symbol binding region, with a four symbol alphabet and balls of stimulation of radius five,

which gave a minimum binding region of fifteen symbols, or a twenty-five symbol binding

region, with a three symbol alphabet and balls of stimulation of radius six, which gave a

minimum binding region of nineteen symbols, to be consistent with immunological data on

cross-reactivity. X-ray crystallographic analysis has shown that a typical antibody-antigen

binding site is about seventeen amino acids (Amit et al., 1986), and that there might some

gaps in the binding. This matches well with our derivation of a twenty symbol binding

region, and a ball of stimulation of radius five.

Segel & Perelson (1988) and DeBoer et al. (1992) simulated immunological pro-

cesses in one and two dimensional Euclidean spaces because it facilitated analysis and

comprehension of the dynamics. However, our calculations suggest that a Euclidean shape

space between five and eight dimensions is more consistent with the immunological data on

cross-reactivity. Binary alphabets are common when Hamming shape spaces are used. Sei-
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den & Celada (1992) used a Hamming space with a binary alphabet and eight to fourteen

dimensions. This allowed them to express the complete repertoire which was important for

their experiments. Farmer et al. (1986) used a binary alphabet and thirty-two dimensions,

and Hightower et al. (1995) used a binary alphabet and sixty-four dimensions. Binary al-

phabets with a multiple of thirty-two dimensions are an obvious choice for the efficiency

of computer simulations. However, binary alphabets have a stair-step intersection volume,

as shown in Figure 3.2a, and thus might not be a good choice for a model of cross-reactive

memory.

It may be tempting to suggest that real antibodies and antigens can be characterized

by five to eight Euclidean parameters, or by twenty or so four-symbol Hamming parame-

ters. Either of these statements may or may not be true, but they should not be inferred by

the work presented here. What this work shows is how to choose Hamming and Euclidean

shape space parameters of a model so that they will match a chosen set of immunological

observations.

We have shown, for Hamming shape space, that alphabet sizes of three and four,

with the number of dimensions in the mid to low twenties, and balls of stimulation of

radius five to six, are good parameters for use in a model of cross-reactive memory. For

Euclidean shape space we have shown that, for a wide range of immunological data, five

to eight dimensions and balls of stimulation of normalized radius 0.15 to 0.22 are good

parameters. We have also shown that, for Hamming shape space, binary alphabets have

a stair-step intersection volume, and that large alphabets only satisfy the constraints for

extreme values of the immunological data.
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Chapter 4

Using Lazy Evaluation to Simulate

Realistic-Size Repertoires in Models of

the Immune System

Abstract

We describe a method of implementing efficient computer simulations of immune systems

that have a large number of unique B and/or T cell clones. The method uses an imple-

mentation technique called lazy evaluation to create the illusion that all clones are being

simulated, while only actually simulating a much smaller number of clones that can re-

spond to the antigens in the simulation. The method is effective because only 0.001%

to 0.01% of clones can typically be stimulated by an antigen, and because many simula-

tions involve only a small number of distinct antigens. A lazy simulation of a realistic

number of clones and 10 distinct antigens is 1,000 times faster and 10,000 times smaller

than a conventional simulation—making simulations of immune systems with realistic-size

repertoires computationally tractable.

Accepted with minor modifications to Bulletin of Mathematical Biology



4.1 Introduction

The B and T cell repertoires of vertebrate immune systems can recognize and respond to

almost all foreign antigens, even laboratory derived ones that almost surely have never

been seen in evolutionary history. The repertoire can also distinguish, at a fine level of

detail, between foreign antigens and the components of the body it protects. To achieve

this broad yet detailed coverage, the immune system maintains a large number of highly

specific clones, where a clone is a set of cells derived from a single precursor and which

almost assuredly have a unique B or T cell receptor. In this paper we discuss only the B

cell repertoire; however, the method is also applicable to the T cell repertoire.

The murine B cell repertoire maintains to distinct clones (Köhler, 1976;

Klinman et al., 1976; Klinman et al., 1977), each of which typically can be stimulated

by only to of all possible antigens (Edelman, 1974; Nossal & Ada, 1971; Jerne,

1974). In order for an antigen to stimulate a B cell it must bind to antigen-specific receptors

on the surface of the B cell.

The binding affinity between receptors and antigens is based on complementarity

at the molecular level. Perelson & Oster (1979) introduced an abstract model of binding

in which molecules are considered as points in a “shape space” and affinity is measured

as a function of the distance between such points. Modelers have used a variety of meth-

ods to represent molecules in shape space. Segel & Perelson (1988) and DeBoer et al.

(1992) examined one and two dimensional shape spaces in which the shape of molecules

was represented by one or two real numbers, e.g. the depth or depth and width of a binding

cleft or protrusion on a molecule. Affinity was then measured as a function of the Eu-

clidean distance1 between the shapes. Seiden & Celada (1992), Forrest & Perelson (1991),

and Perelson et al. (1996) (after Farmer et al. (1986)), represented molecules as strings

of 8, 32, and 64 bits respectively and measured affinity as a function of the Hamming dis-

tance2 (or a variation on it) between them. Weisbuch & Oprea (1994) and Detours et al.
1Euclidean distance is the familiar square root of the sum of the squares of the differences in each dimen-

sion. The Euclidean distance between receptors and , is
2Hamming distance is a count of the number of locations in which the receptors differ. The Hamming
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(1996) represented molecules as strings of digits chosen from a 4 and 16 letter alphabet

respectively. Smith et al. (1997d) determined that representing molecules as strings of 20

symbols, with each symbol chosen from a 4 letter alphabet, and affinity measured as a func-

tion of Hamming distance, as well as using a realistic-size repertoire of B cell clones,

gave good fits to immunological data important for a model of cross-reactive memory.

To make simulations of clones computationally tractable, we use a technique

called lazy evaluation (Friedman & Wise, 1976; Henderson & Morris, 1976). This tech-

nique (as illustrated in the next section) delays calculations, and the building of data struc-

tures, until they are needed. When not all calculations and data structures affect the result

of a program, and when the relevant ones can be identified efficiently, lazy evaluation can

result in significant savings in run time and memory usage. In the case of the immune

system, lazy evaluation can be effective because only 0.001% to 0.01% of all clones are

usually stimulated by any particular antigen, and because many simulations involve only a

small number of distinct antigens.

Lazy evaluation can be programmed explicitly in traditional programming languages,

or implicitly by using languages in which all evaluations are performed lazily (Turner,

1979; Turner, 1985; Hudak et al., 1992). Lazy evaluation has been applied in numerous

domains including: animation (Elliott & Hudak, 1997), simulation of integrated circuits

(Dunne et al., 1993) (and a production simulator based on Yoshino et al. (1987)), sound

synthesis (Dannenberg et al., 1992), and dictionary lookup (Lucas, 1995). In this paper

we describe how lazy evaluation can be programmed explicitly in models of the immune

system.

4.2 Algorithm

In a conventional eager approach to immune system simulation, computation time is taken

and memory space explicitly allocated to generate all clones at the start of the simulation

distance between the receptors ABDCCDADDA and ABACCDADCA is 2 because they differ in the two
underlined locations.
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(Figure 4.1a). When an antigen is introduced, the clones that can be stimulated by it (said to

be within its ball of stimulation (Perelson & Oster, 1979)), already exist and the simulation

proceeds (Figure 4.1b). In the modified lazy simulation, no clones are generated at the start

of the simulation (Figure 4.2a). Instead, when an antigen is introduced, the simulation is

suspended while clones within the ball of stimulation of the antigen are generated (Figure

4.2b). In this way, all clones that could be stimulated by the antigen appear and act as in an

eager simulation. The absence of the remaining clones has no effect on the simulation other

than making it run faster and take less memory. Clones must not be added to regions of

a ball of stimulation where they have already been created by the introduction of previous

antigens—this would result in too many clones in the intersections of balls of stimulation

(Figure 4.2c).

For a lazy simulation to be functionally equivalent to an eager simulation, clones

generated within a ball of stimulation must be added in the same distribution they would

have had in an eager simulation. The correct distribution depends on how receptors and

antigens are represented, and how affinity between them is measured. Here we describe

a lazy algorithm for receptors represented as strings of symbols, and affinity measured

as a function of the Hamming distance between receptors. In an eager simulation us-

ing this representation, receptors are generated by choosing each symbol from a uniform

distribution—loosely mimicking the random genetic process used by vertebrate immune

systems to generate clonal diversity (Leder, 1991).

For the lazy simulation, clones must be generated only within balls of stimulation.

To do this we develop a method to generate clones at radius from the center of a ball of

stimulation, and then repeat the method at radii 0 through , where is the radius of a ball of

stimulation. The probability, , that a randomly selected clone in an eager simulation is ra-

dius from the center of a ball is given by , where is the number

of symbols in the string representation of the receptor, and is the number of possible sym-

bols at each location in the string. Further, in an eager simulation with clones, the prob-

ability of clones at radius is given by the binomial .
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(a)

...
B cell clones Antigen Ball of Stimulation

(b) (c)

Figure 4.1: (a) In an eager simulation, all clones ( ) are generated at the start of the simulation.
(b) & (c) When antigens ( ) are introduced, clones already exist and no new ones need to be gener-
ated.

(a) (b) (c)

Figure 4.2: (a) In a lazy simulation, no clones are generated at the start of the simulation.
(b) When an antigen ( ) is introduced, the simulation is temporarily halted while clones ( ) within
its ball of stimulation are created. (c) When the ball of stimulation of a new antigen intersects that
of an existing antigen, no additional clones need to be generated in the intersection as it has already
been adequately populated.

Thus, the number of clones, , to generate at radius from the center of a ball should be

sampled from this binomial distribution. Each of the clones is generated by changing

distinct symbols in the string that represents the receptor at the center of the ball of stimu-

lation.

To avoid multiply generating clones in the intersections of balls of stimulation, each

new clone is added to the lazy repertoire only if it is outside the balls of stimulation of

all antigens already in the simulation. In the next two sections we verify that the lazy

algorithm generates clones in the same distributions as the eager algorithm, and compare

the algorithmic costs of the lazy and eager algorithms.
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When a new antigen is added to the simulation

loop for i from 0 to r do
loop for j from 1 to num-clones(i) do

let clone = mutate(center, i)
if clone is outside the ball of stimulation

of all previously added antigens
then add clone to the simulation

where r is the radius of a ball of stimulation;

where num-clones(i) produces a random number from the binomial
distribution , where is the number of clones in an eager simulation,
and is the probability that a clone is a radius from an antigen;

and where mutate(center, i) mutates i distinct locations of the
string representing the center of the ball of stimulation.

Figure 4.3: Pseudo-code describing the lazy algorithm for generating clones.

4.3 Verification

We generated a complex test case to check whether the lazy algorithm generates clones in

the same distributions as the eager algorithm, especially in the case of multiply overlapping

balls of stimulation. Following Smith et al. (1997d), molecules in the test were represented

by strings of 20 symbols, each symbol was chosen from a four letter alphabet, and balls

of stimulation had radius 5. A seed antigen was generated by randomly selecting each of

its symbols from a uniform distribution, and 10 test antigens were generated in a cluster

around the seed. Each test antigen was generated by mutating randomly selected unique

symbols of the seed, where was chosen from a uniform distribution in the range zero

to three so the balls of stimulation of the test antigens would have intersections of various

sizes. Clones were generated, according to the lazy algorithm, and the number of clones at

radii 0 through 5 for each antigen were counted. The experiment was replicated 100,000

times. For 10,000 of these experiments, the algorithm was metered to record the balls of

stimulation that a newly generated clone fell within. These data were used to determine

how much of each ball of stimulation was populated with clones generated by previous

antigens.
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Table 4.1 shows that the 10 antigens were at varying Hamming distances from each

other and thus had varying overlaps. Table 4.2 shows that these overlaps resulted in many

different proportions of balls of stimulation being populated by clones generated by prior

antigens, and were thus a reasonable test of the lazy algorithm. Figure 4.4 shows that the

observed and expected distributions are the same when compared visually, and Table 4.3

shows they are the same when compared statistically. Thus, the lazy algorithm worked

correctly.

4.4 Algorithmic Cost

In this section we compare the algorithmic cost of the lazy and eager algorithms. The

number of clones generated in a lazy simulation is , where is the number of distinct

antigens in the simulation, is the proportion of the repertoire that can be stimulated by

an antigen, and is the total number of clones in the eager simulation. Each of these

clones needs to be checked to see if it falls within the ball of stimulation of any previously

added antigen. Thus, the total number of checks after adding antigens is

. If we assume that the cost of generating a clone is approximately the same as

the cost of checking if a clone is in the ball of stimulation of an antigen, then the total cost

of generating the lazy repertoire for antigens is . The cost of

the eager method is because it generates clones and does not have to do any checks.

Comparing the cost of the lazy and eager algorithms, the lazy method is more efficient than

the eager method when is less than approximately .

For a realistic-size repertoire with and , in a simulation with 10

distinct antigens, the lazy algorithm will create less than 0.01% of the clone repertoire at

0.1% of the cost of the eager algorithm. For less than 447 distinct antigens, and the same

realistic-size repertoire, the lazy algorithm is lower cost than the eager algorithm (Figure

4.5). Simulations of more than 447 antigens, which would probably include simulations of

immune networks, would be more efficient using an eager algorithm.
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Antigen Hamming distance to other antigens Antigen string
1 2 3 4 5 6 7 8 9 10

1 0 4 2 1 4 4 2 3 3 2 CCBDDDBCCCABDCCDADAD
2 4 0 4 3 6 6 4 4 5 4 BCBDDDBCCCADDCCDAAAC
3 2 4 0 1 3 4 2 3 3 2 CCBDDDBCCCABACCDADAC
4 1 3 1 0 3 3 1 2 2 1 CCBDDDBCCCABDCCDADAC
5 4 6 3 3 0 6 4 5 5 4 CCCDDDBCCCABCCCDDDAC
6 4 6 4 3 6 0 3 4 5 3 CCBCDDBCCCBBDCCCADAC
7 2 4 2 1 4 3 0 1 3 2 CCBDDDBCCCDBDCCDADAC
8 3 4 3 2 5 4 1 0 4 3 CCBDDDBCCCDBDCCDACAC
9 3 5 3 2 5 5 3 4 0 3 CCBDDCDCCCABDCCDADAC

10 2 4 2 1 4 3 2 3 3 0 CCBBDDBCCCABDCCDADAC

Table 4.1: The pairwise Hamming distances between the 10 test antigens used in the
experimental verification of the algorithm. The table is symmetric about the main diagonal
because Hamming distance is commutative. The table shows that the antigens were at
various Hamming distances from each other.

Antigen Proportion of clones generated by each antigen
1 2 3 4 5 6 7 8 9 10

1 1.00 - - - - - - - - -
2 0.05 0.95 - - - - - - - -
3 0.21 0.03 0.77 - - - - - - -
4 0.33 0.06 0.17 0.45 - - - - - -
5 0.05 0.01 0.06 0.02 0.86 - - - - -
6 0.05 0.01 0.03 0.05 0.00 0.86 - - - -
7 0.21 0.03 0.09 0.13 0.01 0.02 0.51 - - -
8 0.10 0.03 0.05 0.09 0.01 0.02 0.14 0.57 - -
9 0.01 0.01 0.05 0.10 0.01 0.01 0.02 0.01 0.71 -

10 0.21 0.03 0.09 0.13 0.01 0.02 0.05 0.01 0.02 0.44

Table 4.2: The balls of stimulation of the 10 test antigens all overlapped each other; thus,
many of the clones within a ball of stimulation were generated by the lazy algorithm oper-
ating on prior overlapping antigens. The proportions generated by each antigen are shown
in this table. For example, for the fourth antigen, on average, 0.33 of the clones in its ball of
stimulation were already generated by the first antigen, 0.06 by the second antigen, 0.17 by
the third antigen, and 0.45 were generated de novo by the lazy algorithm on injection of the
fourth antigen. The data were calculated by metering the lazy algorithm to record which
balls of stimulation a newly generated clone fell within. The varying proportions suggest
that the 10 antigens were a reasonable test of the lazy algorithm.
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(a) Number of clones at radius 4 from antigen 1

Observed (solid impulses)
Expected (dashed curve)

0

1000

2000

3000

4000

5000

6000

7000

10 15 20 25 30 35 40 45 50 55 60

Nu
m

be
r o

f o
cc

ur
en

ce
s

(c) Number of clones at radius 5 from antigen 1
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(b) Number of clones at radius 4 from antigen 10

Observed (solid impulses)
Expected (dashed curve)

0

1000

2000

3000

4000

5000

6000

7000

10 15 20 25 30 35 40 45 50 55 60

Nu
m

be
r o

f o
cc

ur
en

ce
s

(d) Number of clones at radius 5 from antigen 10
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Figure 4.4: The expected (dashed curve) and observed (solid impulses) distributions of the number of
clones at radii 4 and 5 from antigens 1 and 10. These data were collected from the application of the lazy
algorithm to the sequential introduction of the 10 test antigens in 100,000 independent simulations and count-
ing the number of clones at each radius within the ball of stimulation of each antigen. Antigens 1 and 10 are
shown because they had the least and most number of clones, respectively, generated by prior antigens. Plots
showing the distributions for the other antigens, and other radii, showed similar visual correspondence be-
tween the observed and expected distributions.

Radius Observed goodness-of-fit values for each antigen at each radius Degrees Critical
1 2 3 4 5 6 7 8 9 10 of freedom

1 0.00 0.11 0.00 1.34 0.23 0.04 0.11 0.23 1.02 0.12 1 3.84
2 4.36 1.50 0.89 3.08 1.19 2.61 1.71 4.55 0.48 1.04 2 5.99
3 5.15 3.06 5.40 0.43 0.60 2.14 4.13 4.87 3.20 1.69 4 9.49
4 13.57 10.68 22.36 17.71 6.44 11.24 12.10 7.33 17.46 10.08 12 21.03
5 39.47 44.45 31.72 31.74 45.25 39.95 35.96 48.35 28.22 54.58 40 55.76

Table 4.3: All observed values (except one) were below their respective critical value. Thus, there is
no evidence (p=0.05) for rejecting the hypothesis that the observed data were in their expected distributions,
and we conclude the lazy algorithm worked correctly. The one exception (antigen 3, radius 4) appears to
be a Type I error, due to statistical variation, because its value was less than the critical value when the
experiment was repeated. One such error in 20 tests is to be expected at p=0.05. The data used were from the
same 100,000 simulations used to make the plots of Figure 4.4. Not enough clones were generated at radius
0 (eight total in 100,000 simulations) to perform the test.
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Figure 4.5: A comparison of the algorithmic cost of creating the B cell repertoire by the lazy
and eager algorithms. The algorithmic cost was measured as the sum of the number of clones
generated plus the number of checks that a clone was within the ball of stimulation of an antigen.
Calculations were done for a realistic-size repertoire with and . The lazy
algorithm costs less than the eager algorithm when there are less than 447 distinct antigens in
a simulation, and costs 1,000 times less when there are less than 10 distinct antigens in the
simulation.

When there are more than 10 distinct antigens in a realistic-size simulation, most

of the algorithmic cost of the lazy method is in the comparisons of new clones with

previously added antigens. In simulations involving hundreds of antigens, this cost could

be reduced by various methods. One method is only to compare clones against antigens that

are within distance of the antigen for which clones are being generated. The algorithm

still works correctly because antigens at greater than distance cannot have intersecting

balls of stimulation. In this case, the comparisons become a worst case, and the actual

number of comparisons depends on the distances between the antigens in the simulation.

Another method to reduce the comparisons is to generate clones in a ball larger than

a ball of stimulation and thus avoid lazy generation for any future antigens whose balls

of stimulation fall completely within the previously generated larger balls. This second

method is effective when the antigens are tightly clustered.
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4.5 Discussion

We have described an algorithm that uses lazy evaluation to generate only the subset of

clones that can be stimulated by the antigens introduced into a simulation. Because this

subset is typically a tiny proportion of the clone repertoire, the algorithm permits the effi-

cient simulation of realistic-size repertoires. Correctness of the algorithm was checked by

showing that, in a test case of 10 overlapping antigens, the algorithm produced clones in the

same distributions as an eager algorithm. Analysis of the algorithm showed, in simulations

of realistic-size repertoires involving less than 10 distinct antigens, that less than 0.01% of

the expressed repertoire was created at less than 0.1% of the cost of creating a complete

repertoire. We have implemented a lazy simulation of the humoral immune response that

uses a realistic-size repertoire with a steady-state size of B cell clones and a turnover

of B cell clones every 6 simulated hours (Smith et al., 1997b). Simulations of

the sequential infection by three antigens that have overlapping balls of stimulation, over a

simulated period of 200 days, takes less than 2 minutes of CPU time, running in Lisp, on a

Sun Ultra.

The algorithm we described is specific for models in which receptors are represented

as strings of symbols and affinity is calculated as a function of the Hamming distance

between receptors. The method could also be applied to other representations of receptors

and other methods of calculating affinity, by changing the calculation of the probability

distribution of clones within a ball of stimulation and the method of generating of clones

within a ball of stimulation. The method is applicable to both agent based models in which

each cell is represented individually, and to differential equation based models in which

each clone is represented by a differential equation.

The method is also applicable to simulations of some associative memory and neu-

ral network models, including the Sparse Distributed Memory (SDM) of Kanerva (1988),

that have similar mechanisms to the ones described here for the immune system (Smith

et al., 1996). Danforth (1997) used a lazy-like method, and a modified SDM learning rule

(Danforth, 1991), to improve the performance of SDM. He added at most one hard loca-
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tion (the SDM equivalent of a clone) on each write to the memory, at the exact location of

the write. This is in contrast to the cluster of hard locations that would be added by our

method. Both methods significantly reduce the number of hard locations in a simulation

(compared to an equivalent eager simulation) and distribute hard locations in accordance

with the distribution of addresses used to write to the memory. Danforth’s method modi-

fies the behavior of the SDM; our method leaves the behavior unchanged, and modifies the

implementation to allow larger memories to be simulated.

General immune system models that include clones with receptors have been simu-

lated with the order of clones (DeBoer & Perelson, 1991; Celada & Seiden, 1996; De-

tours et al., 1996). Lattice based cellular models that use only one or two bits to represent

the concentration of highly simplified clones, and measure affinity by neighborhood on

the lattice, have simulated clones (DeBoer et al., 1992a), and clones (Stauffer &

Sahimi, 1994) (the latter on a Cray-YMP). The lazy evaluation method presented here is

the first to permit realistic-size repertoires of to clones for general immune system

models.
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Chapter 5

Annual vaccination against influenza:

an in machina study

Abstract

We have performed computer simulations to study the efficacy of annual vaccination against

influenza. We generated vaccines and epidemic strains at many combinations of antigenic

distances to each other. Simulated individuals were vaccinated at the start of one influenza

season, revaccinated at the start of a subsequent season, and challenged with an epidemic

virus during the second season. For many combinations of antigenic distances among the

vaccine and epidemic strains, two vaccinations provided more protection than one. How-

ever, at some combinations of antigenic distances, the first vaccination reduced the effec-

tiveness of the second by clearing it before it produced protective antibodies. Thus, in some

cases, that might be common in practice, two annual vaccinations were less protective than

a single vaccination. In this study the antigenic distances among the first vaccine, second

vaccine, and epidemic strains, played the major role in determining protection.

A prior version of this chapter was published as Smith et al. (1997b)



5.1 Introduction

Antigenic drift of the influenza virus exposes the population to new but related influenza

variants on an annual basis. Thus, components of the influenza vaccine are updated, some-

times yearly, to maintain a reasonable correspondence between the vaccine and epidemic

strains. Public heath recommendations are for at-risk populations to receive yearly vac-

cinations (CDC, 1996). Millions of people in the United States receive annual influenza

vaccination; the major categories are the elderly, persons at high risk of death or severe

illness with influenza infection, and health care workers.

Vaccine efficacy in young healthy first-time vaccinees is 70-90% effective (Daven-

port, 1973; Hoskins et al., 1973; Feery et al., 1979). However, efficacy in individuals who

have been vaccinated multiple times has varied considerably and has called into question

the recommendation for annual vaccination. A study at Christ’s Hospital, a boys boarding

school in England, showed that first-time vaccinees were well protected, whereas multiply-

vaccinated boys were no better protected than unvaccinated boys (Hoskins et al., 1979).

Similar results were found in trials in geriatric patients and hospital staff in Melbourne,

Australia (Feery et al., 1979). Contrary results were found in a Houston, Texas study in

which multiple-vaccinees were slightly better protected than first-time vaccinees (Keitel

et al., 1988). Vaccine efficacy in the elderly has also varied widely (Beyer et al., 1989).

The reasons are not clear, though they are thought to include reduced immunocompetance

due to age and possibly the effects of multiple vaccinations.

It is known that the closeness of the antigenic match between the vaccine strain

and the epidemic virus is important for vaccine effectiveness—this is why components of

the vaccine are updated as the antigen drifts. In this study we have investigated whether

the antigenic distances of a first vaccine strain to a second vaccine strain, and of the first

vaccine strain to the epidemic strain, can account for variations in attack rates among two-

time vaccinees.

All experiments reported here were performed in machina. Like any model system,

a computer model trades off accuracy for controllability, observability, speed, and lower
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Category Num. Num. in Vaccine 1 Vaccine 2 Epidemic challenge
Groups each group (year 1) (year 2) (year 2 flu season)

(dose on day 0) (dose on day 365) (dose on day 425)
Never vaccinated 1 40 500
Vaccinated in year 1 only 8 80 1,000 500
Vaccinated in year 2 only 1 80 1,000 500
Vaccinated in years 1 & 2 31 40-42 1,000 1,000 500

Table 5.1: The timing and dose of vaccinations and epidemic challenge. Each category corresponds
to a different vaccine strategy, and each group within a category corresponds to different antigenic
distances among the vaccine and epidemic strains. One group was never vaccinated. Eight groups
were vaccinated in year 1 and challenged during the year 2 influenza season—each group corre-
sponded to challenge with a different epidemic strain with the vaccine1-epidemic antigenic distance
varying from 0 to 7. One group was vaccinated in year 2 and challenged 2 months later with an
epidemic strain distance 2 from the vaccine2 strain. Thirty-one groups were vaccinated in year
1, vaccinated again in year 2, and challenged with an epidemic strain during the year 2 influenza
season—each group corresponded to different combinations of vaccine1-vaccine2 distances from 0
to 7 and vaccine1-epidemic distances 0 to 7, the vaccine2-epidemic distance was 2.

cost. The computer model allows us to test the effects of annual vaccination over many

combinations of antigenic distances among the vaccine and epidemic strains. The com-

puter model also allows us to isolate the effects of antigenic distance from other effects

such as antigenicity of the vaccine, immunocompetence of the vaccinee, virulence and

transmissibility of the wildtype, and compliance in long term trials. The danger of the in

machina approach is that it might not faithfully represent relevant aspects of the immune

system and thus might give misleading results. The model has been validated by replicat-

ing existing simpler experiments, and parameters of the model have been derived from data

important in the cross-reactive immune response (Smith et al., 1997d).

5.2 Materials and Methods
Experimental design. Forty-three groups in four categories were were injected with vac-

cines and epidemic strains with different combinations of antigenic distances to each other

according to Table 5.1. The timing of the injections corresponded to vaccinations at the

beginning of two influenza seasons and epidemic challenge two months into the second
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Figure 5.1: For each pair of vaccines ( and ), epidemic strains ( ) were generated at distance
2 from vaccine2 and at all geometrically feasible distances less than 7 from vaccine1. Here we
show five combinations of antigenic distances among the vaccine and epidemic strains when the
vaccine1-vaccine2 distance was 3 and the vaccine2-epidemic distance was 2.

season. For each member of each group, the viral load, and antibody quantity and affinities

for each antigen, were measured every 6 hours. In addition, prior to each vaccination and

epidemic challenge, and at the peak of each response, the number, affinity for each antigen,

and clonal history of each B cell involved in the response were recorded. If the viral load

exceeded 1,500 units it was deemed to have passed a “disease threshold” and the simulated

organism was considered symptomatic. The attack rate within a group was defined as the

proportion of the group in which the maximum viral load exceeded the disease threshold.

Vaccine and epidemic strains. In total 39 strains were generated—8 for use as mono-

valent vaccines and 31 for use as epidemic virus. The 31 epidemic strains were necessary

to cover all possible combinations of antigenic distances of an epidemic strain to the two

vaccine strains. Figure 5.1 shows the five possible combinations of antigenic distances

among the vaccine and epidemic strains when the vaccine1-vaccine2 distance was 3 and

the vaccine2-epidemic distance was 2. The vaccine strains were nonreplicating, the epi-

demic strains replicated every 6 hours.

Computer model. The computer model is a highly simplified vertebrate humoral

immune system, it includes B cells, plasma cells, antibodies, memory B cells, and anti-

gens. T-help is modeled implicitly by assuming that it is available whenever necessary.

Each B cell, plasma cell and memory B cell is modeled as a separate entity within the

50



simulation. In this way the model is agent based and related to that of (Seiden & Celada,

1992). Because of the large number of antibodies in a real immune system, each antibody

in the model corresponds to a large number of real antibodies, similarly each antigen in the

model corresponds to a large number of real antigens. When antigens are introduced into

the simulation, B cells with sufficient affinity have a chance to bind the antigens. B cells

with antigen bound are stimulated to divide, and on division have some chance of mutation

in their antibody receptor, and some chance of differentiation into a memory or plasma cell.

Plasma cells secrete antibodies, which have a chance of binding antigen depending on their

affinity for the antigen. When antigens have more than a threshold number of antibodies

bound they are removed from the simulation. Homologous antigens have antigenic distance

zero, and antigenic distance increases as the antigens become less cross-reactive. Antigens

at antigenic distance seven are effectively non-cross-reactive. A more detailed description

of the model is given in Appendix C.

5.3 Results
Figure 5.2 shows the maximum viral load in each experiment in each group. Viral loads

above a disease threshold are plotted in black, hence the proportion of black in each subplot

indicates the attack rate in each group. Each group was challenged with epidemic virus 2

months into the second simulated influenza season. The attack rate was 100% in the group

that was never vaccinated (Figure 5.2a). The attack rate was 58% in the group vaccinated

once, at the start of the second influenza season (Figure 5.2b). Attack rates varied from 4

to 100% in groups vaccinated once at the start of the first influenza season (Figure 5.2c)—

when the vaccine1 and epidemic strains were identical (antigenic distance 0), the attack rate

was 0%, and the attack rate increased as the vaccine1-epidemic antigenic distance increased

until the attack rate was 100% at vaccine1-epidemic distances 5, 6, and 7. Attack rates

varied from 0 to 83% in groups vaccinated twice, once before the first influenza season, and

again before the second (Figure 5.2d)—the attack rate depended on the vaccine1-vaccine2

antigenic distance, and the vaccine1-epidemic distance (the vaccine2-epidemic distance
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was fixed at 2).

The additional year between vaccination and challenge increased the attack rate

from 58% to 89% for first time vaccinees when the vaccine-epidemic distance was 2

(groups 2;-,- Figure 5.2b and -;2,- Figure 5.2c).

Receiving vaccine2, at the start of the second influenza season, always lowered

attack rates of the epidemic challenge in the second season, even in groups that had received

vaccine1 at start of the first season. This can be seen be comparing a row of Figure 5.2d with

the corresponding row of Figure 5.2c (a row corresponds to groups in which the vaccine1-

epidemic distance was the same).

Attack rates in groups that received vaccine1 and vaccine2 (Figure 5.2d) were some-

times lower, and sometimes higher, than that in the group that received only vaccine2—

even though the timing, dose, and vaccine2-epidemic distance was the identical.

Negative Interference. Rows of Figure 5.2d, which represent different vaccine1-

vaccine2 distances and a constant vaccine1-epidemic distance, show higher attack rates

when vaccine1 and vaccine2 were close to each other. We call this negative interference of

vaccine1 on vaccine2, and example is show in Figure 5.3 (virus and antibody) and Figure

5.4 (B cells). Antibodies raised in response to vaccine1 cross-reacted, with medium affinity

and medium-high quantity, with vaccine2 (Figure 5.3b). These same antibodies had only

low affinity for the epidemic strain (Figure 5.3c). Vaccine2 was quickly cleared by the

cross-reactive antibodies from vaccination1, and only slightly increased the quantity of

antibodies that cross-reacted with the epidemic virus (negative interference). As a result

the epidemic viral load grew beyond the disease threshold. The B cell snapshot at the

peak of the response to vaccine1 (Figure 5.4a, b, and c) shows B cell clones raised by

vaccine1 that cross-reacted with vaccine2, but not with the epidemic strain. The snapshot

at the peak of vaccination2 (Figure 5.4d, e, and f) shows the response was dominated by

the cross-reactive clones from vaccination1 and no new major clones were generated by

vaccination2. It was not likely that vaccination1 would produce clones that cross-reacted

with the epidemic strain because the vaccine1-epidemic distance was 4, which his fairly
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Figure 5.2: A summary of the maximum viral load in each experiment. Each subplot represents
the experiments in a group. Beneath each subplot is the attack rate, , and the antigenic distances
among the strains in the form , where is the epidemic-vaccine2 distance,
is the epidemic-vaccine1 distance, and is the vaccine1-vaccine2 distance. Each subplot is
comprised of a vertical line for each experiment in a group, the height of each vertical line indicates
the maximum viral load during the experiment. The experiments in each group are plotted in order
of increasing maximum viral load. Viral loads above the disease threshold are plotted in black; thus,
the width of the black region indicates the attack rate in each group. (a) Exposure to the epidemic
challenge, without prior vaccination, caused disease in all cases. (b) The attack rate was 58% when
the vaccine was given 2 months before the epidemic challenge. (c) Attack rates varied from 4 to
100% when the vaccine was given 1 year 2 months before the epidemic challenge, depending on
the antigenic distance between the vaccine and epidemic strains. (d) Attack rates varied between 0
to 83% when the epidemic challenge came after two annual vaccinations.
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Figure 5.3: An example of negative interference of vaccine1 on vaccine2. An experiment from
group 2;4,2 is shown, in which the vaccine2-epidemic distance was 2, the vaccine1-epidemic dis-
tance was 4, and the vaccine1-vaccine2 distance was 2. An analysis of the B cells for the same
experiment is shown in Figure 5.4. (a) The response to vaccine1 produced a mixture of medium and
high affinity antibodies. Measured wrt vaccine2 (panel b), the antibodies were a mixture of medium
and low affinity, and measured wrt the epidemic virus (panel c) were low affinity. (b) Vaccine2
boosted the medium affinity antibodies, and measured wrt the epidemic virus it boosted the quantity
but not the affinity of antibodies. (c) The epidemic virus was not cleared by the preexisting low
affinity antibodies and passed the disease threshold.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

    Affinities plotted 
   wrt epidemic strain

Each dot represents a B cell.  The distance of a
B cell from the center of a subplot indicates the 
B cell’s affinity for the antigen−−the closer to the 
center of the subpolot the higher the affinity.

B cells plotted in a similar angular position, and at the same gray 
level are in the same clone (they have the same germ−line ancestor).  
Gaussian noise is added to each B cell’s location so the approximate 
number of B cells in a clone can be seen.

Snapshot near the
peak of the 
first vaccination
(day 7)

  Affinities plotted 
   wrt vaccine 1

 Affinities plotted 
   wrt vaccine 2

Snapshot near the
peak of the 
epidemic infection
(day 425)

Snapshot near the
peak of the 
second vaccination
(day 371)

The response to vaccine1 produced
five clones (a), all of which 
cross−reacted with vaccine2 at low
affinity (b), Cross−reactivity with 
the epidemic strain was very low (c).

The response to the epidemic virus
produced many new clones as there
was little memory from either 
vaccination that cross−reacted with
the epidemic strain (i).

The response to vaccine2 was 
dominated by the recall of the major
cross−reactive clone (5 o’clock) (e).
One new minor vaccine2 clone was
produced (9 o’clock), and this cross−
reacted with the epidemic strain, but
at low affinity and quantity (f).

Figure 5.4: An example of negative interference of vaccine1 on vaccine2 causing vaccine2 failure.
This is the B cell analysis of the experiment shown in Figure 5.3. The major vaccine clone, which
also cross-reacted with vaccine2, dominated the vaccine2 response and prohibited the generation
of new clones by vaccine2 that might have been cross-reactive with the epidemic strain. Because
there were few memory clones from wither vaccination that cross-reacted with the epidemic strain,
the response to the epidemic infection was like a primary response and the maximum viral load
exceeded the disease threshold.

large; however, vaccine1 did have an influence on the epidemic because vaccine1 clones

cleared vaccine2 before vaccine2 produced new clones that were quite likely to have cross-

reacted with the epidemic strain because the vaccine2-epidemic distance was 2.

Positive Interference. Columns of Figure 5.2d, which represent different vaccine1-

epidemic distances and a constant vaccine1-vaccine2 distance (Figure 5.1), show lower

attack rates when vaccine1 and the epidemic strain were close to each other. We call this

positive interference of vaccine1 on the epidemic challenge. Figures 5.5 and 5.6 show a

combination of negative and positive interference. Antibodies raised in response to vac-

cine1 cross-reacted strongly with vaccine2 and the epidemic strain. Vaccine2 was mostly
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cleared by these cross-reactive antibodies, only one new memory clone was produced, and

the increase in antibody levels was mostly due to boosting preexisting clones (negative in-

terference). These preexisting clones and antibodies also cross-reacted with the epidemic

virus (positive interference), hence the virus was quickly cleared. Figure 5.6 shows that

B cells raised in response to vaccine1 cross-reacted with both vaccine2 and the epidemic

strain. Vaccination2 boosted these clones. Because there were many cells cross-reactive

with the epidemic, antibody secreted by some of these cells cleared the epidemic strain

before the caused disease.

A summary of the B cell data for each experiment, averaged within each group, is

shown in the cellular analysis summary (Table 5.2). This cellular analysis shows, not un-

expectedly, that the number of vaccine1 cells that cross-reacted with the epidemic strain

was proportional to the vaccine1-epidemic distance (Table 5.2 Column 4 and Figure 5.7a).

Also, the attack rate was inversely proportional to the number of B cells that cross-reacted

with the epidemic strain (Table 5.2 Columns 7 and 8, and Figure 5.7b). Thus, positive in-

terference of vaccine1 on the epidemic appears to be correlated with the number of vaccine

1 clones that cross-reacted with the epidemic.

The cellular analysis also shows, not unexpectedly, that the number of vaccine1

cells that cross-reacted with vaccine2 was inversely proportional to the vaccine1-vaccine2

distance (Table 5.2 Column 2 and Figure 5.7a). It also shows that when more vaccine1 cells

cross-reacted with vaccine2, fewer new cells were generated in response to vaccine2 (Table

5.2 columns 2 and 3, and Figure 5.7c). Thus, negative interference of vaccine1 on vaccine2

appears to be correlated with the number of cells, produced in response to vaccine1, which

cross-reacted with vaccine2.

Original Antigenic Sin. Among B cells that cross-reacted with the epidemic strain,

when the vaccine1-epidemic distance was less than 4, a greater proportion were initially

raised in response to vaccine1 than to vaccine2 (Table 5.2 columns 5 and 6). The effect

was more pronounced when the vaccine1-vaccine2 distance was small.
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Figure 5.5: An example of negative and positive interference by vaccine1. An experiment from
group 2;2,2 is shown, in which the vaccine2-epidemic distance was 2, the vaccine1-epidemic dis-
tance was 2, and the vaccine1-vaccine2 distance was 2. An analysis of the B cells for the same
experiment is shown in Figure 5.6. Note, the vertical axis scale is different from that in Figure 5.3.
(a) The response to vaccine1 produced a mixture of medium and high affinity antibodies. Measured
wrt vaccine2 (panel b) and the epidemic strain (panel c) , the antibodies were a mixture of medium
and low affinity. (b) Vaccine2 boosted the medium affinity antibodies, and and this also boosted the
medium affinity antibodies measured wrt the epidemic virus. (c) The epidemic virus was quickly
cleared by the preexisting medium affinity antibodies, and this did little to further boost the antibody
levels.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

    Affinities plotted 
   wrt epidemic strain

  Affinities plotted 
   wrt vaccine 1

 Affinities plotted 
   wrt vaccine 2

Snapshot near the
peak of the 
first vaccination
(day 8)

Snapshot near the
peak of the 
second vaccination
(day 371)

Snapshot near the
peak of the 
epidemic infection
(day 429)

The response to vaccine1 produced six
clones (a).  Five of these clones cross−
reacted with vaccine2 (b) and with the
epidemic strain (c). 

The response to vaccine2 was almost 
exclusively a recall of the vaccine1
clones that cross−reacted with vaccine2.
One new clone was produced (5 o’clock),
which cross−reacted with the epidemic
strain (f).

The epidemic challenge was quickly 
cleared by preexisting antibodies
(Figure 6c), and there was almost no
clonal expansion of the cross−reactive
clones (i).

Figure 5.6: A example of both positive and negative interference by vaccine1. This is the B cell
analysis of the experiment shown in Figure 5.5. Most of the clones generated by the response to vac-
cine1 cross-reacted with both vaccine2 and the epidemic strain. The response to vaccine2 boosted
the vaccine1 clones and thus there was sufficient medium affinity antibodies to protect against the
epidemic challenge. Vaccine1 negatively interfered with vaccine2—there was only one new clone
generated, but it also positively interfered with the epidemic strain so the epidemic challenge was
quickly cleared.
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Antigenic dists Num memory cells Num memory cells in Attack rate
New after new total

(col 1) (col 2) (col 3) (col 4) (col 5) (col 6) (col 7) (col 8)
2;0,2 17 36 84 93 9 102 0.00

2;1,1 40 13 43 46 2 49 0.07
2;1,2 17 35 37 50 6 56 0.05
2;1,3 8 74 38 43 19 62 0.02

2;2,0 80 5 16 10 1 11 0.79
2;2,1 41 13 20 23 3 27 0.31
2;2,2 22 34 18 24 8 32 0.31
2;2,3 10 59 25 34 17 50 0.12
2;2,4 5 82 19 21 20 41 0.17

2;3,1 37 14 6 8 3 11 0.83
2;3,2 21 35 9 20 8 28 0.43
2;3,3 9 63 8 16 11 26 0.48
2;3,4 3 81 11 19 19 39 0.27
2;3,5 1 95 5 5 19 24 0.42

2;4,2 19 41 3 5 8 13 0.79
2;4,3 5 75 3 7 16 23 0.50
2;4,4 1 92 3 4 21 24 0.44
2;4,5 2 96 5 10 22 32 0.28
2;4,6 0 102 3 2 20 23 0.48

2;5,3 5 75 1 1 20 21 0.56
2;5,4 5 89 1 3 22 25 0.49
2;5,5 1 101 2 4 24 28 0.45
2;5,6 0 107 1 1 25 26 0.40
2;5,7 0 105 3 2 32 33 0.37

2;6,4 3 91 1 1 18 20 0.60
2;6,5 1 96 1 4 17 20 0.62
2;6,6 1 100 2 3 24 27 0.42
2;6,7 0 103 1 0 23 23 0.53

2;7,5 2 100 1 0 26 26 0.52
2;7,6 1 100 1 1 24 25 0.59
2;7,7 0 102 1 0 24 24 0.53

Table 5.2: A summary of the number of B cells produced and their cross-reactivities for groups that were
vaccinated in both years. In each case, the number of cells are the medium and high affinity memory B
cells averaged over the 40-42 experiments in each group. The experimental groups are collected according to
rows of Figure 5.2. The antigenic distances between the epidemic and vaccine1 strains ( ), the epidemic
and vaccine2 strains ( ), and the vaccine1 and vaccine2 strains ( ). The number of memory B cells
produced by vaccination1 that cross-reacted with vaccine2 (col 2), and the number of new memory B cells
produced by vaccination2 (col 3). The number of memory B cells that cross-reacted with the epidemic strain
that were: produced by vaccination1 (col 4), produced by vaccination1 after boosting by vaccination2 (col
5), produced by vaccination2 (col 6), and in total (col 7). The proportion of experiments in a group in which
the maximum viral load exceeded the disease threshold (col 8).
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Figure 5.7: Correlations in the cellular analysis (Table 5.2). (a) The average proportion of B cells
that cross-reacted with two antigens was inversely proportional to the antigenic distance between
the antigens. (b) The attack rate of the epidemic virus was inversely proportional to the average
number of B cells, generated by the vaccinations, that cross-reacted with the epidemic strain. (c)
The average number of new B cells produced by vaccination2 was inversely proportional to the
average number of B cells, produced by vaccination1, that cross-reacted with vaccine2.
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5.4 Discussion

Our results indicate that for individuals vaccinated in two successive years, the antigenic

distances of the first vaccine to the second vaccine, and of the first vaccine to the epidemic

strain significantly affected attack rates. These results offer an explanation for the incon-

gruous findings in field trials of annual influenza vaccination. When the vaccine1-vaccine2

antigenic distance was low, vaccine1 negatively interfered with vaccine2 by clearing it be-

fore it induced an immune response, and thus inhibited production of potentially protective

antibodies against the upcoming epidemic strain. However, when the vaccine1-epidemic

distance was low, vaccine1 positively interfered with the epidemic strain because antibod-

ies raised to vaccine1 cross-reacted with the epidemic strain and helped to clear it. Thus,

attack rates varied in annual vaccinees depending on the combination of negative and pos-

itive interference induced by vaccine1 which in turn depended on the vaccine1-vaccine2

and vaccine1-epidemic antigenic distances.

We found, as would be expected, that attack rates for first time vaccinees increased

as the antigenic distance between the vaccine and epidemic strain increased. We also found,

as would be expected, that attack rates were higher when there was a longer time between

vaccination and challenge. We also found that attack rates during the second influenza

season in groups vaccinated before the first influenza season were lowered by a second

vaccination before the second influenza season.

Immune suppression by circulating antibodies, as seen in our study, has also been re-

ported for influenza vaccines in humans (Howells et al., 1973). The degree of suppression

appears to be due to the amount of circulating antibodies (Hobson et al., 1973; Robinson

et al., 1997).

In our model system, homologous vaccine boost prior to the second influenza sea-

son failed to elicit significant rise in antibody levels, and this coupled with the antibodies

having fallen below protective levels resulted in a high attack rate. Failure of homolo-

gous vaccination to boost after 2 weeks (Hobson et al., 1973) and after 6 months (Powers

et al., 1984) has been seen in human trials. However, in the latter study titers had not fallen
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below protective levels. We have previously performed experiments, similar to those re-

ported here, but in which antibody levels returned close to zero levels before revaccination

(Smith et al., 1997b). In those experiments a homologous second vaccination provided

good protection. Thus, our results depend on the persistence of antibodies and whether that

persistence remains above protective levels. In reality, antibody persistence is different for

different influenza antigens, for example, it has been found that antibody persistence was

lower for the H1N1 component compared with the H3N2 and B components of a trivalent

vaccine Powers et al. (1984).

Antibody levels and persistence also appears to be affected by whether exposure was

by natural infection or by vaccination. In our model we also see a difference, with antibody

levels and persistence much greater for epidemic infection above the disease threshold

(Figure 5.3c). However, when the epidemic virus was cleared before it caused disease it

had little effect on antibody levels (Figure 5.5). Vaccine design strives for persistent high

antibody titers; however, perversely, if the titer remained protective during the influenza

season, it would be advantageous for it to fall during the rest of the year to reduce negative

interference of subsequent revaccinations.

Our results predict that two-time vaccinees will have a higher attack rate than first-

time vaccinees when the vaccine1-vaccine2 distance is low and vaccine1-epidemic distance

is high; that they will have lower attack rates if vaccine1-epidemic distance is low; and will

have similar attack rates if vaccine1 is distant to both vaccine2 and the epidemic strain.

Some rough testing of these predictions is possible by examining the data from the out-

breaks at Christ’s Hospital in 1974 and 1976 (Hoskins et al., 1976; Hoskins et al., 1979).

Table 5.3 shows the hemagglutination inhibition (HAI) assay titers for the vaccine and epi-

demic strains relevant to the Christ’s Hospital study. Relative HAI titers can be roughly

related to antigenic distance, with low (log) difference in titers indicative of low antigenic

distance, and high (log) difference indicative of high distance. For the 1974 outbreak, vac-

cine1 was A/HK/68, vaccine2 was A/Eng/72, and the epidemic strain was A/PC/73. The

relative HAI titer difference between vaccine1 and vaccine2 was low (1 log), suggesting a
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Virus Sera
A/HK/68 A/Eng/72 A/PC/73 A/Vic/75

A/HK/68 1280 960 80 30
A/Eng/72 640 1280 640 80
A/PC/73 10 40 320 40
A/Vic/75 30 40 20 640

Table 5.3: Hemagglutination inhibition titers between influenza strains
similar to the vaccine and epidemic strains of the 1974 and 1976 outbreaks
at Christ’s Hospital. Titers were extracted from a larger table in Both et al.
(1983).

low vaccine1-vaccine2 distance and the potential for negative interference of vaccine1 on

vaccine2. The relative HAI titers between vaccine1 and the epidemic strain was high (7

logs for epidemic virus in vaccine1 sera, and 4 for vaccine1 in epidemic sera), suggesting

high to medium vaccine1-epidemic distance and thus low positive interference of vaccine1

on the epidemic strain. Thus, our results would predict a higher attack rate for two-time

vaccinees than for first-time vaccinees vaccinated at the beginning of the influenza season.

This is what was found with attack rates of 3% in first-time vaccinees and 11% in two-time

vaccinees. Note, in this comparison the vaccine2-epidemic distance, vaccine2 dose, and

characteristics of the epidemic virus such as virulence do not have to be considered be-

cause one- and two-time vaccinees received the same vaccine2 and were challenged with

the same epidemic strain.

For the 1976 outbreak at Christ’s Hospital, vaccine1 was A/Eng/72, vaccine2 was

A/PC/73, and the epidemic strain was A/Vic/75. It is more difficult to estimate antigenic

distances for this outbreak because of assymetries in the HAI titers (for example, vaccine1

virus in vaccine2 sera gave a titer of 640 whereas vaccine2 virus in vaccine1 sera gave a

titer of 40), and apparent changes in antigenicity (for example, vaccine2 virus in vaccine2

sera gave a lower titer (320) than vaccine1 virus in vaccine1 sera (1280)). Perhaps we can

say that the vaccine1-vaccine2 distance was medium, and thus there may have been some

negative interference, and that vaccine1-epidemic distance was low, so there maybe have
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been little positive interference, and thus we might predict a higher attack rate for two-time

vaccinees compared with first-time vaccinees. This is what was found with attack rates

of 22% in two-time vaccinees and 13% in first-time vaccinees. A further complicating

factor in this comparison is that we simulated only two vaccinations whereas some boys in

the study had three vaccinations, and some boys also had natural infections (clinical and

subclincal) to previous epidemics.

The Melbourne studies (Feery et al., 1979), as with the Christ’s Hospital study,

found higher attack rates in two-time vaccinees compared with first-time vaccinees. How-

ever, they did not report the strains of previous vaccinations. We would predict low vaccine1-

vaccine2 distance and a high vaccine-1-epidemic distance. The Houston study (Keitel

et al., 1988) reported slightly lower attack rates in two-time vaccinees than in first-time

vaccinees. They did report the vaccine strains, but we do not know the HAI titers. We would

predict either a low vaccine1-vaccine2 distance with low vaccine1-epidemic distance, or a

high vaccine1-vaccine2 distance and medium to high vaccine1-epidemic distance.

A limitation of our model is that it assumes genetic distance and antigenic distance

are the same. This is out of necessity because the general mapping from sequence to folded

protein is not understood. In some situations this assumption, though approximate, is not

unreasonable. For example, Champion et al. (1975) showed that for azurins, lysozymes,

and alpha subunits of tryptophan synthetase, that sequence difference was correlated with

the degree of antigenic difference. However, for some antigenic determinants, a single

amino acid change can cause a large change in antigenic difference. Table 5.8a shows

the number of amino acid differences in antigenic sites A, B and C of the influenza H3

hemagglutinin gene of the vaccine and epidemic strains relevant to the Christ’s Hospital

outbreaks in 1974 and 1976. Table 5.8c shows one possible mapping of the HAI titers

of Table 5.3 into antigenic distances. A comparison of Tables 5.8a and 5.8c shows an

approximate correspondence between genetic and antigenic distance for the hemagglutinin

of these influenza strains.

This approximate correspondence between genetic and antigenic distance allows us
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Figure 5.8: Genetic and approximate antigenic distances among virus similar to those in the
Christ’s Hospital vaccine and epidemic strains. HK is A/Hong Kong/8/68, Eng is A/England/42/72,
PC is A/Port Chalmers/1/73, and Vic is A/Victoria/3/75. (a) Number of amino acid differences
in antigenic sites A, B, and C of the H3 hemagglutinin gene (extracted from data in (Both et al.,
1983)). (b) One, of many, possible interpretations of the antigen distances from the HAI titers of
Table 5.3. In this case we took the log difference of a row entry with the diagonal element of that
row. (c) The same antigenic distances as in (b), but averaged across the diagonal. Comparing tables
a and c shows an approximate correspondence between genetic and antigenic distance among these
strains.

to estimate how often we might see higher attack rates in annual vaccinees compared with

first-time vaccinees. If vaccine1 and vaccine2 are fairly close genetically, and if this cor-

responds to being fairly close antigenically, then vaccine1 will negatively interfere with

vaccine2 and the attack rate may be high if the vaccine1-epidemic distance is also high. If

vaccine1, vaccine2, and the epidemic strain are from the same evolutionary path, then it is

likely that the epidemic strain will have the same mutations from vaccine1 as those seen

in vaccine2. Also, new mutations in the epidemic strain are likely to be at sites conserved

between vaccine1 and vaccine2 because if the vaccine1-vaccine2 distance is low there are

more conserved sites than modified ones. Indeed, all major H3N2 epidemic strains be-

tween 1968 and 1980 had this pattern of accumulative mutations in previously conserved

sites (Both et al., 1983). Thus, the vaccine1-epidemic distance is likely to be greater than

the vaccine1-vaccine2 distance and thus there is likely to be more negative than positive in-

terference by vaccine1. This argument, based on an approximate correspondence between

genetic and antigenic distance, suggests that higher attack rates in multiple vaccinees com-

pared with first-time vaccinees might be fairly common in practice.

Wet biology is, of course, never as simple as in machina biology—our model system
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abstracts away many details of the immune system and influenza virology and pathology,

and factors known to have an effect on influenza vaccination and pathogenesis are ignored

by the model, including age, virus virulence, vaccine immunogenicity, and immunocom-

petance. However, even given the simple nature of the model, our experimental results ap-

pear to reflect some of the complex phenomena observed in field trials of influenza vaccine,

and offer an explanation of apparently contradictory results in trials of annual vaccination.

Our major result is that the antigenic distance between a prior vaccine and a sub-

sequent vaccine, and the distance between the prior vaccine and a subsequent epidemic

virus, and can significantly influence the protection offered by annual vaccination. Wet

experiments will need to be done to test the significance of our results. Our results sug-

gest that field trials of influenza vaccines should record the vaccination history and prior

infection history of study volunteers. Our results also suggest that if a choice is available

among otherwise equivalent vaccine strain candidates, that a strain as far as possible from

the previous vaccine strain would be most effective in previously vaccinated individuals.
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Chapter 6

Further work

In this chapter I review directions in which the work presented so far can proceed, and I

outline some preliminary results in those directions. In section 6.1 I use the results from

chapter 5 to address a specific question of importance for influenza vaccine strain selection:

“Should the vaccine strain be updated if it is already fairly close to the expected epidemic

strain.” In section 6.2 I do a mathematical analysis of the effects of prior exposure on vac-

cine efficacy. In section 6.3 I discuss multivalent vaccines, and in section 6.4 I outline wet

experiments that could be done to test and refine the theoretical results of this dissertation.

6.1 Vaccine Strain Selection

An important question in selecting the influenza vaccine strain is “If the existing vaccine

strain is reasonably close to the expected epidemic strain, should the vaccine strain be

updated to the expected epidemic strain, or should the vaccine remain the same?” (Cox,

1997).

We performed in machina experiments to examine three annual vaccinations and

measured the attack rates in the second and third influenza seasons. We compared three

vaccine update strategies. The first two were “stay” in which the vaccine is not updated,

and “follow” in which the vaccine is updated. The third strategy, “surround,” is of our



own design and attempts to incorporate the best of stay and follow. The surround-vaccine

strategy is to choose a strain that is as close to the epidemic estimate as the stay-vaccine

would be, but is as far from the previous vaccine as possible. Thus, vaccine-surround

attempts to minimize the effects of antibody-mediated suppression of the second vaccine

by the first vaccine. Also, because of the high dimensional nature of shape space, vaccine-

surround is also likely to be father from a subsequent vaccine and thus interfere less with

it.

We examined combinations of these strategies over three influenza seasons. The

vaccine strain for the first year (vaccine1) was the same in all groups. In the second year we

selected vaccine strains according to the stay, follow, and surround strategies, and different

groups were given a different vaccine. In the third year all groups were given a vaccine

chosen by the follow strategy. Thus, the combinations of strategies tested were follow-

follow, stay-follow, and surround-follow.

Figures 6.1, 6.2, and 6.3 show three different sets of antigenic distances between the

three epidemic strains, and the three vaccine strain selection strategies. The approximate

correspondence between genetic and antigenic distance discussed in chapter 5 allows us to

characterize Figures 6.1, 6.2, and 6.3 in terms of the evolutionary path of the virus and to es-

timate which path is most likely. If we accept the rough genetic-antigenic correspondence,

then the antigenic distances in Figure 6.1 would most likely be caused by mutations in the

epidemic virus that are at previously unmutated locations (with respect to the epidemic

virus in the first year). Such accumulative mutations are most likely because there are

more unmutated than mutated locations. The antigenic distances of Figure 6.2 would cor-

respond to accumulative mutations between the first and second years, and a combination

of accumulative and sequentialmutations (mutations at locations that have previously been

mutated) between the second and third years. Conversely, Figure 6.3 would correspond to a

combination of accumulative and sequential mutations between the first and second years,

and accumulative mutations between the second and third years. We label the evolutionary

path of Figure 6.1 accumulative-accumulative, of Figure 6.2 accumulative-sequential, and
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of Figure 6.3 sequential-accumulative.

Attack rates for the second influenza season were taken from the experiments of

chapter 5 (Figure 5.2). Further experiments were run to determine the attack rates when

the vaccine2-epidemic distance was 1 and 3 (Figure 6.4). Attack rates for the third season

have been approximated by ignoring the effects of vaccine1 and any epidemic challenge

in the second season, and were also read from Figures 5.2 and 6.4. Hence, results for the

third season reflect a separate set of experiments that did not receive vaccine1 and were not

challenged in the second season. Further work would also look at simulated individuals

who received all the three vaccinations.

Table 6.1 shows the attack rates for the most likely antigenic distances among the

epidemic strains—the accumulative-accumulative configuration (Figure 6.1). We see that

the average attack rates, for simulated individuals previously vaccinated with vaccine1 and

then vaccinated with vaccine2 and challenged in the second influenza season, were 54% and

51% for the follow and surround strategies respectively. The average attack rate for the stay

strategy was significantly worse at 87%. In the third influenza season, the average attack

rates were 39% for the stay-follow and surround-follow strategies, and 51% for the follow-

follow strategy. Stay-follow and surround-follow had the same attack rates because the

antigenic distances between the vaccines and among the vaccines and epidemic strains were

the same (Figure 6.1). Thus, on average over both seasons, follow-follow and surround-

follow offered about the same protection (surround-follow may be a little better), and stay-

follow offered worse protection.

Table 6.2 shows attack rates for a less common evolutionary path of the epidemic

virus, the accumulative-sequential path (Figure 6.2). Average attack rates for the second

influenza season were the same as for the accumulative-accumulative experiments above

because the evolutionary path of the virus was the same from the first to second seasons.

Attack rates in the third season were approximately 20% for each strategy. These attack

rates were lower than those seen when the virus evolved accumulative-accumulative be-

cause the vaccine2-epidemic3 distance was lower and thus there was more positive trans-
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Figure 6.4: Attack rates at various combinations of antigenic distances between vaccine1 and
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in Figure 5.2 and is it structured the same way. This figure shows attack rates when the vaccine2-
epidemic distance was 1 and 3, whereas Figure 5.2 shows data when the vaccine2-epidemic distance
was 2.
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Strategy
Follow-Follow Stay-Follow Surround-Follow

Epidemic 2

0.25 0.79 0.31
0.83 0.95 0.71
(av 0.54) (av 0.87) (av 0.51)

Epidemic 3

0.25 0.15 0.15
0.15 0.05 0.05

0.83 0.79 0.79
0.79 0.56 0.56
(av 0.51) (av 0.39) (av 0.39)

Combined epidemics 2 and 3
(av 0.52) (av 0.63) (av 0.45)

Table 6.1: Attack rates in previously vaccinated simulated individuals for various antigenic dis-
tances between the epidemic estimated and actual strains for the second and third influenza seasons.
The evolution of the epidemic virus had accumulative mutations in both years (Figure 6.1). Each at-
tack rate is subscripted with antigenic distances in the form , where is the vaccine2-epidemic
distance, is the vaccine1-epidemic distance, and is the vaccine1-vaccine2 distance. Average at-
tack rates (av) are shown for each strategy in each season, and combined over both seasons.
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Strategy
Follow-Follow Stay-Follow Surround-Follow

Epidemic 2

0.25 0.79 0.31
0.83 0.95 0.71
(av 0.54) (av 0.87) (av 0.51)

Epidemic 3

0.00 0.00 0.00
0.00 0.00 0.00

0.31 0.43 0.43
0.43 0.50 0.50
(av 0.19) (av 0.23) (av 0.23)

Combined epidemics 2 and 3
(av 0.37) (av 0.55) (av 0.37)

Table 6.2: This table is similar to Table 6.1 except it shows data when the evolutionary path of the
epidemic virus is accumulative between the first and second influenza seasons, and a combination
of sequential and accumulative between the second and third seasons.

fer from vaccine2 to epidemic3. Again, on average over both seasons, follow-follow and

surround-follow offered the same protection, and stay-follow offered worse protection.

Table 6.3 shows the attack rates for the sequential-accumulative path (Figure 6.3).

This path is also less likely than the accumulative-accumulative path. Similarly to the

accumulative-accumulative second season, average attack rates for the follow and sur-

round strategies were lower than for the stay strategy. Attack rates during the third season

were identical for each strategy. Again, on average over both seasons, follow-follow and

surround-follow offered the same protection, and stay-follow offered worse protection.

For first-time vaccinees, when the viral evolution was accumulative-accumulative or

accumulative-sequential, attack rates for vaccine-stay and vaccine-surround groups during
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Strategy
Follow-Follow Stay-Follow Surround-Follow

Epidemic 2

0.00 0.37 0.00
0.31 0.79 0.31
(av 0.16) (av 0.58) (av 0.16)

Epidemic 3

0.25 0.25 0.25
0.15 0.15 0.15

0.83 0.83 0.83
0.79 0.79 0.79
(av 0.51) (av 0.51) (av 0.51)

Combined epidemics 2 and 3
(av 0.34) (av 0.60) (av 0.34)

Table 6.3: This table is similar to Table 6.1 except it shows data when the evolutionary path of
the epidemic virus is a combination of sequential and accumulative between the first and second
influenza seasons, and accumulative between the second and third seasons.
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the second season were higher than for vaccine-follow groups. This was because vaccine-

follow resulted in a closer match between the vaccine and epidemic strains.

In summary, in the previously vaccinated, follow-follow and surround-follow offer

about the same protection, with surround-follow doing a little better (though this may not

be statistically significant). Both strategies perform better than stay-follow. In first-time

vaccinees, follow is always the best strategy. Even though follow-follow and surround-

follow have similar averages, they are quite different strategies: Follow-follow minimizes

the distance of each vaccine selection to the epidemic virus, and thus it maximizes positive

interference; surround-follow maximizes the distances among vaccine strains, and thus it

minimizes negative interference. We could run more experiments, so we can tell statisti-

cally if surround-follow is really any better than follow-follow in the model. However, what

really needs to happen is to investigate in vivo whether maximizing positive interference is

more or less effective than minimizing negative interference. An experiment to test this is

outlined in section 6.4.

6.2 Estimation of Protection based on Antigenic Distances

The results of Chapter 5 and Smith et al. (1997b) on prior vaccination and prior infection

on influenza vaccination found that protection was primarily determined by the antigenic

distances between the prior, vaccine and epidemic. In order to investigate this further,

we now remove as many details of the immune response as possible and see what can be

predicted by a mathematical analysis using only the antigenic distances between antigens.

The analysis below applies to the experiments in Smith et al. (1997b) in which the antibody

levels returned close to zero levels before each challenge.

Simple Analysis. First, assume a primary immune response always clears the anti-

gen and generates a single memory clone whose members have similar affinities. This

clone, with equal probability, lies anywhere within the ball of stimulation of the antigen.

Second, assume that if a memory clone lies anywhere within the ball of stimulation of an
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Epidemic

(a) Prior infection

Figure 6.5: The distances between the prior, vaccine and epidemic correspond to the antigenic
distances between the antigens. The balls of stimulation around each antigen indicate an affinity
threshold within which B cells can be simulated by the antigen. B cells in the intersection of balls
of stimulation of 2 or more antigens are thus cross-reactive with those antigens. Clones generated
by the prior infection, (a), will be in regions 1 through 4, and depending on which region they are
in, they cross-react with either or both of the vaccine and epidemic. Similarly, clones generated by
the vaccination, (b), will be in regions 5 or 6.

antigen, it is sufficient to clear the antigen, and no new memory clone is produced.

By the first assumption, a prior infection will generate a single clone that will be

in either region 1, 2, 3, or 4 of Figure 6.5a. By the second assumption, if the clone is in

region 1 or 2, it cross-reacts with the epidemic and protects against epidemic challenge. If

the clone is in region 3, it does not protect against epidemic challenge, but does cross-react

with the vaccine, and will clear the vaccine; the vaccine will not generate its own clone,

and there will be no protection against the epidemic challenge. If the clone is in region

4, it does not protect against the epidemic challenge, and neither does it interfere with the

vaccination, and thus the vaccination will generate a memory clone. If this clone is in

region 5 (Figure 6.5b), it protects against the epidemic challenge; if it is in region 6, there

is no cross-reactivity with the epidemic and thus no protection. Thus we can write
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Because we assume that a clone can, with equal probability, be anywhere within the

ball of stimulation of an antigen, the probability that a clone is in a region can be determined

by knowing the size of a region relative to the size of a ball of stimulation. The relative

sizes depend on the antigenic distances between the three antigens and geometric properties

of the space. The relative size could be determined by labeling B cells with the antigens

they cross-react with, and grouping them into the regions of Figure 6.5. For the model, we

can directly calculate the number of different possible antibody receptors within a region

and within a ball of stimulation (using an extension to three balls of the calculations in

Appendix A). Thus, the above equation can be written as

(6.1)

where and . The prob-

ability of protection can be calculated from this formula for the 31 combinations of prior,

vaccine and epidemic cross-reactivities in Smith et al. (1997b). Figure 6.6a compares the

predicted probability of protection given by this very simple analysis with the observed

probability of protection in the in machina experiments. There is a reasonable agreement,

especially given the very simple nature of this analysis. This confirms that, at least for the

in machina model, the cross-reactivities are the major factor in the effect of prior infection

on vaccine efficacy.

Complex Analysis. The simple analysis was deliberately as simple as we could

make it. We now pursue a somewhat more complex analysis to get more predictive power.

For the complex analysis, the two assumptions of the simple analysis are relaxed. The part

of the first assumption, that only 1 clone is generated by a primary response, is relaxed by

letting indicate a prior infection that results in clones in region 1, clones in region

2, clones in region 3 and clones in region 4, and letting indicate a vaccination that

results in clones in region 5 and clones in region 6. The probability of can be
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Figure 6.6: The observed (in machina) and predicted vaccine efficacy for (a) the simple analysis
(Equation 6.1) and (b) the complex analysis (Equation 6.2), for each of the 31 experimental groups.

written directly from the multinomial theorem1

where is the multinomial coefficient giving the number of ways to divide

objects into 4 groups of , , , and objects. Similarly, the probability of is

Allowing the prior infection and vaccination to produce any number of clones gives the

opportunity to relax the second assumption. For example, the number of clones produced

by the vaccine could be a function of the number of clones in the intersection of the prior

and vaccine. For this analysis we shall assume that the prior infection produces two clones,

and that if there are no prior clones in regions 2 or 3 then the vaccine also produces two
1The multinomial theorem is a generalization of the binomial theorem to more than two variables.
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clones (otherwise it produces no clones), and that a single clone in regions 1, 2, or 5 protects

against the epidemic. We then have

There are three ways to have zero clones in regions 1, 2, or 5: (i) both prior clones are in

region 3, they do not cross-react with the epidemic and they do inhibit the vaccine from

producing any clones, (ii) 1 prior clone is in region 3 and 1 is in region 4, they do not

cross-react with the epidemic and the clone in region 3 inhibits the vaccine, or (iii) both

prior clones are in region 4, they do not cross-react with vaccine or epidemic, but both the

vaccine clones are in region 6 and thus do not overlap the epidemic. Thus,

(6.2)

This predicted probability of protection is compared to the observed probability of protec-

tion for the 31 prior strains in Figure 6.6b.

These mathematical predictions of vaccine efficacy based on the antigenic distances

between the prior, vaccine and epidemic correlate well with the results from the model

(Figure 6.6). The accuracy of the mathematical predictions indicated that, in the model,

the antigenic distances between the antigens were the dominant factors in determining the

protection conferred by vaccination after a prior infection (given a fixed vaccine to epidemic

antigenic distance). Further analysis would take into account antibody levels, and could

then be applied to the results of annual vaccination in chapter 5.

6.3 Multivalent Vaccines

Rapid antigenic drift is a property of many viruses, including influenza virus, human im-

munodeficiency virus, and hepatitis C virus. As a result of their high mutation rate, thou-

sands of strains of these viruses coexist in a species swarm (or quasispecies) (Eigen, 1993).
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Vaccination against species swarms is difficult because of the need to provide broad immu-

nity to the many strains, and because new strains constantly emerge.

Depending on the diversity of the species swarm, a single vaccine strain may or may

not protect against all members of the swarm. For influenza, a single vaccine strain usually

does a good job (in first-time vaccinees) in protecting against the swarm.2 The diversity

of the HIV species swarms is too great for a single HIV vaccine strain (directed against

the V3 loop). Thus, it is thought that an HIV vaccine will have to be multivalent. The

valency of a vaccine is sometimes limited by requiring sufficient quantities of each compo-

nent to induce an immune response, while having a limited overall quantity of vaccine to

reduce toxicity. Thus, because the diversity of the HIV species swarm is so great, a single

vaccination may not be able to contain sufficient strains to provide protection against all

wildtype strains. This, coupled with the emergence of new viral strains. suggests that HIV

vaccination may have to consist of a series of vaccinations. Hence our results from chapter

5 may be applicable.

We have done preliminary in machina experiments with multivalent vaccines, and

have interesting results regarding the distribution of clones. Multivalent vaccines may also

be be useful in influenza vaccination, where perhaps an influenza vaccine could contain

strains from both the follow and surround strategies.

6.4 Wet experiments
This section describes wet experiments that could be done to test and expand on the results

of chapters 3 and 5. I have no experience in wet biology, and I imagine actual experiments

could be better designed than the ones I suggest. I include them to convey that my results

can be tested with current experimental methods.

Intersection Volume. The derivation of shape space parameters from immunologi-

cal data could be improved by results from experiments that directly measured the number

2The influenza vaccine is actually trivalent, with one strain directed against each of the three currently
co-circulating antigenically distinct species swarms (H3N2, H1N1, and B).
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of B cells in the intersection of balls of stimulation of antigens at various antigenic dis-

tances. Such results could improve the parameter choice of the model, and be used in the

mathematical analysis of the cross-reactive immune response (Section 6.2)

One version of the experiment would take pairs of antigens at various antigenic dis-

tances to each other. These could be different myoblobins (East et al., 1980), bacterial

azurins (Champion et al., 1975), or strains of influenza. The antigens would then be la-

beled for subsequent sorting by FACS (Fluorescence Activated Cell Scanning and Sorting).

Two of the antigens would then be mixed with the B cell repertoire from a naive mouse (one

that has not seen antigens). B cells would bind antigens to which they had affinity. The

FACS could then sort the antigen-labeled B cells into 4 categories: those with one antigen

bound, those the other antigen bound, those with both antigens bound, and those with no

antigens bound. We could then calculate the number of cells in the intersection of balls of

stimulation as a proportion of the number of cells in a ball of stimulation.

This experiment could be performed with three or more antigens instead of two. In

the three antigen case, the cells would be sorted into eight groups, and the relative sizes of

the eight intersection possibilities between three antigens could be measured (Figure 6.5).

A further variant would be to use B cells from mice that had been exposed to one or more

of the antigens. This would give an idea of the number and distribution of cells in the

memory population. Such measurements would be very useful in improving the accuracy

of the model and mathematical analysis.

Annual Influenza Vaccination. In vivo experiments to test the effects of annual

influenza vaccination would be quite straightforward (Katz, 1997). The experiments could

be done in mice. Human influenza virus is usually not pathogenic in mice, but some strains

are, and one such strain would be chosen and used as the epidemic virus in all experiments.

Vaccine strains would be selected at varying antigenic distances between each other, and to

the epidemic virus. Distances would be taken from the hemagglutination inhibition assay

(Table 5.3). The CDC has samples of many strains strains of influenza , and it is common

practice to amplify samples and use them as vaccines in experiments at the CDC. The mice
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would be vaccinated and challenged according to Table 5.1. Vaccine and challenge dosage

would be taken from other influenza vaccination studies in mice (Katz et al., 1997), and

the time between vaccinations would be set depending on the longevity of anti-influenza

antibodies in mice. At intervals during the experiment, blood samples could be taken and

antibody levels measured to be compared with the in machina antibody levels (Figures 5.3

and 5.5). After the epidemic challenge, viral load would be assessed in the lungs using the

method described in Katz et al. (1997).

The results from such experiments would be a test of the predictions of chapter

5. The results would also show the relative effects of positive and negative interference,

and could be used to make the model more quantitative. This would make the experiments

comparing vaccine update strategies (Section 6.1) more accurate, and thus potentially quan-

titatively useful in the vaccine strain selection process.
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Chapter 7

Conclusions

Although the model abstracts away from many of the details of the immune system, it ap-

pears to capture sufficient details to make a contribution to understanding annual influenza

vaccination, and influenza vaccine design. The results offer a potential explanation for pre-

viously incongruous reports of highly varying attack rates in annual vaccinees by showing

how immunological memory to previous vaccines can interfere, both positively and neg-

atively, with subsequent vaccination. The degree, and sign, of the interference depended

on the antigenic differences between the vaccine strains and epidemic strains used in the

experiments. Currently, new strains for the influenza vaccine are chosen to be close to the

expected epidemic strains. The results reported here suggest that vaccine strains should

also be chosen to be distant from previous vaccine strains. A collaboration has started with

the US Centers for Disease Control, Influenza Branch, to test these results.

Contributions to computer science include identifying immunological memory as

a member of the class of sparse distributed associative memories. This tells us why im-

munological memory is associative—because it is sparse and distributed. The immune

system is just beginning to be used as an information processing metaphor, and computa-

tional devices based on the immune system, usually associative memories, are beginning

to be researched—such work has focused on idiotypic networks as the source of power and

interest in the immune system. I have shown that immunological memory is associative



regardless of whether it uses idiotypic networks to maintain memories. This does not mean

that idiotypic networks should not be investigated as information processing systems in

their own right, but it does change the perspective of their importance in the associative

memory behavior of the immune system.

The model was used to study annual vaccination against influenza; however, it has

many other potential applications. These include the study of the HIV pathogenesis, and

the design of multivalent vaccines against influenza, HIV, and other antigenically variable

pathogens.
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Appendix A

Intersection Volume in Hamming Shape

Space

Consider an -dimensional Hamming space with alphabet size . Let and be points

(strings of symbols) in the space at Hamming distance from each other. Let be a

point at distance from and from , and let be the number of all such points. Figure

A.1 shows the three strings , , and , structured in a way to illustrate that the symbols

of can be partitioned into five groups. These strings can, without loss of generality, be

manipulated to fit this template, because the space has an automorphism which maps any

three points to these templates; the order of presentation of the dimensions, and the choice

of symbols for each dimension, do not alter any of the aspects of the space that interest us.

The partitions , , , , and of Figure A.1 can be described in words as follows:



I

J

K

000...

000...

000...

111...

000... 111... 222...111...

n

s

a b c d e

t

Figure A.1: This figure shows the five groupings of the symbols of , and how these groups
relate to the groupings in and .

a. those that are the same as both and .

b. those that are different from and in a place where and are the same.

c. those that are the same as in a place where differs from .

d. those that are the same as in a place where differs from .

e. those that are different from both and in a place where and differ.

The Hamming distance between two strings is the number of symbols that are dif-

ferent between the strings. The Hamming distance between and is , the Hamming

distance between and is the sum of , and , and the Hamming distance between

and is the sum of , and (Figure A.1).

Thus for to be Hamming distance from and from we must have (Figure

A.1)

(A.1)

and

(A.2)
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Similarly the distance, , between and is the sum of the sizes of the partitions , and

, thus we have

(A.3)

and

(A.4)

Because of equations (A.3) and (A.4) and that the length of the strings is , we get

(A.5)

Let be the set of 5-tuples, , that satisfy equations (A.1), (A.2), (A.3),

(A.4) and (A.5). Then,

where is the number of symbols in the alphabet.

If we write the multinomials as binomials, and substitute in a rearrangement of

equation (A.5) for we get

The five equations, (A.1) through (A.5), constrain the values of the five free vari-

ables of and , to one degree of freedom, i.e. the choice of either or , will

determine the remaining four values. If we choose as the free variable, then

by (A.2) minus (A.3) we get

(A.6)

and by (A.6) into (A.1) we get

(A.7)

which gives
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Let and be the radii of the Hamming balls1 about and respectively. Then

the intersection volume is the sum of for all and , thus

(A.8)

1A Hamming ball is the set of points that are within a distance of a particular point. We call the radius
of the Hamming ball. The ball and radius terminology is by analogy with the usual, Euclidean, notion of
balls and radii.
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Appendix B

Intersection Volume in Euclidean Shape

Space

The volume of the intersection of two Euclidean balls of stimulation can be calculated as

the sum of the two shaded segments in Figure B.1. Beyer (1981) gives formulas for 2- and

3-dimensional segments; here we derive the volume of -dimensional segments.

The volume of a segment is the integral, along the line , from the circumfer-

ence of the ball to the line AB. The integrand is an dimensional ball with radius

, where is the distance from the circumference along . Thus, for a

segment of width ,

where

and

Thus



B

A

C

r1r0

x0 x1

s

h1h0

S1S0

Figure B.1: The two shaded segments in this figure, when added together, form the intersection
of the balls. The volume of a segment is calculated by integrating along the line . The key
to the calculation is that the integrand is a ball in the next lower dimension whose radius is the
distance from to the circumference of the segment’s circle (which varies as moves along

during the integration).

The intersection is the sum of the segment and the segment, i. e. ,

where
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and

Figure B.2 plots the Euclidean intersection, as a function of sequence difference for

1, 2, 3, 5, 10 and 20 dimensions, with .
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Figure B.2: The intersection volume as a function of the sequence difference for Euclidean
balls in 1, 2, 3, 5, 10 and 20 dimensions, with .

The left hand side of equation 3.4, in the main text, is derived as follows
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Appendix C

Description of the Model

The model simulates an animal-sized B cell repertoire of to B cells (Köhler, 1976;

Klinman et al., 1976; Klinman et al., 1977). The expected lifetime for an unstimulated B

cell is 4.5 days. New B cells, with randomly generated antibody receptors, are generated

at a rate of 560,000 per day on average to maintain the B cell repertoire in steady state. B

cell and antibody receptors and antigen are modeled as strings of symbols that can loosely

be thought of as the amino acids of a binding site. The mapping between sequence and

shape is not fully understood, so for the purposes of the model we assume that sequence

and shape are equivalent. The affinity between antibodies and antigens is proportional to

the number of symbols that are complementary between their receptors. We define the

antigenic distance between antigens as the number of symbols in which their receptors

differ. The length of the receptor (20 symbols) and the number of distinct symbols at each

location (4) were chosen (Smith et al., 1997d) to give the following properties: a potential

repertoire of B cells, a 1 in chance of a B cell responding to a particular antigen

(Edelman, 1974; Nossal & Ada, 1971; Jerne, 1974), and with an expressed repertoire of

B cells (Köhler, 1976; Klinman et al., 1976; Klinman et al., 1977) two antigens cease

being cross-reactive when they have more than about 35% sequence difference (Champion

et al., 1975; East et al., 1980). Thus, effectively, there are eight degrees of cross-reactivity

in our model corresponding to antigenic distances 0 through 7. Due to the very large



number of antibody molecules in a real immune response, each antibody in the simulation

represents a large number of real antibodies. T-help is modeled implicitly by assuming that

it is always available whenever it is needed.

During each 6 hour time period, each B cell gets a chance to bind with a unit of

antigen which is selected at random from all antigens in the simulation.1 The affinity of

the B cell for the antigen is where is the mutation, or Hamming,2 distance between

the strings representing the B cell antibody receptor and the antigen epitope, and r is the

distance within which a B cell can be stimulated by an antigen. We set =5, which means

about 1 in B cells can bind any particular antigen (Smith et al., 1997d; Edelman,

1974; Nossal & Ada, 1971; Jerne, 1974). The probability that a B cell will bind an antigen

is 0.1 times the ratio of this affinity to the average affinity of any antibodies bound to the

antigen, or 1.0, whichever is the smaller. If there are no antibodies bound to the antigen, a

random B cell (but one that has some affinity for the antigen) is selected, and its affinity is

used in place of the average antibody affinity.

When a B cell has bound antigen for 6 hours it is stimulated to divide. On cell

division the B cell antibody receptor has a 0.005 probability of a mutation in a digit that

represents the receptor. B cell differentiation is approximated by each daughter cell having

a 0.05 probability of differentiating into a plasma cell and a 0.05 probability of differenti-

ating into a memory cell. Memory B cells have a half-life longer than the duration of the

simulation. When memory B cells bind antigen and divide, both daughter cells revert to

naive B cells. Plasma cells have a 75% chance of having a half-life of 3 days, and a 25%

chance of being long lived with an expected half-life of 200 days. (Actual plasma cell half

lives have been seen up to 100 days; however, we set the half-life 200 days to make keep

1The selection method for B cell-antigen encounters is more complex when more than 1 antigen are
present in the simulation at the same time. However, this does not occur in the experiments reported in this
paper.

2The Hamming distance between two receptors is the number of places where the receptors differ. This
can also be thought of as the mutation distance. For example, if the four equivalence classes of amino acids
represented by the symbols A through D, and receptors are represented by strings of 20 symbols, the Ham-
ming distance between receptors CCBDDBBCCCABDCCDADAD and CCADDDBCCCABACCDADAD
is 3 because they differ in the three underlined locations.
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titers closer to experimentally observed levels.) Plasma cells secrete 2 units of antibody

every 6 hours. Free antibodies have a chance to bind antigens every 6 hours. For each

unit of antibody, an antigen is selected at random. If the antigen is not bound to a B cell

the antibody binds with the antigen if it is within binding threshold. Unbound antibodies

have a half-life of 10 days. When an antigen has 2 or more units of antibodies bound it is

removed from the system. No more than 2 units of antibodies can to bind to any particular

antigen.

The immune response and clearance of an two vaccinations and an epidemic chal-

lenge, that takes over 450 simulated days, takes about 2 minutes of CPU time, running in

Franz Lisp, on a Sun Ultra 2/2300. An implementation technique called lazy evaluation

is used to efficiently simulate the animal-size B cell repertoire (Smith et al., 1997c). The

model and simulator written in Common Lisp and the user interface is written in Tcl/TK

and Blt. Figures 5.4, 5.3, 5.6 and 5.5 were taken almost directly from the user interface.

The model, simulator, and user interface are available on request.
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