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Abstract

In this dissertation I present the concept of negative representations of informa-

tion, discuss some possible implementations, and explore its attributes and appli-

cations. The concept is summarized by the phrase “everything except....” What

follows—the exceptions—are the negative image of the idea being conveyed: For

instance, the statement “I like to eat everything except tofu, mole and key lime

pie,” defines a person’s culinary preferences by explicitly stating what they don’t

like. In this work I explore the idea from two perspectives and its implications for

hiding data. Firstly, I consider the case of the negative representation being an in-

exact depiction of the positive set, i.e. when not all possible items are characterized.

For example, the above gastronomic description does not exhaustively list all of the

dishes disliked by the person, as it easy to imagine recipes that nobody would like. I

address the question of how to generalize from the given set of items to a likely set,

outline a specific scheme, and discuss its computational properties. Secondly, I study

the case when we want the negative representation to exactly depict all the items
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not in the positive set. I show how to efficiently create a compact representation to

accomplish this, and discuss the properties of the arrangement.

Several characteristics of describing data negatively are elucidated throughout

this work: primarily, that a negative representation can be used to constrain the

knowledge gained regarding the positive image, that the amount of information per

item is generally lower in a negative representation, and that the way in which an-

swers are inferred using a positive or negative set is fundamentally different. Finally,

I outline some operations that take advantage of this change of perspective and that

help address some of the privacy concerns of the day.
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Chapter 1

Introduction

Information is and always has been a valuable commodity. It reduces the uncertainty

about a specific domain and facilitates the achievement of objectives, from where the

wildebeest stops for water (so it can be hunted) to whether a company is about to

fire its CEO (so stock can be traded).

With the advent of computers and digital storage devices, the amount of in-

formation that is being collected and that can potentially be exploited has grown

dramatically. Data is being gathered from every imaginable source and ranges from

the scientific (e.g. genome sequences, particle collision streams, ...) to the sociolog-

ical, where information about individuals such as their demographics, preferences,

and spending habits are being amassed. The nature and volume of data pose novel

challenges in terms of how it should be used. Central to this, is the question of how

it is to be represented, as data representation has immense impact on how it can be

utilized.

Take, for instance, the data concerning hourly fluctuations in the price of some

stock. Suppose a year’s worth of data is at our disposal for analysis. What we can

feasibly learn from these data depends at least on whether we have a printout or a
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Chapter 1. Introduction

digital representation. With the latter, a computer can be readily used to produce

aggregate and statistical values, plot graphs and charts, and search the data for

patterns, whereas a paper printout will render all such examinations impractical.

The importance of data representation is well understood in the machine learning

community [47], consider the case of evolutionary algorithms (natural and artificial)

where operators such as one-point crossover come into play—two chromosomes are

spliced at a single location, the pieces swapped and pasted to create two new se-

quences. Representing a gene as a physically contiguous or discontinuous sequence

of symbols (nucleotides, bits, etc.) determines which are the possible genomes that

can be reached within one generation [81]. A final example is cryptography where

the aim is to find data representations from which meaningful information can only

be extracted when knowledge of the secret used to create them is provided.

In this dissertation I introduce a novel way to represent data; one in which ev-

erything except the items of interest is depicted. Information expressed in this way

is referred to as negative information. The concept is a familiar one; consider for

instance a political speech or an activity report: Omissions are often considered as

compelling (substantial) as the items that are actually discussed (the phrase “read-

ing between the lines” suggests there is something being deliberately omitted that

is of importance to the discourse). Artists sometimes portray everything but the

subject of interest as a means to more meaningfully convey a message [106, 131],

and statisticians often use the information of everything but the subset of interest

as a more tractable way to compute some value (e.g. one minus the probability of

something not happening is the probability that it occurs). An example of special

significance, one that inspired the present work, comes from the field of immunology,

in particular, the method by which pathogens are identified; the immune system

keeps a “negative” image of self—the normal constituents of the body—and uses it

to recognize foreign material.

2



Chapter 1. Introduction

Examples are plentiful and ubiquitous, however, in this dissertation I focus on a

specific domain, one amenable to rigorous analysis, and study the following: How can

information be represented negatively; what are some of the properties of a negative

encoding; and, how can these properties be used to our advantage. For instance, you

are asked for all the information you have in your address book because there are some

specific items a third party wants to verify. You have reservations about distributing

your entire directory, and decide to turn in an alternative address book containing

all the names, addresses, etc. that are not in your “confidential” black book. Strictly

speaking you have not been deceitful since both books contain the same information,

but how can someone make use of it? What questions can be asked of it in an efficient

manner? How voluminous is this so called address book, and how long did it take

you to generate it? Finally, let us suppose this complementary address book does not

have the same information content and is missing some of the “negative” data. Is it

still useful? What can you infer from the answers it provides? In this dissertation I

address questions such as these, studying the feasibility of negative representations,

drawing out their distinctive properties and discussing their potential benefits for

security and privacy.

Chapter 2 reviews related work, specifically in the fields of artificial immune sys-

tems, machine learning, databases and areas associated with safeguarding sensitive

information. Chapter 3 introduces a scheme inspired by the immune system (IS) in

which, given a set of strings S, a surrogate is created that includes S along with

some additional strings, yielding an inexact representation of S. The resulting set

is precisely characterized and it is shown how it can be represented positively or

negatively pointing out some of the tradeoffs between options. Chapter 4 studies

how the negative image of a set of strings can be represented exactly, it introduces

negative databases as a means to this end, and provides algorithms for creating and

updating them efficiently. The chapter examines some distinctive properties of neg-

ative databases, in particular, it shows that they are easy to create, easy to query
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Chapter 1. Introduction

in certain ways, but that it is very hard to derive their entire positive image, mak-

ing them a natural candidate for certain privacy preserving operations. Chapter 5

investigates negative data representations from an information theoretic standpoint

and brings out some additional properties of representing data negatively such as the

difference in how queries are answered using the positive or the negative image of a

set. At the end of the chapter two schemes are outlined that take advantage of these

properties, one for disseminating data and another for collecting it both, in a private

fashion. The final chapter concludes the dissertation summarizing the findings and

providing avenues for future work.

4



Chapter 2

Related Work

In this section I will review some of the work done in four major areas that re-

late to the present work: artificial immune systems (AIS), machine learning (ML),

databases, data security and privacy. Other disciplines may come into play, such

as information theory and statistics, but here I concentrate on the fields that have

tackled related problems and/or that provide significant inspiration.

AIS is reviewed since it has been the primary source of inspiration and because

the findings herein will be translated into contributions to that research area. A brief

summary of relevant subjects in ML is presented, given that many of the problems

posed in AIS have been previously addressed by this community. Furthermore, ML

has developed a variety of tools that will prove useful in advancing and understanding

the proposed thesis. One goal of this dissertation is to establish a connection between

databases and the representations presented herein, for this reason a concise account

of some of the relevant database concepts and resources is given. Finally, a review of

techniques for safeguarding sensitive data is given to illustrate some of the distinctive

characteristics of the schemes proposed herein.

5



Chapter 2. Related Work

2.1 The Immune System and Artificial Immune

Systems

Studying biological systems has often been a recourse for solving engineering prob-

lems. Recently (1990’s) the immune system (IS) has come under focus for this

purpose, giving birth to the field of artificial immune systems (AIS). In what follows

I briefly discuss the aspects of the adaptive IS1 that have served as inspiration to

this field, and I provide a brief review of the systems that have resulted from these

insights. It is important to note that this is not a complete review of immunology,

for which the reader is referred to [84, 121], nor is it a complete account of the AIS

field (see [36, 48, 39]).

One of the primary functions, of the Immune System (IS) is to keep the organism

healthy, in particular to prevent and defuse illnesses induced by foreign agents known

as pathogens. The task of identifying a pathogen is complicated by the possibility

of never having encountered it before and by the fact that pathogens are subject to

evolution (driven in part to avoid recognition by the IS) and change their form. One

strategy thought to be employed by the IS to discriminate between self—the normal

“components” of the organism—and nonself—everything else, including potential

pathogens. The theory is known as the self-nonself discrimination paradigm [84, 110]

and forms the basis of much AIS related work.

The main focus of the AIS community has been on the adaptive IS of which

lymphocytes, T-cell and B-cells, are primary actors. Lymphocytes are distributed

throughout the body and are individually capable of binding foreign antigen. The

collective actions of lymphocytes ultimately determine whether a bound antigen

will be eliminated or not. AIS are thus composed of a collection of agents, that

mimic lymphocytes, known as detectors. Additionally a few IS inspired algorithms

1In contrast to the innate immune system.
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Chapter 2. Related Work

have been proposed that bring these components together, particularly the clonal

selection algorithm [38] and the negative selection algorithm [63]. The clonal selection

algorithm mimics the way B-cells proliferate upon the encounter of an antigen by

creating slightly modified copies of themselves subject to selective pressure. This

can be formulated as an evolutionary algorithm with all its benefits and drawbacks

[12]. The negative selection algorithm, on the other hand, is modeled after the way

T-cells are “trained” not to recognize or bind self molecules. After creation, T-cells

migrate to an organ called the thymus where there is a representative sample of

the peptides normally found in the host organism. Here, they are subjected to a

selective process in which binding of a molecule induces the T-cell to die, known

as negative selection. Lymphocytes that survive this and other processes are then

released to the rest of the body, with relative confidence that whatever is recognized

or bound is in fact a nonself agent. One interesting feature of this algorithm is that

it is continually running, perpetually creating new T-cells and dynamically adapting

to its environment (although much more active in young people).

One of the most popular applications of AIS has been to intrusion detection

[135, 88, 37], owing to the parallel between protecting a computer from intruders

and protecting an organism from pathogens. In particular, the work by Hofmeyr et

al. [77, 78, 79] introduced a network intrusion detection system that embodies most

of the concepts outlined above (namely self-nonself discrimination by a collection of

detectors generated by negative selection) along with a few others, and demonstrates

the effectiveness of this approach in a dynamic scenario. In addition, AIS have been

used for varied applications such as color image classification [116], fault detection

[125], recommender systems [29] and even some hardware implementations [20, 21,

22].

Particularly relevant to the present work is the representation of self, nonself and

immune cells as binary strings and the use of partial matching to establish detection

7
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[58, 77, 78, 79]. The r-chunks match rule used in this dissertation (Chapter 3),

introduced in [13, 55], was inspired by the rule used therein named r-contiguous

bits [58, 110, 111], which has been used in many artificial immune system projects.

Modeling projects incorporating this rule include [58, 110, 111, 62], and application

projects that use it include [63, 35, 78, 88, 20, 21, 22, 120, 11]. Many formal studies

of immune algorithms are based on systems employing r-contiguous bits, e.g. [44,

43, 133, 132, 134, 52].

The work proposed here shares with the above approaches the self vs nonself

distinction, the representation of these sets as fixed length strings, and the use of

detectors to recognize members of such sets. However, this work is more concerned

with the theoretical aspects and tradeoffs between representing data positively and

negatively and with studying the relationship of these representations with database

theory.

2.1.1 Distance Measures

In the preceding section I discussed that an immune response may be triggered when

an immune cell recognizes (or matches) an antigen. In order to simulate the action of

immune cells with digital detectors it is necessary to define a measure that establishes

when a match has occurred. This is usually accomplished using a similarity measure

that determines how alike the antigen and detector are, and forms the basis from

which a match can be declared. The simplest way to envision this idea is to imagine

an antigen and a detector as two points on the plane, the length of the line between

the two points (the Euclidean distance) can be taken to signify how similar they are.

If the distance between them is less than some prespecified value τ , it can be said

that the detector recognizes the antigen.

There are a myriad of distance measures that can be used for this purpose besides
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the ones used in this dissertation (see Chapters 3 and 4). Here is a brief description

of some of them:

Hamming Distance One of the most popular measures for establishing the dis-

tance between two binary strings is the Hamming Distance, defined as the

number of bits which differ between two binary strings. There are several

matching functions that extend this notion by assigning different weights to

different types of local matches, for example, by only counting when the two

strings have a ’1’ at the same position. Among these are the Russel and Rao,

Jaccard and Needham, and the Rogers and Tanimoto similarity functions (see

[73] for a good review of these functions).

Edit Distance This measure is also known as the Levenshtein distance and is desig-

nated as the smallest number of insertions, deletions, and substitutions required

to change one string into another.

Euclidean Distance The straight line distance between two points.

Manhattan The distance between two points measured along axes at right angles.

Lm Distance The Lm is the generalized version of the distance between two points.

In the plane L2 is the Euclidean distance and the rectilinear or Manhattan

distance is L1.

2.2 Machine Learning

The problem of distinguishing between two classes of objects—self vs nonself—has

been widely studied in the machine learning and statistical learning communities,

where it is known as binary classification or concept learning [102, 103]. The prob-

lem can be stated as follows: Given a collection of data points S with binary labels,

9
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find some function that correctly maps each instance to its correct class. It is usually

considered that S represents only a sample of possible instances; therefore, it is im-

portant for the resulting function to classify novel instances correctly. Some examples

of this approach include Nearest-Neighbors [64], neural nets [114] and decision trees

[113, 25]. Another way to formulate the problem deals with situations in which only

instances of one of the two classes are available. Examples of this approach include

single-hypothesis testing [64] and auto-association based classification [86, 85, 72].

This approach is more in line with the paradigm studied in Chapter 3 where, in gen-

eral, I consider instances of only one class and wish to derive some characterization

of the underlying set.

As mentioned in Section 2.1 and further explored in Chapter 3, the proposed

system is composed of a collection of detectors whose creation is in some way subject

to examples of the target concept. One of the approaches being considered (in

the case of positive detection) is one in which each detector carries a subset of

the attributes taken from a training instance. The ML community has extensively

studied instance-based learning [9], whereby a subset of the training examples is

explicitly stored and used to classify novel instances. One interesting property of this

approach is that there is no explicit derivation of a target function and membership

is determined locally; there is no training of a neural net nor an explicit construction

of a function. Among the major algorithms for instance-based learning are nearest-

neighbor classifiers [33, 74, 46, 16], and case-based reasoning systems [14, 89, 128].

Non-stationary learning techniques [101, 93, 91] are used whenever the target

function must be constantly reassessed. These methods are relevant to the work

presented here, in that the system should be flexible enough to promptly modify the

definition of what strings are to be regarded as anomalous, in the case of the anomaly

detection, or change which items are likely to be present in a database, when such

schemes are used for protecting sensitive information.
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2.3 Databases

One of the objectives of this work is to construct a connection between IS/AIS and

database theory. In the approach taken in Chapter 3 we are presented with a set of

feature vectors S that can be viewed as instances of some concept (Section 2.2) or as

records in a database. If we choose the latter, we can resort to database theory and

design detectors accordingly (see Section 3.3.1). Database theory has studied how,

in a relational scheme, a table (a set of records) can be decomposed or broken up into

subtables while preserving certain properties [94, 75, 119]. As will be seen in later

in Chapter 3, detector creation can be viewed as a decomposition of the observed

examples S. Decomposing a table requires knowledge about the semantics of the

data such as dependencies among attributes. In the case where such information is

not known a priori, data mining techniques such as association mining and frequent

pattern discovery [6, 7, 40, 130, 71] can provide useful guidance.

Another major goal of the present research is to study the feasibility and prop-

erties of representing a database negatively, how regular operations such as updates

are to take place and what the query system will look like. The present work in-

troduces algorithms for creating, querying and updating negative databases, as the

work progresses into the future more sophisticated operations will be demanded. I

expect that insight into this questions will come from database theory itself [10, 107].

2.4 Sensitive Data

The main object of this dissertation is to study the properties of negative represen-

tations of data. Storing the negative image of a set rather than the set itself imme-

diately suggests that such a strategy might be useful for protecting sensitive infor-

mation, being that it is everything but the data we care about which is being stored.
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There are several areas of research that are potentially relevant to the ideas discussed

in this work regarding the handling of sensitive data—any information that should

only be accessible to specific parties or applications. These include: encryption,

zero-knowledge sets, privacy-preserving databases, privacy-preserving data-mining,

query restriction, secret sharing, and multi-party computation.

An obvious starting point for protecting sensitive data is the large body of work

on cryptographic methods, e.g., as described in [117]. Some researchers have inves-

tigated how to combine cryptographic methods with databases [60, 59, 18, 129], for

example, by encrypting each record with its own key. These techniques, however,

are intended to conceal all information about the encrypted data, and it is therefore

not appropriate to situations in which some queries should be efficiently supported

without revealing the entirety of the records.

Zero-knowledge sets were recently introduced in [99] and provide a primitive for

constructing databases that have many of the same properties as those described

in Chapter 4, namely, the restriction of queries to simple membership (a similar

construction to zero-knowledge sets is presented in [109] in which range queries are

possible). However, there are several differences between the two approaches. First,

zero-knowledge sets are based on widely believed cryptographically secure methods.

Second, zero-knowledge sets require a controlling entity for answering queries. The

relaxation of this requirement allows negative databases (see Chapter 4) to perform

operations such as set intersection privately and efficiently. Finally, to date, there is

no efficient way of updating a zero-knowledge set, while Section 4.4.2 gives efficient

algorithms for on-line operations on negative databases—the arrangement introduced

in Chapter 4 to represent data negatively.

Negative databases as described in Chapter 4 have the property that it is NP-

hard to recover their positive image, i.e. the items of interest. Cryptosystems founded

on NP-hard problems [57] have been proposed such as the Merkle-Hellman cryp-
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tosystem [98], which is based on the general knapsack problem. These systems rely

on a series of tricks to conceal the existence of a “trapdoor” that permits retrieving

the hidden information efficiently. However, almost all knapsack cryptosystems have

been broken [108], and it has been shown [23, 24] that if breaking such a cryptosys-

tem is NP-hard then NP=CoNP. In general, if a scheme based on a NP-hard

result is to be used in a privacy setting it will be necessary to study under what situ-

ations it does indeed produce hard to reverse instances and if these instances can be

readily obtained. There is a large body of work regarding the issues and techniques

involved in generating hard-to-solve NP-complete problems [83, 82, 108, 98] and in

particular of SAT instances [100, 32]. The problem of recovering the positive image

of a negative database is closely related to solving SAT, where the solutions to the

logical formula correspond to the entries in the positive database. Efforts concerned

with generating hard instances with specific solutions include [61, 1, 2].

Of particular relevance are one-way functions [67, 105]—functions that are easy to

compute but hard to reverse— and one-way accumulators [15, 28] which are similar

to one-way hash functions but with the additional property of being commutative.

One key distinction between these methods and negative databases is that the output

of a one-way function is usually compact and the message it encodes typically has

a unique representation. By representing data negatively, as described in Chapter

4, a single message has many possible encodings, an idea that is also exploited by

probabilistic encryption [69, 19].

Multi-party computation schemes [136, 68], in which complex operations across

databases can be performed privately are related to the applications discussed in

this dissertation, in particular when they involve operations such as set intersection.

Other approaches to set intersection include [92, 127, 104], where several protocols

and data structures are introduced to perform this operation securely and efficiently.

Secret sharing [118] is a technique whereby data is protected by splitting it into

13
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several pieces. This primitive is related to the setup of Chapter 5 where the privacy of

certain operations relies on negative information being divided into several subsets.

Some approaches that rely on secret sharing for protecting databases include [26,

4]. Also relevant to the discussion of Chapter 5 is the area of private information

retrieval [31, 66] which focuses on protecting the privacy of the entities consulting

the database, rather than the contents of the database itself.

In privacy-preserving data mining, the goal is to protect the confidentiality of

individual data while still supporting certain data-mining operations, for example,

the computation of aggregate statistical properties [8, 5, 3, 41, 45, 129, 126]. In one

example of this approach (Ref. [8]), relevant statistical distributions are preserved,

but the details of individual records are obscured. The scheme discussed in Chapter

4 is roughly the reverse of this approach, in that it only supports simple membership

queries efficiently. Chapter 5 describes a different use of negative representations

that allows for private collection of certain population statistics.

The applications of negative information outlined in Chapter 4 are also related

to query restriction [95, 30, 41, 42, 126], where the query language is designed to

support only the desired classes of queries. Although query restriction controls access

to the data by outside users, it cannot protect an insider with full privileges from

inspecting individual records to retrieve information.

There is a large body of work in finding compact representations of a set of binary

strings or functions (for example, [87, 112, 97, 27]). My work differs in its need to

obtain a compact representation of the complement of the input set without explicitly

calculating it, for it may be exponentially larger than its counterpart. However, some

of these compact representations may also be useful for describing negative data.

In summary, the existence of sensitive data requires some method for controlling

access to individual records. The overall goal is that the contents of a database
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be available for appropriate analysis and consultation without revealing information

inappropriately. Satisfying both requirements usually entails some compromise, such

as degrading the detail of the stored information, limiting the power of queries, or

database encryption.
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Chapter 3

Inexact Representations

As described in Chapter 2 the Immune System (IS) identifies pathogens by making

a distinction between self and nonself, and creating immune cells capable of binding

(recognizing) members of nonself. T-cells, a specific type of immune cell, are deployed

throughout the body to monitor the well-being of an organism. These cells are

equipped with receptors able to bind peptides on the surface of cells; if binding

occurs, an immune response may be initiated. T-cells are subjected to a selection

process before they are released into the body, which ensures that they recognize only

nonself peptides. Even though the complete immune response is much more intricate

than this cartoon sketch, the above process exhibits many interesting properties from

the perspective of the present work. First, is the fact that T-cells recognize nonself,

the notion that instead of recording what is normally occurring in the organism

(and presumably good) these cells archive the opposite—a negative image of self.

Secondly, that nonself is inexactly depicted, i.e. that there are members of nonself

that are not included in its description and will be deemed as self. This imprecision

can be interpreted as a generalization from “observed” self to “likely” self, owing to

the fact that only a sample of self is available for the immune cell creation process,

and to the need of affording plasticity to the definition of self, during the lifetime of
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the organism.

In this chapter I explore a model for inexact negative representations inspired

by the above description of the IS. I focus on an abstract depiction of self and

nonself, and restrict the universe of discourse U to finite length strings—a string

is understood to be a concatenation of symbols drawn from some finite alphabet.

Within this context U is partitioned into two subsets (see Figure 3.1): Real Self

(RS) which contains all and only the strings that truly belong to self and Real

Nonself (RNS) with all strings not in RS.

Recall from the above discussion that neither RS nor RNS are available at any

one time, but rather it is only a subset of RS, denoted by S, that is to be used for

creating a model of self (or nonself). There are many possible ways to generalize from

a sample to a bigger set, some of which are discussed in Section 2.2. The strategy

employed in the current work is to use a surrogate set of strings, referred to as

detectors, together with a match rule and a detection scheme to define a subset of U .

The match rule determines the strings for which a detector stands and the detection

scheme establishes the membership of strings in U (to self or nonself) according to

the match rule. The general task can be sketched as follows: Given a set of fixed

length strings S (a sample of self items), derive a set of detectors and a matching

scheme such that every string in U is classified as either self or nonself. Note that

the resulting categorization into self and nonself will not, in general, coincide with

what RS and NRS actually are (see Figure 3.1), yet, S must be entirely classified

as self. One goal is to create a generalization from S that reasonably approximates

this dichotomy.

In this chapter, I set out a framework in which the differences between posi-

tive and negative representations can be studied by introducing a match rule and

four detection schemes for which the computational requirements, and the ensuing
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RNS
RS S

CC(S)

Figure 3.1: The universe of all possible strings is partitioned into two subsets real self
(RS) and real nonself (RNS). A subset S of RS is used to create a generalization,
denoted by CC(S).

generalizations, are easily characterized1.

Section 3.1 discusses detectors and the match rule, Section 3.2 outlines the de-

tection schemes and their relationship to one another. The crossover closure is in-

troduced, in Section 3.3, as a generalization construct that can be realized using

the match rule and the detection schemes described in the previous sections. The

connection of the crossover closure to database theory is also discussed. Section 3.4

presents an analysis of the resulting models in terms of the number of detectors and

the size of the generalization for both positive and negative representations.

3.1 Detectors and R-chunks Matching

The main component of the system is a detector. In this section I detail some

of the desirable characteristics that a detector should have and discuss the design

1The r-chunks match rule outlined in this chapter as well as a description of the detection
schemes discussed herein and the database connection have been previously published in
[51, 53, 13, 55].
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used in this work. The envisioned system is composed of a set of detectors capable of

identifying specific properties of the data, and a detection scheme (Section 3.2) which

defines the membership of each data item (or string). A detector should be as simple

as possible since we want its operation to be efficient in generation time, storage

requirements, and run-time (cost of determining a match). Further, the combined

characteristics or actions of all detectors (as defined by the detection scheme) should

readily define a hypothesis about which strings comprise the underlying concept

(self). Recall from above, that the instances or strings from which the model is

constructed are represented as attribute vectors or strings. In this context, a natural

way to represent a detector is also as a string and to use string matching as the

method of detection.

There are several match rules that can been used for this purpose, some of them

are described in 2.1.1. In the case of artificial immune systems (AIS) the r-contiguous

bits (rcb) matching rule, introduced in [110, 111, 77], has been used extensively. An

analysis of this rule can be found in [52]. It is from rcb that the rule used in this

work, r-chunks, has been derived. A detector under rcb is a string of length l, and is

said to match another string, of the same length, if it has at least r consecutive bits

in common.

s: 0 1 0 0

d: 1 1 0 1

Figure 3.2: Strings d and s match under the rcb match rule for r=2.

In r-chunks matching, only r contiguous positions are specified, rather than a

sequence of l attributes (usually r < l). Thus, an r-chunks detector can be thought
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of as a string of r bits, together with its starting position within the string, known

as its window. An r-chunks detector d is said to match a string x if all the symbols

of d are equal to the r symbols of x in the window specified by d. More formally, if

d is an r-chunk on window w, the matching rule considered is:

dMx ↔ x[w] = d.

where dMx denotes that detector d matches string x and x[w] is the projection

of string x onto window w. An r-contiguous bit detector can be decomposed into

l− r +1 overlapping r-chunks detectors, as Figure 3.3 illustrates. As an example, let

d = 1101 be an r-contiguous bit detector for l=4 and r=2. Let d[1], d[2], d[3] be the

corresponding decomposition into r-chunk detectors as illustrated in the following

figure:

d: 1 1 0 1

d[1]: 1 1

d[2]: 1 0

d[3]: 0 1

Figure 3.3: r-chunks sliding (overlapping) window decomposition.

Even though the two rules (rcb and r-chunks) seem similar at first glance, it was

shown in [55] that the r-chunks and the rcb match rules are not equivalent in terms

of the languages they recognize (see Appendix A).

Notice that r-chunks detectors need not be constructed out of overlapping win-

dows, Section 3.4 outlines other decompositions. In this work I refer to the construc-

tion of r-chunks detectors subject to a set of instance strings as a decomposition of

the instance strings, in accordance with the database procedure of “decomposing” a

table into several tables. Hence the r-chunks matching rule provides the first hint of

a connection between this classification system and databases.
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It is not the intent of this research to argue that peptide sequences in the immune

system can be adequately studied as fixed length strings; nonetheless this simplifi-

cation, together with r-chunks detectors, makes for a useful analogy with databases.

Instance vectors (peptide sequences) may be viewed as entries in a table and a detec-

tor model (T-cell receptors) as a particular decomposition of such a table. Database

theory has extensively characterized different kinds of decomposition with the pur-

pose of reducing redundancy, improving consistency and facilitating distributivity,

among others. It is of interest to understand what questions can be answered about

the original data when only queries to detectors are possible; what information is

lost, and how compactly it can be represented.

3.2 Detection Schemes

The next step for defining a representation scheme based on string matching is to

determine a detection scheme. The match rule establishes which strings a given

detector depicts, but says nothing about what a match means, i.e. does a match

signify that a string is a member of self or of nonself? Is a single match sufficient to

ascertain membership? Etcetera.

In [55], a taxonomy of detection schemes is given in terms of the languages—the

set of strings—that a detection scheme is able to recognize2. In this section I review

these schemes as applied to r-chunks matching. The taxonomy is constructed along

two dimensions. The first specifies whether detectors are tailored to match strings in

self or nonself, referred to as positive or negative detection, and denoted by P or N

accordingly. The second specifies how many matches are required to determine the

membership of a string. I will first consider two options for this dimension, one in

2The taxonomy was proposed by Paul Helman in [55]. The schemes here referred to as
positive conjunctive and negative disjunctive where first discussed in [51].
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which a single match suffices and a second in which a detector is required to match

in each window, referred to as disjunctive matching (D) and conjunctive matching

(C) respectively. I later consider the possibility of intermediate schemes.

Let α denote a choice of P or N and β a choice of C or D. With α and β

specified, a collection Υ of r-chunk detectors acts as a parameter, instantiating a

detection scheme Schemeα,β(Υ). In particular, given the following interpretations for

P ,N ,D,C, Schemeα,β(Υ) exactly defines the set of allowable strings—Schemeα,β(Υ)

protects, or recognizes, this set.

Let U denote the set of all possible strings of length l defined over some alphabet.

The language (subset of U) “accepted” by each of the four detection schemes when

instantiated with a fixed set Υ of r-chunk detectors is defined as follows:

1. Negative Disjunctive Detection SchemeND: SchemeND(Υ) is the set of strings

x in U such that (∀windows w)(!d ∈ Υ)(dMx).

2. Positive Disjunctive Detection SchemePD: SchemePD(Υ) is the set of strings

x in U such that (∃window w)(∃d ∈ Υ)(dMx).

3. Positive Conjunctive Detection SchemePC : SchemePC(Υ) is the set of strings

x in U such that (∀windows w)(∃d ∈ Υ)(dMx).

4. Negative Conjunctive Detection SchemeNC : SchemeNC(Υ) is the set of strings

x in U such that (∃window w)(!d ∈ Υ)(dMx).

The following theorem, established by simple set-theoretic arguments, helps clar-

ify the relationships between the classes of languages recognized by the various de-

tection schemes.

Theorem 3.2.0.1. Let Υ be any set of r-chunks detectors and let Υ′ denote the

complement of Υ relative to the universe of all r-chunks detectors over the same
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alphabet and of the same length as the detectors in Υ, i.e. all r length strings not

in Υ. Similarly, the complement of the set Schemeα,β(Υ) (which is a subset of U) is

taken relative to U .

Then

SchemeND(Υ) = (SchemePD(Υ))′ = SchemePC(Υ′) = (SchemeNC(Υ′))′ ⊆

SchemeND(Υ′)′ = SchemePD(Υ′) = (SchemePC(Υ))′ = SchemeNC(Υ)

Further, the subset containment is proper for some Υ.

It follows from SchemeND(Υ) = SchemePC(Υ′) that the class of languages rec-

ognized by SchemeND is identical to the class recognized by SchemePC . Similarly, it

follows from SchemePD(Υ′) = SchemeNC(Υ) that the class of languages recognized

by SchemePD is identical to the class recognized by SchemeNC(Υ). This result holds

for both the r-chunks and the r-contiguous bits match rules.

Above I have considered pairs of schemes that are able to recognize the same

sets of strings but that differ in whether negative or positive detectors are used.

The choice of a scheme should be weighed by the implementation distinctions they

present. In Section 3.4.1, I discuss the tradeoffs in terms of the size of the detector set

and the generalization for two r-chunks decompositions. Besides space requirements,

the negative representation provides a tantalizing difference: Suppose we have a set

of positive detectors generated from some database, each detector then records a

potentially meaningful amount of information, for instance an individual’s passport

number and nationality. On the other hand, if negative detectors are generated, the

information contained in each single detector is marginal and difficult to exploit. It

is only when all negative detectors are available that the original database (or its

closure see Section 3.3) can be reconstructed and individual records inspected (this

issue is further explored in Chapter 5). Another interesting difference, pointed out in
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[44], between the positive conjunctive and the negative disjunctive schemes is that the

latter is inherently distributable; any single detector is capable of classifying a string

and can thus act independently. It is one of the tasks of this work to clearly outline

the differences between both implementations and their potential applications.

Intermediate schemes

The taxonomy described in the preceding section divides detection schemes according

to the number of matches required to determine the membership of a string and

considered only the cases where a string must be matched in one or in all of its

windows. In this section I briefly discuss the possibility of intermediate schemes. If

a metric over the match rule is defined then we can write the intermediate detection

scheme as:

SchemeI = {x|d(x, S) ≤ τ}

where a τ is some threshold and d(x, S) is the distance of string x from the sample

instances S. Under an intermediate scheme, a string may be treated as self even

if not all its window patterns have been observed before. Intuitively, strings that

differ a small amount from the sample are more likely to be a part of the concept

than those that differ a lot. Extending this idea one step further, one can imagine

distance measures that do not assign a uniform value to every match, but instead

take into account structural and statistical properties of the sample in order to weigh

the relative merits of distinct matches.

Finally, we can rewrite the original detection schemes in terms of a distance

metric. Consider for example d(x, S) to be the number of windows that are present

in string x but not in any string in S then:

• SchemePD(Υ) = {x|d(x, S) < t},
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• SchemePC(Υ) = {x|d(x, S) = 0},

• SchemeND(Υ) = {x|d(x, S) = 0}, and

• SchemeNC(Υ) = {x|d(x, S) < t},

where t is the number of windows in x.

The remainder of the chapter focuses on the positive conjunctive and negative

disjunctive schemes (SchemePC and SchemeND) under the r-chunks match rule with

the intent to study more closely which strings will be matched by a given set of

detectors.

3.3 The Crossover Closure

This section describes a particular construct—the crossover closure—from which a

collection of examples, taken from some set (self), can be used to characterize a

larger set of instances. The class of sets closed under crossover closure has a central

role in this work as I will focus on using the crossover closure as means to generalize

from the observed strings.

Consider a sample S of strings taken from a concept class RS (real self) which we

wish to characterize. A simple categorical division into “similar to S” versus “dis-

similar from S” to distinguish between these categories is by means of a generation

rule which attempts to characterize the underlying set RS from which S is likely

drawn. It has been shown experimentally that this interpretation of the detection

task often captures sufficient detail of process behavior to provide effective detection

[80, 79].

Definition 3.3.0.1. A generation rule G is a mapping from a set S of length l strings

to a set G(S) of length l strings containing S.
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I will focus my attention on a generation rule that is both simple to analyze and

intuitively appealing, the crossover closure. The crossover closure was introduced in

[55], where it was restricted to contiguous windows of attributes. Here, its definition

is extended to a set of features. We understand a feature to be any combination or

function of attributes of the strings in U .

Informally stated, given examples of some concept class represented as feature

vectors, the crossover closure is a hypothesis stating that some combinations of the

observed features define instances of the concept class. To illustrate the basic idea of

how this rule operates, consider the simple example of the concept vehicle, and the

following sample instances (S), where each row of the table corresponds to a single

instance:

Wheels Color Max. Speed (mph)

4 red 100

2 black 200

Under the crossover operator the following are also valid instances of the class vehicle:

Wheels Color Max. Speed (mph)

4 black 100

4 red 200

4 black 200

4 red 100

2 black 100

2 red 200

2 black 200

2 red 100

Formally, given a set S of strings, and a fixed 1 ≤ r ≤ l, the crossover closure
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CC(S) of S is defined in terms of its features as:

CC(S) = {u ∈ U |(∀features w)(∃s ∈ S) u[w] = s[w]} (3.1)

where u[w] is the projection of string u onto feature w. A string u of length l is

in the crossover closure of S if and only if each of u’s features exactly matches the

corresponding feature of some member of S. In the above example, instances of the

concept vehicle are represented as strings with three features: Wheels, Color and

Max. Speed. A string containing any combination of the sampled values for these

features is part of the crossover closure. When S is such that CC(S) = S we say

that S is closed under the crossover operator with respect to a given choice of feature

set.

An interesting motivation for this rule stems from the similarities it has with some

well known relational database operations [55]. The join operator and the crossover

closure are closely related under some partial match rules, leading to the belief that

the crossover closure may be a useful characterization for many practical data sets.

The name “crossover closure” was partly inspired by the crossover operation in

genetic algorithms (GA) [81]. However, these notions do not exactly correspond,

as the crossover discussed here depends on what a feature is defined to be. For

the example presented above, in which features are non-overlapping, the crossover

closure corresponds exactly to the set of possible strings that can be generated (from

an initial population S) using the GA crossover operator alone. However, other

decompositions such as the one discussed in Section 3.3.1 do not correspond to the

traditional crossover operator. In the overlapping case discussed in Section 3.3.1 ,

the crossover closure is a proper subset of the possible strings generated by the GA’s

crossover operator.

There is a strong relationship between the crossover closure and the schemes

SchemeND and SchemePC when r-chunk detectors are used as shown in [55]. Let S
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be any subset of U . Let WP denote the set of features present in S, that is, the union

of the projections of S onto each relevant attribute combination. Let WN denote the

set of features not present in S, that is, WN = W ′
P . We then have:

Theorem 3.3.0.2. SchemePC(WP ) = SchemeND(W ′
P ) = SchemeND(WN) = CC(S).

Proof. x ∈ SchemePC(Wp) ↔ ∀w x[w] ∈ Wp ↔ ∀w∃ s ∈ S, x[w] = s[w] ↔ x ∈

CC(S)

Further, the crossover closure exactly characterizes the class of languages rec-

ognized by SchemePC and SchemeND when r-chunk detectors are used and fixed

definition of feature set is given. That is, we have:

Theorem 3.3.0.3. The class of languages recognized by SchemePC and SchemeND

when r-chunk detectors are used is exactly the class of sets closed under crossover

closure.

Proof. If a set A is closed under crossover closure, i.e. A = CC(A) then we can

construct a set of detectors WP from the features present in A. It follows from the-

orem 3.3.0.2 that SchemePD(WP ) = SchemeND(W ′
P ) = CC(A). By the definition

of SchemePC , x ∈ SchemePC(Υ) if for all features w x[w] ∈ Υ, where Υ is an ar-

bitrary set of detectors. We construct a set of detectors WP by taking, for every

feature w and every x ∈ SchemePC(Υ), the projections x[w] such that x[w] ∈ Υ ↔

x[w] ∈ WP . It follows that x ∈ SchemePC(Υ) ↔ x ∈ SchemePC(Wp). Finally, using

theorem 3.3.0.2, we have SchemePC(Υ) = SchemePC(WP ) = SchemeND(W ′
P ) =

CC(SchemePC(Υ)).
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3.3.1 Database Connection

An interesting analogy can be drawn between relational database theory [65, 94] and

decomposing instance strings into sliding window r-chunks(where features are taken

to be fixed sized contiguous sequences of attributes 3, see Fig. 3.3). The strings of

a sample S can be viewed as the tuples of the current instance of a relation scheme

R(A1, ..., Al), where each attribute Ai corresponds to string position i and has domain

{0, 1}. For example, the S = {0000, 1011} can be represented as a relation scheme

R(A1, A2, A3, A4) whose current instance is shown below:

R(A1, A2, A3, A4)

0 0 0 0

1 0 1 1

For a variety of reasons (e.g., to reduce redundancy and enhance data integrity), it is

often advantageous to represent a relation scheme as a decomposition into a collection

of smaller relation schemes. Consider representing the scheme R(A1, A2, ..., Al) as a

decomposition into schemes R1(A1, ...Ar), R2(A2, ..., Ar+1), ... , Ri(Ai, ...Ar+i−1), ... ,

Rt(At, ..., Al). The instance of each Ri is the projection of R onto Ri, or equivalently,

is exactly the set of strings comprising the ith length r window of S. In the previous

example, taking r = 2, the instances of the Ri are as follows:

R1(A1, A2) R2(A2, A3) R3(A3, A4)

0 0 0 0 0 0

1 0 0 1 1 1

In order to reconstruct the original instance of R from these projections onto the

Ri, one computes the natural join of the Ri. However, it is not always the case that

3The connection was first suggested by Paul Helman in [55].
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the join of the projection recovers the original instance of R—in fact, the join of the

projected instances is precisely the crossover closure of the set of tuples (strings) in

the original instance of R. In this example, the join R1|X|R2|X|R3 of the instances

shown above results in the following instance of R, which can be seen to be the

crossover closure of the strings in the original instance of R.

R1|X|R2|X|R3 = R(A1, A2, A3, A4)

0 0 0 0

0 0 1 1

1 0 0 0

1 0 1 1

Relational database theory has exactly characterized when the projections of R join

to recover the original instance [65, 94]. This is known as the lossless join condition.

The lossless join condition thus also characterizes exactly when a set of strings is equal

to its crossover closure with respect to sliding window features. One interpretation of

this correspondence is that, since many naturally occurring collections of information

do in fact satisfy the lossless join condition, it is plausible that in many contexts the

most likely set of strings to be instances pertaining to some concept (RS) is closed

under crossover closure. When this is the case, S—if it is a representative sample

of instances—can be interpreted as being a sample drawn from CC(S), or from a

larger set containing CC(S) and itself closed under crossover. In such situations,

it is appropriate to deem strings which are members of CC(S) as relatively likely

members of RS.

Some approaches for safeguarding the privacy of records in a database involve

deleting certain fields [115, 124] or modifying the values of specific records [8] .

It is a conjecture of the present work that the crossover closure can be useful for

obfuscating S in a privacy setting by adding “likely” items to a database.
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3.4 R-chunks Decompositions

In this section, I discuss two decompositions based on the r-chunks match rule under

the SchemePC and SchemeND detection schemes described in the previous sections.

I examine overlapping and non-overlapping window variants in terms of the size

of their detector sets and the size of the generalization they induce (the crossover

closure).

3.4.1 Overlapping Fixed Size Windows

The overlapping window decomposition is generated by sliding a fixed length window

over the set S of data items (Figure 3.3). This section summarizes the results of

the analysis for the SchemePC and SchemeND detection schemes. The detailed

derivation can be found in Appendices A.2 and A.3.

Given a set of instances S it is straightforward to compute exactly how many

distinct detectors can be generated, both for the positive and negative detection

schemes 4 (SchemePC and SchemeND). For SchemePC , it requires counting the

number of distinct patterns for each of the t = l − r + 1 windows that comprise

the strings in S, whereas for SchemeND, enumerating the distinct patterns that are

not present in each window will result in the number of detectors. I am interested

in how the number of detectors behaves as a function of the window size r and

the number of training instances. In the following, I consider the case when S is

a random, uniformly generated collection of strings defined over some alphabet of

cardinality A. In such a scenario, the expected number of positive detectors Epos

4See [43, 133, 134] for a discussion on detector set sizes for the r-contiguous bits match
rule.
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and the expected number of negative detectors Eneg are given by:

Epos = tEr (3.2)

Eneg = t(Ar − Er) (3.3)

where Er " Ar − Ar(1 − A−r)|S|, t = l − r + 1 is the number of windows.

With these formulas it is possible to determine when one scheme is beneficial over

the other with regards to the number of detectors they require (without attempting to

eliminate redundant detectors). For this purpose, it suffices to compute the number

of strings in S for which both schemes yield the same number of detectors (i.e.,

when Epos = Eneg), and note that a sample smaller than this value will require fewer

detectors for the positive scheme, and fewer negative detectors if the sample exceeds

it (see Figure 3.4). Both schemes have an equal number of detectors when:

|S| ≈ (0.693)Ar (3.4)

Note that this value depends only on the choice of r and the cardinality of the alpha-

bet and not on the actual string length (see Appendix A for the detailed derivation).

In a worst case scenario, SchemePC may require tAr detectors when |S| ≥ Ar.

Similarly, SchemeND can also yield up to tAr detectors but only when there are no

self strings whatsoever. It is worthwhile mentioning that, for a given data set S,

the number of negative detectors grows exponentially with the size of r. Chapter

4 introduces a representation that allows a detector set to be stored efficiently and

algorithms to keep it up to date

A detector set generated in this manner is likely to be redundant. That is,

it will likely contain some detectors whose removal would not change the language

recognized. Redundancy might be a desirable feature, especially if detectors are to be
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Figure 3.4: Number of positive and negative detectors as a function of the size of
the self set, assuming the self set was generated randomly. The plot shows both
complete and reduced detector sets.

distributed. However, it is important to understand how much redundancy is present

and address the related question of finding an efficient detector set. Intuitively,

redundancy arises from the fact that for some strings a match in window i implies

a match in window i + 1. For example, for l = 3 and r = 2 consider the following

sample S = {000, 101}. The implied generalization consists of strings CC(S) =

{000, 101, 001, 100}. Clearly, the positive detectors for window 1, {00, 10}, match

every string in the closure, and only such strings. Thus, it is unnecessary to check

for a match in window 2. It is easily verified that the same holds if negative detectors

are used, the case most relevant to AIS. The following two equations eliminate this

source of redundancy from the detector set when a binary alphabet is used:

EminN = 2r − Er + (l − r)(Er − 2(Er − Er−1)) (3.5)

EminP = Er + (l − r)(Er − 2(Er − Er−1)) (3.6)
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The size of the sample S for which EminN and EminP yield the same number of

detectors is the same as with the full repertoire (see eq.3.4). One subtlety about this

analysis is that if not all positive detectors are represented explicitly, then some ad-

ditional information is required to identify implicit matches, due to the conjunctive

nature of the detection scheme. This extra information is unnecessary if negative

detection is used and points to an interesting characteristic of using a negative repre-

sentation, namely, that it is inherently distributable (see Chapter 5 and Ref. [44]). A

plot of EminP and EminN for different sample sizes is presented in Figure 3.4 without

regards to the extra information required to determine implicit matches.

3.4.2 Crossover Closure and its Expected Size

In order to examine the size of the crossover closure as a function of the sample size

|S| and window size r, a similar assumption is made as in the preceding section,

namely we consider the case of a random sample of strings over a binary alphabet.

This problem can be mapped into a graphical representation, a directed acyclic

graph (DAG), where each level contains nodes corresponding to the positive detectors

derived from S for each of its windows. Nodes in consecutive levels are connected if

the detectors to which they correspond overlap (crossover), i.e. this is if they match

in their common r − 1 positions. Take, for instance, a self set S comprised of the

following two strings S = {0101, 1111} with l = 4, r = 2.
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Figure 3.5: DAG representation of the crossover closure.
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Under this representation, the crossover closure is exactly the set of strings formed by

traversing the graph from level 1 to level t (the number of windows): CC(S) = {0101,

1111, 0111, 1101}.

In order to compute the number of strings in the closure, observe from the DAG

that the number of paths departing from a given node doubles if it has two outgoing

edges, i.e., if the corresponding detector crosses-over with two detectors in the fol-

lowing window. The closed form solution for the expected number of paths in such

a graph and hence the size of the crossover closure is given by:

CC(t) = Er(ō)
(t−1) (3.7)

where Er is the expected number of positive detectors given by eq. 3.2, ō is the

expected out degree of each node and t is the number of windows, see Appendix A

for the detailed equation.

The size of the generalization, CC(S), can be determined by the size of S or by

the size of the detector set (obtaining an estimate for |S| from either eq. 3.3 or eq. 3.2

and substituting in eq. 3.7). It is important to note that the actual size will depend

on the structure of the specific self set. Nevertheless, the analysis provides insight

into the behavior of the crossover closure, and elucidates the impact of allowing novel

strings into the sample. This can be useful for determining, in a dynamic scenario,

when (or at what rate) detectors should be added or deleted from the working set.

3.4.3 Non-overlapping Fixed Size Windows

As noted in Section 3.1, the r-chunks match rule does not necessarily require the

use of a sliding window nor is it restricted to a fixed window size. As an illustration

of another matching scheme for which the crossover closure is the characteristic
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generalization, I discuss an alternative decomposition based on the r-chunks match

rule.

This decomposition restricts detector creation to non-overlapping windows but

maintains a fixed size for each window. Assume, for simplicity, that r exactly divides

l. In the case of positive detection, all distinct patterns in non-overlapping windows

become potential detectors (see Figure 3.6). Alternatively, all patterns absent from

such windows, become detectors when a negative scheme is considered.

d: 1 1 0 1

d[1]: 1 1

d[2]: 0 1

Figure 3.6: Non-overlapping decomposition of string d into positive detectors d[1]
and d[2].

It is straightforward to see that the generalization implied by this design is the

crossover closure of the strings in the training sample S (according to eq. 3.1). In

fact its size is easier to compute than with the sliding window model and is simply

the product of the number of detectors for each window:

CC(S) =
∏

i

|Υ[i]| (3.8)

where Υ[i] is the set of detectors for the ith window.

Likewise the number of detectors can be obtained as the sum of the number of

detectors for each window:

∑

i

|Υ[i]| . (3.9)

If we consider, as we did above, a random sample of strings S, the expected number

of detectors is simply tEr for positive detectors and t(Ar−Er) for negative detectors,
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Figure 3.7: The crossover closure as a function of the size of a random sample of
binary strings for both the sliding window and non-overlapping decompositions.

where Er is given by (eq. 3.2) and t = l
r

is the number of windows. Interestingly,

the tradeoff point between negative and positive detectors is the same as with the

sliding window model (eq. 3.4). Lastly, the number of strings encompassed in the

generalization follows directly from (eq. 3.8): CCr(S) = (Er)t. Figure 3.7 plots the

size of the crossover closure of the two decompositions reviewed in this section.

Consider a final decomposition, one in which r = l. In this case the the size of

the crossover closure is precisely the same as the size of S, i.e. CC(S) = |S| and

the detector set exactly distinguishes S from U − S. One concern that immediately

comes to mind is that the size of the negative detector set is, in general, exponentially

bigger than S, and as such infeasible to generate. Chapter 4 addresses this issue by

introducing a match rule that allows for an exact and efficient depiction of U − S,

and discusses some interesting properties and applications.
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3.5 Summary

Proper data representation is fundamental to any enterprise wishing to exploit it, be

it the modeling of the underlying processes that generated it, mining the data for

associations or simply storing it for future reference. In this chapter I have introduced

a means to represent data imprecisely; given a set of data items S, a superset of S,

named the crossover closure of S, is created that partitions the universe U of possible

strings into two subsets, self and nonself. The resulting model consists of a set of

strings, called detectors, a match rule, named r-chunks, and a detection scheme. Each

detector stands for several strings as defined by the match rule, and the detection

scheme determines whether the matched strings belong to self or nonself. I have

characterized exactly which strings each partition has under the model, and, being

that either of the sets is enough to decide the membership of any string in U , have

shown some tradeoffs of representing U using one set or the other. I allude to the

contents of the subset containing S as positive information and to the rest as negative

information, the act of classifying strings using these sets is referred to as positive and

negative detection respectively. Some connections between the proposed scheme and

database theory were established and enable the exchange of tools and theoretical

results. In the chapters that follow, I discuss how to create an exact representation

of U − S (in contrast with the inexact schemes of this chapter) and discuss further

distinctions between keeping negative and positive information.

Other work extending the analysis of this match rule includes [122, 70] and ap-

plications to anomaly detection are discussed in [13, 123, 90].
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Exact Representations

Generally speaking, when we think of storing data we understand that it will be

exactly kept in the database—with no items omitted or added to it. Chapter 3

discusses some scenarios in which inexact representations would be useful and out-

lines some possible avenues to do so. Central to that discussion is the notion of

representing data negatively. In the present chapter I further delve into this idea

by investigating how to store negative data exactly and study the properties of the

resulting representation.

In this approach 1, the negative image of a set of data records is represented

rather than the records themselves (Figure 4.2). The data in question consists of

finite-length strings (or records), all of the same length l, and defined over a binary

alphabet. The set of all possible strings of this form, the universe U , is logically

partitioned into two disjoint subsets: DB representing the set of records that hold the

information of interest, and U−DB denoting the set of all strings not in DB (referred

to sometimes as self and nonself respectively). I assume that DB is uncompressed

(each record is represented explicitly), but allow U−DB to be stored in a compressed

1Some of this work has been previously published in [54, 49, 50].
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form called NDB. DB is referred to as the positive database and NDB as the

negative database.

From a logical point of view, either database will suffice to answer questions re-

garding DB. However, the different representations present distinct advantages. For

instance, in a positive database, inspection of a single record provides meaningful

information. However, inspection of a single (negative) record reveals little infor-

mation about the contents of the original database. Because the positive tuples are

never stored explicitly, a negative representation would be much more difficult to

misuse. Similarly, depending on the specific representation of NDB, the efficiency

of certain kinds of queries may be significantly different than the efficiency of the

same query under DB. Some applications may benefit from this change of perspec-

tive. Most applications seek to retrieve information about DB as efficiently and

accurately as possible, and they typically are not explicitly concerned with U −DB.

Yet, in situations where privacy is a concern it may be useful to adopt a scheme

in which certain queries are efficient and others are provably inefficient. Consider,

for example, a watch list that is available to airline agents. It is desirable for these

agents to have the ability to verify whether a given name is on the list, but at the

same time not to have the ability to arbitrarily browse its contents (or even assess its

size), lest it fall into the wrong hands. Or imagine the need to privately determine

the intersection of sets owned by different parties. For instance, two or more entities

might wish to determine which of a set of possible “items” (e.g. transactions) they

have in common without revealing the totality of the contents of their database or its

cardinality. A longer term motivation concerns a large database of personal records,

which an outside entity might need to search, for example, to identify suspicious

activities or to conduct epidemiological studies. Under this scenario, it is desirable

that the database support only the legitimate queries while protecting the privacy

of individual records, say from inspection by an insider.
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This chapter presents some initial results on the feasibility of the negative database

scheme and illustrates how alternative negative database representations can produce

distinct properties with respect to retrieving information or protecting privacy. In

the following sections, I first show that implementing NDB is computationally fea-

sible by introducing a scheme that requires O(ln) negative records to represent the

complement of a positive database consisting of n l-bit strings, and then giving an

algorithm for finding such a representation efficiently. I then investigate some of the

privacy implications of the negative scheme. In particular, I show that the general

problem of recovering a positive database from the negative representation is NP-

hard. I then present a randomized algorithm for creating negative representations

that are difficult to reverse, as well as operations for updating and maintaining neg-

ative databases. I also study what types of queries can be carried out efficiently

under this representation and how negative databases can be used to perform set

intersection—an important operation among databases. Finally, I discuss the poten-

tial consequences of the results, and outline areas of future investigation.

4.1 Representation

In order to create a database NDB that is reasonable in size, it is necessary to

compress the information contained in U − DB. To this end an additional symbol

is introduced, known as a “don’t care,” written as ∗. The entries in NDB will

thus be l-length strings over the alphabet {0, 1, ∗}. The don’t-care symbol has the

usual interpretation, matching either a one or a zero at the bit position where the

∗ appears. Positions in a string that are set either to one or zero are referred to as

“defined” or “specified” positions, and locations where a ∗ appears are referred to

as “unspecified” positions. With this new symbol large subsets of U − DB can be

represented with just a few entries.
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For example, the set of strings U −DB can be exactly represented by the NDB

set shown below:

DB (U − DB) NDB

001

000 010 0*1

111 011 ⇒ *10

100 10*

101

110

The convention is that a binary string s is taken to be in DB if and only if s fails to

match each of the entries in NDB. This condition is fulfilled only if for every string

tj ∈ NDB, s disagrees with tj in at least one defined position.

4.1.1 The Prefix Algorithm

In this section I present an algorithm as proof that a negative database NDB can

be constructed in reasonable time and of reasonable size. The prefix algorithm

introduced here is deterministic and reversible, which has consequences for the kinds

of inferences that can be made efficiently from NDB. We would like some inferences

to be hard (e.g., inferring the original DB from NDB) and other inferences to be

easy, depending on the application (e.g., finding certain kinds of correlations in DB).

However, in the current work, I focus on the question of how easy it is to recover the

original DB from NDB, a question addressed in Section 4.2, and on the types of

queries supported by the scheme. An example DB, U −DB and the NDB produced

by the prefix algorithm is given in Figure 4.2.

Lemma 4.1.1.1. The prefix algorithm creates a database NDB that matches ex-

actly those strings not in DB.
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Prefix algorithm
For all i, let wi denote an i-bit prefix and
Wi a set of i-length bit patterns.
1. i ← 0
2. Set Wi to the empty set

Repeat
3. Set Wi+1 to every pattern not present in

DB’s wi+1 but with prefix in Wi

4. for each pattern Vp in Wi+1{
5. Create a record using Vp as its prefix

with the remaining positions set to *
6. Add record to NDB.}
7. Increment i by one
8. Set Wi to every pattern in DB’s wi

9. Until i = l.

Figure 4.1: The Prefix algorithm outputs a negative database NDB of size O(l·|DB|)
representing the strings in U − DB. See Figure 4.2 for an example input/output of
the Prefix algorithm.

Proof. Every string not in DB must have a minimum length prefix that is not a prefix

of any string in DB. Step three of the algorithm (Figure 4.1) finds these prefixes

and, for every such prefix, it appends a representation of every possible string with

that prefix to NDB (step five). If a pattern is not present in DB’s window wi+1 and

its own prefix is not in wi then it must have been inserted in NDB before. Step two

initializes W0 so that the first iteration considers every pattern absent from DB.

Theorem 4.1.1.1. The negative data set (U − DB) can be represented using O(l ·

|DB|) records.

Proof. For every window of size i there are at most |DB| “negative” records created

and inserted in NDB (steps 4–6). The number of windows is at most l (step 9)

therefore, the number of negative records is O(l · |DB|).
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The NDB produced by the prefix algorithm has some interesting properties. For

example, each string in U −DB is matched by exactly one NDB record. This non-

overlapping property allows NDB to support more powerful queries than simple

membership, as I show in Section 4.3.1. For example, it is easy to determine if a

given subset of U is present or not in NDB and to what extent; suppose we want to

establish how many strings with the first n bits set to one are represented in NDB,

then selecting all NDB entries with the first n bits set to one and adding the number

of strings each of these entries represents will yield the correct answer.

DB U − DB NDB c-keys RNDB

0001 0000 11** 11** 11**
0100 0010 001* 0*1* 0*1*
1000 0011 011* *11* 1110
1011 0101 0000 00*0 *111

0110 0101 *1*1 00*0
0111 1001 1*01 *1*1
1001 1010 **10 0101
1010 1*01
1100 **10
1101 *010
1110
1111

Figure 4.2: Column 1 gives an example DB, column 2 gives the corresponding
U −DB, column 3 gives the corresponding NDB generated by the prefix algorithm,,
column 4 presents some possible c-keys extracted from NDB, and column 5 gives
an example output of RNDB(see Section 4.4).

4.2 Reversibility

In Section 4.1.1, I presented an algorithm for generating NDB that demonstrates the

feasibility of a negative representation. I now turn to one property of negative repre-

sentations. In Ref. [54, 56] we establish that the representation described in Section
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4.1 is potentially difficult to reverse i.e. difficult to recover the original DB, and in

Section 4.4 present an algorithm aimed at producing hard to reverse instances, I now

review those results. It is important to clarify that establishing whether an instance,

or class of instances, is truly difficult to reverse remains a empirical endeavor. There

is a yearly competition for solving SAT formulas (a problem isomorphic to revers-

ing a negative database (Figure 4.3)) that put the most powerful algorithms to the

task, yet some formulas remain unsolved. On the other hand, it is straightforward to

devise an efficient method for reversing the outputs of the Prefix algorithm (Figure

4.1). In this section I explain how the representation introduced in Section 4.1 yields

databases that might be difficult to reverse, but not all such databases have this

property.

Reconstruction of DB from NDB is NP-hard in the following sense 2.

Definition 4.2.0.1. Self Recognition (SR):

INPUT: A set NDB of l-length strings defined over the {0, 1, ∗} alphabet , and a

candidate self set DB.

QUESTION: Does NDB represent the self set DB?

We establish that SR is NP-hard. Note that NDB represents an arbitrary set

U − DB, and we do not specify how it was obtained. First we establish the NP-

completeness of the following problem.

Definition 4.2.0.2. Non-empty Self Recognition (NESR):

INPUT: A set U −DB of binary strings represented by a collection NDB of length

l strings over the alphabet {0, 1, ∗}.

QUESTION: Is DB nonempty? That is, is there some string in U = {0, 1}l not

matched by NDB?

Theorem 4.2.0.2. NESR is NP-complete.

2This proof was first outlined by Paul Helman in [54].
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Proof. NESR is clearly in NP. (If we guess a string, it is easy to verify that it is

not matched, and thus a member of DB, by comparing it against every record in

NDB.)

The NP-completeness of NESR is established by transformation from 3-SAT. Start

with instance I of 3-SAT. Let X be the set of variables {xi}, and suppose l is the

number of variables. The constructed instance of NESR will be over length l strings.

Each clause {Li, Lj, Lk} in I (Li is a literal, which is either xi or xi complement)

creates a length l string in NDB as follows. All positions other than i, j, or k contain

∗. Position i contains 0 if Li is xi and contains 1 if Li is x̄i (complemented xi). A

similar construction is used for the other two literals Lj and Lk in this clause. Figure

4.3 shows an example of this mapping.

Claim: There exists a truth assignment satisfying I if and only if there exists a

string in U = {0, 1}l not matched by NDB (and therefore in DB). In the following,

if A is a truth assignment to the variables in X, S(A) is the string in U obtained by

setting the ith bit to 1 if A assigns xi = T and the ith bit to 0 if A assigns xi = F .

We have:

A satisfies I

⇐⇒ for every clause Cq = {Li, Lj , Lk}, at least one literal is satisfied

⇐⇒ S(A) fails to match at least one of the bits i, j, k of the qth

member of NDB (generated from Cq), because uncomplemented literal

Li generates 0 in the ith position and complemented Li generates 1 in

ith position, and similarly for Lj, Lk

⇐⇒ S(A) is in DB.

Corollary 4.2.0.1. NESR is NP-complete even if every record of NDB contains

exactly three defined positions.
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Proof. This transformation always produces such an instance of NESR.

Corollary 4.2.0.2. Empty Self Recognition (ESR, the complement of NESR, an-

swers YES if and only if NDB represents the empty set) is NP-hard.

Proof. Trivial Turing transformation from NESR.

Theorem 4.2.0.3. Self Recognition (SR, defined above) is NP-hard.

Proof. We have established this to be the case even when the candidate self set

DB is empty, and even when every member of NDB contains exactly three defined

positions.

Boolean Formula NDB

(x1 or x2 or x̄5) and 00**1
(x̄2 or x3 or x5) and *10*0
(x2 or x̄4 or x̄5) and ⇒ *0*11
(x̄1 or x̄3 or x4) 1*10*

Figure 4.3: Mapping SAT to NDB: In this example the boolean formula is written
in conjunctive normal form (CNF) and is defined over five variables {x1, x2, x3, x4,
x5}. The formula is mapped to an NDB where each clause corresponds to a record
and each variable in the clause is represented as a 1 if it appears negated, as a 0
if it appears un-negated and as a ∗ if it does not appear in the clause at all. It is
easy to see that a satisfying assignment of the formula such as {x1= FALSE, x2=
TRUE, x3= TRUE, x4= FALSE, x5= FALSE } corresponding to string 01100 is not
represented in NDB and is therefore a member of DB.

47



Chapter 4. Exact Representations

4.3 Applications

4.3.1 Queries

Using the representation described above, negative databases consist of a set of

strings defined over {0, 1, ∗}l. Queries to such databases are also expressed as strings

defined over the same alphabet and have the form “Is Q a member of DB?” I refer

to these queries as authentication or simple membership queries. Queries such as

“Which are the engineers in DB?” can be constructed using simple membership

queries, as is briefly discussed below.

If string Q consists only of defined positions, i.e. it has no don’t care symbols,

then determining membership is straightforward as it requires only to ascertain if Q is

matched by any one of the strings in NDB (matching is described in Section 4.1). On

the other hand, if Q contains an arbitrary number of unspecified positions, answering

the query is equivalent to asking whether the corresponding SAT formula has any

satisfying assignments when an arbitrary number of its variables have pre-assigned

truth values. This remains an NP-hard problem for arbitrary sets of pre-assigned

truth values. This contrasts with a positive database DB, where the records are

stored explicitly and answering such queries takes time proportional to the size of

DB.

For example, consider a database DB of the tuples <name, address, profession>

and the query Q “Which are the engineers in DB?”, which can be written as a

string over {0, 1, ∗}, where the profession field is set to the binary encoding of en-

gineer and the remaining positions are *’s. If Q is issued to DB, and computed by

comparing it against each entry of DB, it will return only those strings that match

the specified field even though Q might actually represent an exponential number of

strings. However, if Q is issued to NDB, it will be necessary to find which of all the
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possible strings of length l whose defined positions correspond to “engineer” are not

in NDB and output them. It is an NP-hard problem to accomplish this under this

representation of NDB for an arbitrary choice of defined positions. However, as was

discussed in Section 4.1.1 it is possible to construct NDB’s with specific structures

for which more complex queries can be answered efficiently. Intuitively, what makes

some queries inefficient is not the size of NDB, as it is only polynomially larger than

DB, but the fact that a single element of U , a single tuple, is represented by several

NDB entries and that a single NDB entry represents several tuples. This makes it

difficult to determine even if there are any engineers at all in DB.

In summary, under the current scheme, only authentication queries —queries that

decide on the membership of a completely specified string—are supported efficiently;

queries of an exploratory nature will, in general, be intractable. One of my future

goals is to control this complexity boundary, either through a deeper understanding

of the existing representations or by devising new ones. This would allow us to

support a limited set of queries (say, those allowed by law) and prevent arbitrary

exploratory searches.

4.3.2 Set Intersection

One potential use of negative databases is for privately computing the intersection

of several sets. This primitive has applications as varied as privately matching sets

of preferences in a dating website, finding entries common to a collection of watch

lists or determining common transaction between two banks. Due to the inherent

properties of negative databases it is possible to privately perform these computations

in a very natural way.

Take for instance n parties, each an owner of some database DBi, that wish to

establish which items they have in common, i.e. {DB1∩· · ·∩DBn} without revealing
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the totality of the contents of their database or its cardinality. If each party produces

a negative database NDBi representing all records not in their DBi to share with the

other parties, then, noting that, by De Morgan’s Law, x ∈ {DB1 ∩ · · ·∩DBn} ⇐⇒

x 0∈ {NDB1∪ · · ·∪NDBn}, the ith party can compute the set intersection by simply

establishing which of the entries of its database DBi are not in {NDB1∪· · ·∪NDBn},

i.e. DBi − {NDB1 ∪ · · · ∪ NDBn}. This is an operation that can be carried out

efficiently as discussed in Section 4.3.1.

This simple scheme would not only protect the identity of all entries outside

the intersection, but also the cardinality of each party’s private database as long as

each NDBi is hard to reverse (Sections 4.2, 4.4) or if the origin of each record in

{NDB1 ∪ · · · ∪ NDBn} is concealed.

4.4 Negative Database Algorithms

The prefix algorithm presented in Section 4.1.1 is simple and demonstrates that

a compact negative representation NDB can be obtained from DB. Although I

have demonstrated in Section 4.2 that the general problem of reversing a given set

NDB to obtain DB is NP-hard, using the simple prefix algorithm to obtain NDB

from DB raises two concerns regarding privacy: (a) The prefix algorithm produces

only an easy subset of possible NDB instances, and (b) If the action of the prefix

algorithm (or any algorithm) that produces NDB from DB could be reproduced by

an adversary, then the adversary could easily decide for a given NDB and candidate

DB whether NDB represents U − DB. The two concerns are of course related, for

if an algorithm were capable of producing only one NDB for each DB it is given as

input, the image of the algorithm could not define an NP-hard set of instances of

NESR.

In this section I present algorithms which address both of these concerns. The
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section is divided into two subsections, the first addresses how to create an initial neg-

ative database while the second deals with how it can be updated to reflect changes

in the composition of DB. In addition, each subsection analyzes the algorithm’s

correctness and examines some of its properties.

4.4.1 Initialization

The RNDB algorithm in Figure 4.4 takes as input a positive database DB (which

might be initially empty) and outputs a negative database NDB (chosen uniformly

at random from the set of possible NDBs) that exactly matches U − DB. Its basic

strategy is, for a given permutation π—an ordering of the bit positions of a string—

applied to every string in DB, to find every prefix Vp not present in π(DB), augment

each Vp with additional bit positions chosen at random (see Lemma 4.4.1.1 below)

and randomly select from the resulting pattern a subpattern that subsumes it (see

Definition 4.4.1.1 below).

Correctness

Definition 4.4.1.1. Subsumption: A string y is subsumed by string x if and only if

every string matched by y is also matched by x. A string x obtained by replacing

some of y’s defined positions with don’t cares, subsumes y.

Lemma 4.4.1.1. A set of 2n distinct strings that are equal in all but n positions

match exactly the same set of strings as a single string with those n positions set to

the don’t care symbol.

Lemma 4.4.1.2. Pattern Generate(DB,Vpe) outputs a string that matches every

string matched by the input pattern Vpe without matching any other strings in DB.
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Randomize NDB(DB,l)
Let wi denote an i-bit prefix and Wi a set
of i-length patterns.
0. Find a random permutation π and apply it to DB.
1. Randomly select 1 ≤ i ≤ O(log2(l))
2. Initialize Wi to the set of every pattern of i bits.

Repeat
3. Set Wi+1 to every pattern not present in

π(DB)’s wi+1 but with prefix in Wi

4. for each pattern Vp in Wi+1 {
5. Randomly choose 1 ≤ j ≤ O(l)
6. for k = 1 to j do {
7. Randomly select an additional

0 ≤ n ≤ O(log2(l)) distinct positions.
8. for every possible bit assignment Vq of the

selected positions (a total of 2n patterns){
9. Vpe ← Vp · Vq

10. Vpg ←Pattern Generate(π(DB), Vpe)
11. Append π′(Vpg) to NDB.}}}a

12. Increment i by one
13. Set Wi to every pattern in DB’s wi

14. Until i = l or Wi is empty.

aπ′ denotes the inverse permutation of π.

Figure 4.4: The Randomize NDB (RNDB) algorithm randomly generates a nega-
tive database representing the strings in U − DB.

Proof. To see that the algorithm (Figure 4.5) produces a string that matches every-

thing Vpe matches, it suffices to note that the output string specifies a subset of the

positions set in the input pattern Vpe: lines 1–6 discard some of the positions that

comprise Vpe, while lines 7–9 reinstate some of them (see Definition 4.4.1.1).

Additionally, the subpattern found in lines 1–6 (a c-key according to Definition

4.4.1.2 from the following subsection) is guaranteed not to match any string in DB

(lines 3–4). This subpattern is included in the final string output by the function,
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Pattern Generate(DB, Vpe)
1. Find a random permutation π.

Let n ← |Vpe|
2. for i = 1 to n do {
3. Construct a pattern π(Vpe)† with all but the ith bit from π(Vpe)
4. if π(Vpe)† not in π(DB){
5. π(Vpe) ← π(Vpe)†

6. Keep track of the ith bit in a set indicator vector (SIV) }}
7. Randomly choose 0 ≤ t ≤ |SIV |
8. R ← t randomly selected bits from SIV
9. Create a pattern Vk using π(Vpe), the bits indicated by R and *

symbols in the remaining positions.
10. Return π′(Vk). a

aπ′ is the inverse permutation of π.

Figure 4.5: Pattern Generate produces a string over {0, 1, ∗} that matches Vpe with-
out matching any string in DB.

ensuring it will not match any string in DB.

Theorem 4.4.1.1. The Randomize NDB algorithm, under any sequence of random

choices, produces an NDB that exactly represents U − DB.

Proof. Let nsj be any string in U − DB and let i be the length of the smallest

prefix Vp of nsj that is absent from DB under permutation π. The algorithm will

find this prefix at iteration i (line 3) and will insert a series of strings into NDB

that match the same strings as Vp as follows: Lines 7–11 create a collection of

strings that subsume Vp by augmenting it with additional positions (lines 7–9)(see

Lemma 4.4.1.1) and assigning every possible pattern to these positions. Then, for

each augmented pattern, function Pattern Generate (line 10) creates a string that

subsumes it without matching anything in DB (see Lemma 4.4.1.2). The resulting
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string is finally inserted into NDB (line 11).

In the case where DB is empty, lines 1–3 will consider the strings represented by

every possible pattern of length i + 1 in the i + 1 length prefix (under permutation

π), which encompasses all of U . Lines 4–11 insert the appropriate strings into NDB

as discussed above. The function iterates once and exits.

Properties

Section 4.2 presents a transformation from 3-SAT to NDB, in what follows, I will

use the formalisms interchangeably. In particular, DB and sets of assignments will

be used interchangeably, NDB and formula φ will be used interchangeably, and the

output of the algorithms to be presented in this section can be viewed either as

strings in NDB or clauses in φ. For this reason clauses in φ are restricted to have

no repeated variables.

The algorithm presented in Section 4.4.1 has the flexibility to produce NDBs or

SAT formulae with varying structures that represent the same set of binary strings.

The ease with which a formula can be solved (or an NDB reversed) depends on this

structure (see References [100, 32, 34]). The following are some properties of the

outputs the discussed algorithm is able to produce.

Definition 4.4.1.2. c-key: A c-key is bit pattern 3 not present in DB with no

extraneous bits, i.e. a c-key defines a minimal pattern in U − DB in the sense that

the removal of any bit yields a pattern in DB (see Figure 4.2). A c̄-key is the bitwise

complement of a c-key.

Lemma 4.4.1.3. Let DB be a set of assignments and φ a CNF formula. φ is

3Note that the bits in the pattern need not occupy contiguous positions in the string.
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satisfied by every x ∈ DB if and only if every clause Cq in φ contains a c̄-key with

respect to DB.

Proof. Suppose clause Cq of φ contains a c̄-key. Then, by Definition 4.4.1.2, no

x ∈ DB exhibits the corresponding c-key. Each x ∈ DB contains at least one bit

appearing in c̄-key which satisfies the corresponding literal and therefore satisfies Cq.

Now assume each x ∈ DB satisfies each clause of φ (that is, each x is a satisfying

truth assignment for φ). Suppose to the contrary, that some clause Cq does not

contain a c̄-key. Then, the complement pattern of c̄-key appears in DB, and in

particular in at least one x ∈ DB. But then x contains no bit appearing in c̄-key,

thus failing to satisfy each of the corresponding literals in Cq. This contradicts our

original supposition, hence, it must be that every clause Cq contains a c̄-key.

Lemma 4.4.1.4. For every possible clause satisfied by DB contained in the in-

put pattern Vpe, there is some execution of Pattern Generate (Figure 4.5) (with an

appropriate sequence of random choices) that will generate it.

Proof. Let Cq be a clause satisfied by DB and Pq its corresponding bit pattern.

Suppose Pq is contained in the input pattern Vpe, then by Lemma 4.4.1.3 it must have

as a subpattern some c-key K. For every pattern Vpe and every c-key K contained

in Vpe, there exists a permutation π such that K occupies the |K| rightmost bit

positions of π(Vpe) (step 1). The algorithm proceeds by discarding one by one, from

left to right, every bit it examines for as long as there is a c-key present within the

remaining subpattern (steps 2–6). It follows that since K is a c-key and occupies the

|K| rightmost positions of π(Vpe) that K is the pattern that will be found4. Steps

4Note that it is not required for the c-key to be contiguous or to occupy the rightmost
bits to be found. It is only convenient to focus on this case for the proof.
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7–9 of the algorithm generate a string containing K plus, by the appropriate random

choice, the additional bits than comprise Cq.

Lemma 4.4.1.5. For every clause satisfied by DB there is at least one string in

U − DB that contains the corresponding pattern.

Proof. Suppose Cq is a clause satisfied by DB and Pq the corresponding bit pattern,

then by Lemma 4.4.1.3 Cq has a c̄-key and Pq a c-key K. By the definition of c-key

(Definition 4.4.1.2) there is no string in DB with K as a subpattern, hence every

string with K as a subpattern must be in U − DB, including the one containing

Pq.

Theorem 4.4.1.2. The RNDB algorithm, during any execution, can produce any

clause with O(log2(l)) or fewer literals that is satisfied by DB.

Proof. Let Cq be a clause of k ≤ O(log2(l)) literals satisfied by DB and Pq its

corresponding bit pattern. For each Pq there is at least one string Nc in U − DB

that contains it (Lemma 4.4.1.5). String Nc, under permutation π, has a prefix of

length i that is not present in DB which will come under consideration at iteration

i of the algorithm (line 3). Suppose m of the k bits of Pq are included in the i length

prefix of Nc, the remaining k−m positions will be set in steps 7–8 by the appropriate

random choice and the string corresponding to Cq will be found by Pattern Generate

(Lemma 4.4.1.4 ).

The cycle of line 5 ensures that each prefix is considered O(l) times, allowing any

particular clause contained within a string with that prefix to be found independently.

Corollary 4.4.1.1. The RNDB algorithm can produce any sequence of O(l) clauses

with O(log2(l)) literals that are satisfied by DB as part of its output.
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Proof. Theorem 4.4.1.2 states that any clause satisfied by DB, can be generated

during any execution of the algorithm. It follows that, since the algorithm can

generate formulas with O(l) clauses, it can generate any sequence of O(l) clauses

that are satisfied by DB as part of its output.

It is important to note that the RNDB algorithm is unable to produce every

(polynomial size) formula (in polynomial time) that is satisfied exactly by DB. In

fact, it can be shown that there is no efficient algorithm that, given DB as input, can

generate all and only formulae that are exactly satisfied by DB, unless CoNP = NP.

We saw, however, that the algorithm can generate every formula of a given length

that is satisfied exactly by DB together with clauses that are superfluous5 (Corollary

4.4.1.1).

It was shown in [54] (see Appendix B) that the image of RNDB algorithm does

in fact define an NP-hard problem as a function of the size of the resulting NDB

albeit not necessarily as a function of the size of the original DB. Further, given that

NP-hardness is a worst case analysis, this property alone is usually not sufficient

for a negative database to be hard to reverse in practice. My aim is ultimately to

generate instances that are hard to reverse on average.

Finally note that Pattern Generate runs in time O(l · |DB|) and that the Ran-

domize NDB algorithm outputs a database with O(l2|DB|) entries in O(l3|DB|2)

time.

5Implied by this observation is that identifying superfluous clauses is an NP-hard prob-
lem.
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Randomize NDB({},4) Delete(1111,NDB) Insert(1111,NDB)
000* 000* 000*
001* 001* 001*
01*0 01*0 01*0
01*1 01*1 01*1
10*0 10*0 10*0
10*1 10*1 10*1
111* 110* 110*
110* 11*0 11*0

*110 *110
*11*

Figure 4.6: Possible states of NDB after successive initialization, deletion and in-
sertion of a string.

4.4.2 Updates

Databases are sometimes used as archives for preserving information and need not

afford the deletion of records or even the insertion of new ones. However, a vast

number of applications do perceive the database as a dynamic entity capable of

being updated. The previous sections have shown how a negative database can be

created to store or represent U −DB, in this section I present three basic operations

that allow modifying it once it has been initialized: Insert, Delete and Clean-up. It is

worth mentioning that the meanings of the insert and delete operations are inverted

from their traditional sense, since we are storing a representation of what is not is

some database DB. For instance, the operation “insert x into DB” is implemented

as “delete x from U −DB” and “delete x from DB” as “insert x into U −DB” (see

Figure 4.6).

The core operation for the procedures, named Negative Pattern Generate (Figure

4.7), creates a string over {0, 1, ∗}l that subsumes x and matches nothing else in DB.

Its functionality is similar to that of Pattern Generate (Figure 4.5) and could be
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Negative Pattern Generate(NDB, x)
1. Create a random permutation π
2. for all specified bits bi in π(x)
3. Let x′ be the same as π(x) but with bi complemented
4. if x′ is subsumed a by some string in π(NDB)
5. Keep track of the ith bit value in a set indicator vector (SIV)
6. Set the value of the ith bit of π(x) to the * symbol
7. Randomly choose 0 ≤ t ≤ |SIV |
8. R ← t randomly selected bits from SIV
9. Create a pattern Vk using π(x) and the bits indicated by R.
10. return π′(Vk)b

aSee Definition 4.4.1.1 in Section 4.4.1.
bπ′ is the inverse permutation of π.

Figure 4.7: Negative Pattern Generate. Takes as input a string x defined over
{0, 1, ∗} and a database NDB and outputs a string that matches x and nothing
else outside of NDB.

replaced by it. However, the difference is that Negative Pattern Generate does not

need DB to be available, a potentially useful feature for applications in which keeping

a copy of DB is a liability. This variation is reflected in lines 3–5 where extracting a

subpattern 6 from input x is accomplished by determining if replacing a specified bit

in x by a don’t care symbol yields a string that is represented by NDB∪{x}. Owing

to the similarity between procedures the proof that Negative Pattern Generate is

correct is very similar to Lemma 4.4.1.2 and is therefore omitted.

Insert into NDB

Consider a database that records the member names of some exclusive club, suppose

one of the constituents has failed to meet his obligations and his membership is

6Note that this subpattern does not necessarily constitute a c-key (it is easy to see that
extracting c-keys from NDB is NP-hard).
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Insert(x, NDB)
1. Randomly choose 1 ≤ j ≤ O(l)
2. for k = 1 to j do
3. Randomly select 0 ≤ n ≤ O(log2(l))
4. Randomly select from x, n distinct unspecified bit positions
5. for every possible bit assignment Vp of the selected positions
6. x′ ← x · Vp

7. y ← Negative Pattern Generate(NDB, x′) a

8. add y to NDB

aNote that Pattern Generate(DB, x′) can be used instead,
provided DB is available.

Figure 4.8: Insert into NDB.

revoked. Removing his name from the list will accomplish this task. However, if a

negative database is used as a surrogate, his name must be added to the archive of

all character combinations which are not member names. In this section I present

an operation that accomplishes this task for any string x ∈ {0, 1, ∗}. The algorithm

has the flexibility of simply appending x to NDB, tacitly leaving a trace that x was

removed from DB, or to more subtly incorporate it by performing some additional

operations. Figure 4.8 outlines this procedure.

Theorem 4.4.2.1. Function Insert(x, NDB) outputs a negative database that ex-

actly matches (U − DB) ∪ {x}.

Proof. It follows directly from Lemma 4.4.1.1 and Lemma 4.4.1.2.
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Delete from NDB

Consider having a database of the member names of some club, and wanting to in-

clude a new recruit. Adding the name to the list will suffice for a positive database;

for a negative database, on the other hand, the operation involves removing any

reference to the name from NDB. In this section I present an operation that ac-

complishes this task. Note that the object of the operation is to stop a binary string

from being represented in NDB, i.e. prevent it from being matched by any entry

in NDB, rather than eliminating a specific NDB record. Also, bear in mind that

only the strings specified for deletion should cease from being represented. Figure

4.9 gives the pseudocode for the algorithm.

Theorem 4.4.2.2. Delete(x, NDB) outputs a negative database that exactly matches

U − (DB ∪ {x}).

Proof. Lines 1–2 identify the subset, Dx, of NDB that matches x and removes it

from NDB. Note that there is no string in NDB − Dx that matches any binary

string matched by x.

Lines 3–7 reinsert all the strings represented by Dx except x: For each string y in

Dx and for each of its unspecified positions (don’t care symbols) there is a string yi

created which differs from x in its ith position (line 6) and inserted into NDB (see

Theorem 4.4.2.1). None of the new strings yi match x.

If a string z ∈ {0, 1}l other than x is matched by some y ∈ Dx then z must

have the same specified positions as y. Given that z is different from x it follows

that it must disagree with it in at least one bit, say bit k; z will be matched by y′
k.

Therefore only x is eliminated from NDB. Finally, observe that since y subsumes

each new entry y′
i (see Definition 4.4.1.1) no unwanted strings are included by the

operation.
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Delete(x, NDB)
1. Let Dx be all the strings in NDB that match x
2. Remove Dx from NDB.
3. for all y ∈ Dx

4. for each unspecified position qi of y
5. if the ith bit of x is specified
6. Create a new string yi using the specified bits of y and the

complement of the ith bit of x.
7. Insert(yi, NDB)

Figure 4.9: Delete from NDB.

One important effect of the Insert and Delete operations is that they both cause

NDB to grow, especially in the latter case when the number of new entries in NDB

is a function of the number of entries matched by the strings to be deleted. To

address this problem I introduce a clean-up operation designed to reduce the size of

the negative database and thus reduce the number of entries expected to match any

binary string.

Clean-up

The operation presented here (Figure 4.10) takes as input a negative database NDB

and outputs a negative database NDB′ that represents exactly the same set of

binary strings, and therefore, matches exactly those strings not in DB. The function

includes a parameter τ (line 4) which is meant to drive the size of the resulting

database. If the Insert operation introduces fewer than τ entries per call then Clean-

up will not increase the size of NDB and will likely reduce it.

Theorem 4.4.2.3. Clean-up outputs a negative database that represents the same

set of binary strings as its input NDB.
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Clean-up(NDB, τ)
1. Randomly select a string x from NDB
2. Find a subpattern K of x not found in any DB string a

3. Let DK be all strings in NDB that have K
4. if |DK | > τ
5. Remove DK from NDB
6 Create a string VK of length l with K as

a subpattern and the remaining positions set to *
7. Insert(VK , NDB)

aAccording to lines 1–6 of Fig.4.7 or lines 1–6 of Fig. 4.5.

Figure 4.10: Clean-up. Outputs a negative database that represents the same strings
as its input NDB with equal or fewer entries.

Proof. Lines 1–2 find a subpattern K of a string in NDB, such that no string in DB

has that pattern (see Definition 4.4.1.2 Lemma 4.4.1.2), i.e. every string in {0, 1}l

with such a pattern must be represented in NDB. Line 3 finds all NDB entries DK

that exhibit this pattern, line 5 removes them. Only strings in {0, 1}l that have K

stop being represented in NDB, for if a string y is matched by DK then it must also

be matched by K. Therefore, the removal of DK causes only strings with K as a

subpattern to be excluded. Line 6–7 reinsert every string and only strings with K

as a subpattern into NDB (see Theorem 4.4.2).

It is interesting to note that the Clean-up operation can be used to transform a

negative database into another representing exactly the same set of binary strings

(see Reference [50] for some experimental results). This feature may be useful in a

security setting in which we wish to hinder the ability of comparing databases, and

as means for transforming a database into another that is easier or harder to reverse

for a given heuristic.
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Properties

It was previously mentioned that Pattern Generate could be used in place of Neg-

ative Pattern Generate within the Insert and Delete operations. In the case of

Clean-up, extraction of a minimal pattern (line 2) can be achieved with lines 1–6

of Pattern Generate or Negative Pattern Generate depending on the availability of

DB. If the former is used, it is easy to see that the resulting negative database

preserves the properties of the RNDB algorithm’s output outlined in Section 4.4.1.

On the other hand, if the latter is applied then it is not feasible to determine if a

pattern constitutes a c-key, and therefore, the number of clauses that can possibly

be generated will be restricted.

An important property of the Insert, Delete and Clean-up operations is that, in

general, their application does not make the problem of reversing a given NDB any

easier. Consider the following problem:

Definition 4.4.2.1. Self-Recognition-Pair (SR-Pair)

INSTANCE: (φ, S, φ′, S ′) where φ is a SAT instance, S a set of assignments to

φ, φ′ is a SAT instance obtained by inserting or deleting an arbitrary assignment x

and only x from φ by means of any polynomial time algorithm A. S ′ is obtained by

inserting or deleting x from S accordingly.

QUESTION: Is φ′ exactly satisfied by S ′?

Theorem 4.4.2.4. SR-Pair is NP-hard

Proof. We prove the theorem by reducing SAT to SR-pair. The proof is divided into

the case in which A is used to insert a satisfying assignment x to φ and the case in

which it is used to delete a satisfying assignment x from φ.

1. Insertion version of SR-Pair is NP-hard.
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Given instance φ of SAT. Pick any assignment x. If x satisfies φ answer YES

to instance φ of SAT. If x does not satisfy φ use A to create φ′ that is exactly

satisfied by the assignments which satisfy φ, union {x}. Then (φ, {}, φ′, {x})

is a valid instance of the insertion version of SR-Pair and:

φ is a NO instance of SAT ⇐⇒ (φ, {}, φ′, {x}) is a YES instance of SR-Pair.

2. Deletion version of SR-Pair is NP-hard.

Given an instance φ of SAT. Pick any assignment x. If x satisfies φ answer

YES to instance φ of SAT. Otherwise, x does not satisfy φ and use A to create

φ′ that is exactly satisfied by the assignments which satisfy φ, minus {x} (note

φ is logically equivalent to φ′.) Then (φ, {}, φ′, {}) is a valid instance of the

deletion version of SR-Pair and:

φ is NO instance of SAT ⇐⇒ (φ, {}, φ′, {}) is a YES instance of SR-Pair.

We conclude by stating that there is a polynomial time reduction from SAT to

SR-Pair and hence that SR-Pair is NP-hard.

It follows that the application of the Insert, Delete and Clean-up operations

doesn’t make a difficult instance any easier to reverse. However, let me stress that

the practical reversal difficulty of a specific NDB depends on the heuristics used to

solve it, and hence these operations can decrease or increase the actual time required

by a given heuristic.

The complexity of the algorithms can be broken down as follows: Negative

Pattern Generate runs in time O(l · |NDB|). Insert takes O(l3|NDB|) time if Neg-

ative Pattern Generate is used, or O(l3|DB|) if Pattern Generate is employed and

inserts O(l2) strings per call into NDB. The Delete operation runs in O(l4|NDB|2)

or O(l4|NDB||DB|) time depending on whether the negative or positive pattern
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generate procedures are used. Delete causes the addition of O(l2|NDB|) entries in

NDB. The Clean-up time complexity is dominated by its call to Insert and has the

same complexity. Note that these bounds are due, in great part, to the generality

that the algorithms afford. It is expected that the production of hard NDB instances

will require limiting some parameters which will, in turn, reduce the complexity of

the operations.

4.5 Summary

In this chapter I introduced the concept of negative representations of information

and presented a specific instantiation of this idea called negative databases. I es-

tablished that a negative database can be constructed in time polynomial in the

size of its positive counterpart. I presented algorithms for creating and maintaining

such a database and offered an analysis of their properties and the properties of the

negative databases they produce. Further, I investigated one characteristic of neg-

ative databases, namely that given a negative database it is an NP-hard problem

to recover its positive image. I also showed that, even though reversing a negative

database is hard, there are certain types of queries that can be carried out effi-

ciently, and discussed how this property can be exploited to privately compute the

intersection of two sets. I am optimistic that, by tailoring a negative representation

to particular requirements, the scheme can address at least some of the problems

presented by large collections of sensitive data.
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Partial Negative Databases

A database DB can be conceptualized as a set of strings or records that naturally

partitions the universe of possible items or strings U into two subsets—those stored

in the database and those left outside of it. When a database holds the items we

care about it is referred to as a positive database; it is referred to as a negative

database when it represents all but those records. The previous two chapters have

been concerned with the possibility of creating negative databases; Chapter 3 shows

how to negatively represent all of the strings not in the crossover closure of some

input set S, and Chapter 4 discusses how to efficiently create an exact negative image

of any set of strings. I discussed some of the characteristics of these databases and

their encodings, and demonstrated how to perform basic operations on them.

In this chapter I investigate an additional property of describing a database by

its complement, one concerned with the amount of information each string in DB

and U − DB has, and with how queries are answered using either set. Both DB

and U − DB contain the same amount of information—both sets can answer the

same questions— however, the manner in which information is distributed among

the individual entries and the way in which query answers are inferred from each
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database are aspects that are fundamentally distinct between them; differences that

might lead to a more natural implementation of some current applications and to

the facilitation of new ones.

5.1 Information Content

In this section I explore how information is distributed among the strings of DB and

U − DB. It is worth clarifying that what is meant by information here does not

refer to the content of the specific records but rather to the state of our knowledge

regarding the partition of U induced by DB. I am concerned with how it changes

as the membership of strings in U is revealed.

Let U be the set of all strings of length l defined over the binary alphabet {0, 1}.

For the current analysis I assume that the size of DB is known1, and that records in

DB are i.i.d., i.e. there is nothing in any string which suggests the membership of any

other string in particular. In general, I assume that the size of DB is considerably

smaller than that of its complement, that is, |DB| 2 |U − DB|.

Let:

DB be the positive database,

DBf be a subset of DB,

UDB denote U − DB, and

UDBf be a subset of U − DB.

The probability of an arbitrary string x belonging to DB when only a fraction of

the positive or negative database is available for inspection can be written as:

1Not knowing the size of DB a-priori introduces additional uncertainty.
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Figure 5.1: Probability of an arbitrary string x belonging to DB when only a fraction
of the positive or negative database is available. The plot illustrates the probabilities
when |DB| is 10% of |U |.

P (x ∈ DB|x 0∈ DBf) =
|DB − DBf |

|U − DBf |
(5.1)

P (x ∈ DB|x 0∈ UDBf ) =
|DB|

|U − UDBf |
(5.2)

Likewise the probability that a given string x is a member of UDB:

P (x ∈ UDB|x 0∈ DBf) = 1 − P (x ∈ DB|x 0∈ DBf) (5.3)

P (x ∈ UDB|x 0∈ UDBf) = 1 − P (x ∈ DB|x 0∈ UDBf ) (5.4)

Figure 5.1 shows how the probability of a certain record x belonging to DB

changes as strings in the database are inspected (without encountering x). The

graph illustrates one important and potentially useful feature of using the negative

image of a set, namely that the probability of an arbitrary string x belonging to DB

increases as the identity of strings in UDB becomes known whereas it decreases as

positive records become available.

Using the above results (eq. 5.1–5.4) I now turn to the average amount of infor-

mation or entropy that is associated with a given partition of U and discuss how it
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is affected as the membership of strings is revealed. For the purpose of the current

discussion I consider the entropy, HP , when a fraction of DB is known, and the

entropy, HN , when a fraction of UDB has been disclosed. The mixture case can be

easily extrapolated from them.

HP = −P (x ∈ DB|x 0∈ DBf) · log2 (P (x ∈ DB|x 0∈ DBf ))

− P (x ∈ UDB|x 0∈ DBf) · log2 (P (x ∈ UDB|x 0∈ DBf)) (5.5)

HN = −P (x ∈ DB|x 0∈ UDBf ) · log2 (P (x ∈ DB|x 0∈ UDBf ))

− P (x ∈ UDB|x 0∈ UDBf ) · log2 (P (x ∈ UDB|x 0∈ UDBf )) (5.6)
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Figure 5.2: The uncertainty associated with U once the membership of a subset
of DB or U − DB is known. The plot illustrates the entropy of the conditional
distributions starting with a |DB| that is 10% of |U |.

Figure 5.2 shows how the entropy changes as strings in one of the sets are disclosed

for the case in which DB is 10% of U . It is interesting to see how the entropy of the

conditional distributions increases as the identity of strings in the negative image

becomes known (up to the point when the size of the unknown negative is equal to

the size of the unknown positive), and how it always decreases as the members of DB

are revealed without encountering x. Note that this feature is due to the asymmetry
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in the size of the two sets and one that can be useful once the handling of either set

becomes a feasible option.

5.1.1 Querying DB and U − DB

In the previous section we saw that the entropy of the conditional distribution re-

garding the membership of an arbitrary string in U − UDBf increases as UDBf

grows (up to a certain point, see Figure 5.2). It is important to point out, how-

ever, that the uncertainty concerning the identity of strings in DB decreases (their

self-information tapers off), ensuring that questions about DB can be answered by

inspecting UDB.

This leads to an important distinction between storing positive or negative rep-

resentations of data. I have argued that both DB and UDB can answer the same

questions but there is a difference in how an answer is inferred using either of the

sets. Consider the following:

Using UDB

x ∈ DB ⇐⇒ ∀yi∈UDB x 0= yi

x 0∈ DB ⇐⇒ ∃yi∈UDB x = yi

Using DB

x ∈ DB ⇐⇒ ∃yi∈DB x = yi

x 0∈ DB ⇐⇒ ∀yi∈DB x 0= yi

To ascertain the membership of a string x using UDB all of UDB must be

searched if x belongs to DB, whereas the search can halt as soon as x is found if x is
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not in DB. Conversely, if DB is being used to answer questions the opposite is true:

if x is in DB the search can stop when x is found, and all DB must be searched

otherwise. This is not to say that questions about DB cannot be answered using

UDBf but rather that answers should be qualified to reflect their certainty.

To illustrate this point consider the case where either half of DB or half of UDB

are available for querying. Suppose we wish to determine if an arbitrary string x

belongs to DB, and we may consult only half of UDB; we will be able to answer

with absolute certainty that x is not in DB if it is present in the half of UDB

which we hold. On the other hand, if x is not in our share (which will happen for
|UDB|

2 + |DB| strings) we will be forced to qualify the answer with the probability

that x belongs to DB given that it is absent from our share (see eq. 5.2). The

situation is inverted when only half of DB is available; here, we can be sure that x

is in DB if x is in the half of DB at our disposal, and we would need to qualify the

answer for all other cases.

This is significant in a scenario where each item in DB is in itself valuable.

Suppose DB is a list of passwords; one way to protect their identity is to split UDB

(all strings except the passwords in DB) into two halves. The owner of each half

cannot be certain of the identity of any valid password, without consulting the other

half. Splitting DB gives each party half of the valid passwords, any of which is

sufficient to gain access to the protected resource.

5.2 Negative Databases

The previous sections dealt with how information is distributed among binary strings

in DB and in U−DB, and how answers may be inferred using either set. However, it

is generally infeasible to explicitly store the strings of U−DB—recall the assumption

that DB 2 U −DB. Chapter 4 explores the concept of negative databases whereby
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the set U−DB is compactly represented by a set NDB whose strings are defined over

{0, 1, ∗}l where l is the original string length. One consequence of this representation

is that a single NDB entry typically represents several strings in U −DB and that,

for some classes of negative databases, a member of U −DB may be represented by

several NDB entries 2.

I now turn attention to estimating the amount of information each string in NDB

possesses. The following calculations are simplified by assuming that all negative

records are independent of one another, that they are generated uniformly at random

with replacement, and that the size of NDB is small relative to the number of

possible NDB stings. In practice, the records in the negative database are not

independent, and are not generated in this fashion as it is important for none of

them to match any string in DB, and for all strings in U −DB to be accounted for.

However, these assumptions are reasonable when DB is small and NDB is generated

by a suitable randomized algorithm, such as the one described in Chapter 4.

Let pi = 2−ri be the proportion of strings in U matched by an individual NDB

record with ri specified bits (see Section 4.1). The number of strings in U matched

by n negative records can be written as:

|U − DB|(1 −
l

∏

i=1

(1 − pi)
ni) (5.7)

where n =
∑

ni and ni is the number of strings with ri specified bits.

To simplify matters further and gain insight into the effects of the representation

on how information is dispersed in a negative database, the remainder of the analysis

will be carried out for a specific class of NDBs in which each string has exactly r

specified positions. The algorithms in Chapter 4 and in Reference [50] can readily

2This is not the case of NDB’s generated by the prefix algorithm (see Section 4.1.1).
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generate databases with this structure. The number of strings in U − DB matched

by n such records is:

|U − DB|(1 − (1 − 2−r)n) (5.8)

Figure 5.3 shows how the set U − DB is covered (strings matched) as more and

more negative records are considered. Note the decrease in slope due to the expected

number of matching overlaps among strings in NDB.

1000 2000 3000 4000 5000
n
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100
% of U"DB Covered

Figure 5.3: Percentage of U −DB matched as a function of the number n of negative
records for r = 10 specified positions.

Using the results of Section 5.1, it is straightforward to estimate the probability

of a string x belonging to DB as a function of the number of inspected NDB records

that do not match it. Equation 5.9 details this probability and Figure 5.4 shows a

plot for a specific NDB.

P (x ∈ DB|x 0∈ NDBf ) =
|DB|

|U |− |U − DB|(1 − (1 − 2−r)n)
(5.9)

where NDBf is a fraction of NDB and |NDBf | = n.

Note that both Figures 5.4 and 5.3 exhibit asymptotic behavior that is an artifact

of the assumptions used to estimate the number of strings matched by a set of
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Figure 5.4: Probability that a string x belongs to DB given that it is not matched
by n NDB strings with r = 10 specified positions.

negative records. In actuality, having all of NDB covers U − DB exactly and can

answer all queries regarding U .

5.3 Scenarios

In this section I outline two scenarios and operations that exploit and elucidate the

differences of using a positive or a negative representation of data.

5.3.1 Distributed Negative Databases

In Chapter 4, I describe how negative databases can be used to perform set inter-

section. Recall that, by De Morgan’s Law, a string x belongs in the intersection

of a group of databases if and only if x is not in any of the corresponding neg-

ative databases. The security of the scheme discussed in that chapter relied on

the assumption that each NDB was hard to reverse. I now relax this supposition

and look at how the set intersection insight can be applied to a single database.

Consider a negative database NDB whose records are distributed among n subsets

NDB1 . . . NDBn. Each NDBi matches only a fraction of U −DB (see Section 5.2),
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and is the negative image of some set GDBi = DB ∪Gi, where Gi are those strings

in U −DB not matched by NDBi, and act as noise that obfuscates the composition

of DB. The union of the NDBi yields the negative image of DB; the intersection

of the GDBis produces DB.

In the previous sections I studied how much information is embodied in an arbi-

trary subset of NDB—NDBi in this case—and established that only some questions

regarding items that are not members of DB can be answered with absolute certainty.

Imagine a scenario in which each NDBi is assigned to an agent Ai and that agents

are independent of each other, able to consult only the database they manage. Some

other entity J wishes to ascertain whether item x is in DB and is allowed to pose a

query to each Ai. By the set intersection property, J can determine the membership

of x by consulting the individual agents. Note however, that if it is the case that x is

a member of DB all agents need be queried to confirm it as a fact. This brings out

an important characteristic of the setup: Only J can establish with certainty that x

is in DB and J has to consult all Ai’s to do so.

Suppose a list of names has been drawn as a result of a lottery. The agency that

holds the event wishes to communicate to the winners their good fortune. However,

they want to avoid publishing the cleartext of the list to avoid impersonators, thieves,

and to protect the privacy of the lucky ones. After reading this dissertation the board

of directors has decided to create a negative database of the list, and distribute it

among n parties. Each party may provide answers regarding their share but must

disallow any single entity from making several consultations (allowing too many

queries opens the door for a dictionary attack 3). Also, they must protect their

NDBi from getting stolen.

Any person interested in learning whether they’ve won will need to consult the

3A dictionary attack simply uses a big list of names, such as the phone directory, and
uses each one the query the database.
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n agents, if their name is not in any of the negative databases, they may go to

the benevolent agency and ask for their winnings. A variant of this might ask the

holders of the partial databases to issue a certificate: “Name Y is not on NDBi”,

the possession of the n certificates with your name, together with an Id, allows you

to claim the prize. The benefit of the setup is that only the winners (and the agency)

can be absolutely sure that they’ve won. The administrator of each NDBi knows

the name of some of the people that did not win, but cannot be certain of the name

of anyone who actually did (see Section 5.1.1).

The security of this scheme relies on the fact that the negative database is dis-

tributed, each agent having a limited amount of information (see Section 5.2), rather

than on having a negative database that is hard to reverse. Also, the distributed

strategy allows for more complicated queries than simple membership; say the pos-

itive database DB has the tuples <name, profession, address> and the negative

database NDB all possible tuples not in DB. If NDB is divided into n subsets,

a query such as “What are the names and addresses of the engineers contained in

DB” can be answered by issuing “Give me all the tuples <name, address> of the

records having engineer in the profession field” to each NDBi and compiling a new

NDB′ out of all the replies. Reversing NDB′ will yield the desired answer. Note

that NDB′ has all the tuples <name, address> of all the engineers that are not in

DB, complementing it (and I’m assuming NDB′ is easy to reverse) will leave those

that are.

This setup can be used in concert with other encryption techniques to yield some

interesting applications, for instance: Some agency wants to communicate a message

to a group of people. They want the message to be secret, the identity of the

recipients to remain ambiguous, and to conceal which messages have been collected.

One option is to encrypt the message using the name of the recipient as key, producing

E(message), and create a database DB with the tuples <H(name), E(message)>
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where H(name) is the hash of the name with a public one-way function4, a scheme

such as this is described in [60, 59]. Now instead of publishing DB, which is suceptible

to a dictionary attack and lets the entity in charge of managing it know which

messages have been retrieved, we can use the construct described above and create

a negative database NDB and divide it amongst n parties. To see if you have

a message simply hash your name to create H(name) and ask each NDBi for all

records with H(name) in their name field (concealing your identity). Inverting the

union of the tuples <E(message)> reported by all NDBis will result in a database

with your messages. Only you know which records it contains, only you know if its

empty or not. If its not, the messages may be decrypted using your name.

A further characteristic of distributing a negative database worth pointing out

is that inserting an item x into the definition of DB, i.e. deleting it from NDB,

is a more difficult task than removing it, since all NDBis have to be inspected and

perhaps modified to assure x is subtracted from all of them (recall that there is a lot

of redundancy in a NDB and x may be present in several NDBis). Removing x from

DB, on the other hand, is simple as it will suffice to append it to any NDBi (see

Section 4.4.2 of Chapter 4). Contrast this to performing the same operations on a

distributed positive database; inserting x into DB is accomplished by inserting it into

any subset, while removing it will entail making sure it is absent from all of its subsets.

Resilience to deletions is a desirable property for data integrity. However, there are

settings where it is useful to easily remove an item, such as when the database

stores a checklist or when it keeps perishable messages. Resilience to insertion is

advantageous in scenarios like the one described herein where you wish to prevent

people from including their names in the list of winners.

Similar strategies can be devised to perform secret sharing [118, 17] that exhibit

some of the nuances of using negative databases. Beyond the scenarios presented

4This can also be accomplished using a public key (but not everybody has one).
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so far there are other possible uses of negative data representations. The following

section presents a way in which it can be used to collect data privately.

5.3.2 Preference Ranking

Suppose you are given the task to determine which are the most prevalent sexual

transmitted diseases at your university. Say you are given a list with ten diseases,

and you are asked to rank them in the order of prevalence at your school. Imagine

entering a classroom with the questionnaires in hand and asking students to please

mark which of the listed diseases they have; they might feel their privacy is being

threatened. Some will probably refuse to comply and others will likely provide inac-

curate answers. Consider now a slightly different scenario; you again enter the room

and again distribute the questionnaires, but now you ask the students to please, out

of the ten diseases listed, put a mark next to one disease they have not had (in

general, there will be many diseases any single person has not had).

The amount of information surrendered in a regular multiple-option positive ques-

tionnaire in which one option is to be selected as true is:

−
∑

i

pi logn pi (5.10)

where pi is the probability that option Xi is true and n is the number of categories

in the questionnaire. Here the maximum amount is obtained when all options are

equally likely.

The quantity surrendered if the questionnaire is answered negatively can be ob-

tained by subtracting, from (eq. 5.10), the amount information gained by the same

questionnaire given that one option has been eliminated, and can be written as:

79



Chapter 5. Partial Negative Databases

−
∑

i

pi logn pi +
∑

i$=s

P (pi|Xs = F ) logn P (pi|Xs = F ) (5.11)

where pi is the probability that option i is true, n the number of categories, Xs the

option that is negatively selected and P (pi|Xs = F ) the posterior probabilities of

each Xi being true after Xs has been selected as false.

Clearly, the information gained using the negative version of the questionnaire is

bounded by the amount procured from its positive counterpart. One consequence of

this, is that it is more mindful of the individual’s privacy, as it does not require the

subject to reveal a potentially embarrassing fact (such as one of the STDs that afflicts

him). It remains to establish what can be learned from the amount of information

collected in such a survey. One useful statistic that can be extracted from this

data is the relative ranking of diseases: The option more often selected is the least

prevalent one in the population, the second option in frequency is the second to last in

prevalence and so on. Naturally, a statistical test such as χ2 should be used to assess

the significance of the ranking and expose random artifacts, also, the predisposition

of someone negatively selecting an option over the others should be accounted for

(it is not necessarily the case that every option that can be negatively selected is

chosen with equal probability). The precise details of how to carry this out and an

investigation of other statistics, such as estimating population frequencies, are the

themes of current work.

5.4 Summary

In this chapter I have explored some properties of representing data negatively. The

discussion is centered on a finite universe of items partitioned into two sets—the

positive DB and the negative UDB—where the positive is deemed to contain the
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items of interest and is, in general, considered to be much smaller than its image.

The characteristics examined pertain to the differences in the amount of information

contained by negative and positive records, to how it changes as the membership of

items becomes known, and to how answers are inferred using a positive set or its

negative counterpart. Given the stated assumptions, the amount of information per

string is lower in a negative set and increases as the identity of the items it collects

is revealed (until a certain point, see Figure 5.2). Inferring answers from either set

differs in that to establish that x belongs to DB, all UDB must be inspected, while

the search may stop as soon as x is encountered using DB. The converse is true

when x is a member UDB.

The analysis is first carried out while considering the sets DB and UDB which

collect items without any efficiency considerations, it is then extended to negative

databases, as outlined in Chapter 4, which more succinctly represent UDB. The cur-

rent examinations make a series of assumptions that help glean the aforementioned

properties but that need to be re-examined in future work, most important is the

supposition that strings in DB are i.i.d. This is clearly not the case is a vast number

of applications and the correlation between strings needs to be accounted for in order

to have a more accurate idea of how information is allocated in the databases and

to how knowledge of the membership of strings affects it.

The differences between representing data positively or negatively opens the door

for novel applications and to a different implementation of some older ones. The last

section of the chapter details a setup by which a negative database is distributed

and, by exploiting some of its unique properties, is able to perform some operations

privately: In one arrangement a personalized message may be posted in a public site

that can only be retrieved by its intended recipient, and only he can know it was

reclaimed. The setup allows to query a database while concealing the answers from

its administrator. Also, an information gathering scheme is proposed that allows one
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to compute certain statistical features of a population while safeguarding the privacy

of the subjects. These schemes provide a measure of privacy that arises naturally

from representing information negatively, rather that from the use of traditional

cryptography, and in contrast with this, do not rely on a specific secret being kept

or on a particular code being hard to break. It is important to have alternatives to

traditional cryptographic methods for the cases in which they might be unavailable

or impractical to use.
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Conclusion

In the 1940’s a philosopher by the name of Carl G. Hempel [76] showed that by ma-

nipulating the logical statement “All ravens are black” one could derive the equivalent

“ All non-black objects are non-ravens”, indicating that the presence of a non-black

object, like a yellow pencil, is evidence for the original assertion. This somewhat

counterintuitive and roundabout way of proving a statement is actually correct, al-

beit not always possible or feasible to execute. Think of smaller sets and the state-

ment “All ravens in this zoo are black” and its equivalent “All non-black animals in

this zoo are non-ravens”. Here, parading all non-black animals at the zoo is actually

feasible and will serve to prove or disprove the assertion. In the same spirit, a set can

be defined by its negative image; the inventory of every animal except black crows

can be used as a surrogate for the set of black crows by simply specifying “whatever

is not on this inventory,” provided that we have knowledge of what all the possible

animals are.

This dissertation has focused on two questions regarding such a convoluted way of

describing sets (and proving things about them), namely: Can it be done efficiently,

and what can be gained from it? Theoretically, as long as the universe is finite, it is
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always possible to list all the objects not in some arbitrary subset but, as the crow

example suggests, the list might be too big and it might take too long a time to

generate. Therefore, can it be done efficiently? The second concern is more open-

ended and at first glance, hard to imagine. However, it was the observance of a

system that uses negative data representation that prompted me to investigate its

nuances further.

The immune system (IS) is primarily responsible for keeping an organism healthy;

for preventing the intrusion of disease causing agents. In order to eliminate poten-

tial pathogens the IS must first identify them, but how can agents be recognized

if they have never been encountered before (as is the case of many pathogens for

a given organism)? The IS solves the riddle by creating immune cells that do not

recognize self—self being the normal constituents of the organism 1. This is much

like the crow example, only that the assertion is “All self agents are good” and its

contrapositive—the one that supports the IS’s strategy— is “All non-good agents

(pathogens) are non-self”. Identifying non-self ensures that pathogens will be recog-

nized. We can think of all the immune cells of an organism as the negative image of

self, as collectively defining self by individually specifying what it is not.

The IS example gives an answer to the “what for” part of the question but offers

only a partial answer to the feasibility aspect of storing the negative image of a set.

The reason being that the IS does not exactly recognize non-self, that is, immune

cells are created based on a sample of what self is and generalize from it to what

self is likely to be; hence significantly reducing the size of the purported non-self and

making it practical to store. Chapter 3 examines how to generalize from a sample

dataset to a probable one. It discusses how the resulting set can be depicted either

positively or negatively and analyses some of the tradeoffs between representations.

The scheme proposed therein is presented in the context of anomaly detection (owing

1Danger theory [96] offers a different avenue for antigen recognition.
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to its inspiration from the IS) and suggests a connection with database theory, with

the expectation that insights from one field will illuminate the other.

But, what if what we want is to create an exact negative image without any

generalization. What if “self” is actually a database like an address book? Can a

negative image of it be created efficiently? Chapter 4 shows, surprisingly, that this

is feasible by introducing the concept of negative databases—a negative database

is a special representation of the negative image of a set—and provides algorithms

for creating them, as well as for performing basic operations like the insertion and

deletion of items. Furthermore, the chapter draws out an important characteristic

of certain kinds of negative databases, namely that they are easy to create, easy to

query in specific ways but hard, indeed NP-hard, to revert into their original positive

counterpart. It is easy to verify if there is a specific person with a specific address

in the positive address book (using its negative database) but hard, for example, to

determine what are the names of the people with an address in Mexico City. It is

even hard to glean how many addresses are recorded in the positive address book.

This property alone can be useful for privacy and security applications, where specific

searches should be efficiently supported while impeding arbitrary fishing expeditions.

For example, set intersection (say two banks want to know which transactions they

have in common) can be performed securely in a very natural fashion using hard to

reverse negative databases.

Hempel, the philosopher mentioned in the beginning of the chapter, came up with

a paradox 2 by looking at the statement “All ravens are white” and its contrapositive

“All non-white objects are non-ravens”. It seems now that a yellow pencil can be

taken as evidence for two contradictory (and mutually exclusive) assertions. The

pencil simultaneously supports that all ravens are black and that all ravens are white.

Chapter 5 studies how knowledge regarding the composition of a set, i.e. which items

2The paradox is more of a comment on the way scientific endeavors proceed. In partic-
ular, in regards to the importance and definitiveness of evidence.
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it is likely to contain, changes as negative and positive evidence is presented. It shows

that a negative witness does indeed contain information and that observing a yellow

pencil increases the likelihood of either claim being true, without indicating which

one; a feature that can be used for the selective disclosure of information. When the

universe of discourse is finite, as in the case of this dissertation, only one (if any)

will be known to be true once all evidence is examined, i.e. when all of the negative

image is disclosed, doing away with the apparent paradox. This point illustrates a

fundamental distinction in how answers are inferred using a positive set versus its

negative counterpart. The latter part of Chapter 5 suggests how the differences can

be used for the private dissemination of data and how certain population statistics

can be gathered with the aid of these insights.

The chief contribution of the dissertation has been to draw attention to an alter-

nate way to represent data, one that is often alluded to in our everyday discourse (did

you notice the president didn’t mention X in his speech?) but hasn’t been studied

in a rigorous fashion. The discussion was limited to specific kinds of sets (consisting

of finite length strings) and showed that, even here, there are some distinctive char-

acteristics in representing information negatively and that it is actually feasible to

create and store them (think of how many possible names and addresses are not in

your address book!).

There are many venues for future work beyond refining the current analysis (sug-

gestions are provided at the end of each chapter). The present research draws out

only a few distinguishing characteristics of negative representations, more should be

sought out. I discussed how my scheme can be used to keep, share and consult data

privately and briefly suggested how it may be employed to collect information in a

private fashion. It would be fruitful to pursue these applications further as well as

to search for new ones. For instance, what are the advantages of extracting knowl-

edge from a negative set, is negative data mining a useful possibility? Moreover,
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it would be of interest to study alternative encodings of negative information and

expand their scope beyond finite sets of strings. Finally, I would like to go back to

the themes that inspired this monograph, biology and the immune system, and see if

the lessons learned and the tools developed here shed light to the workings of these

intricate systems. Can the immune system be thought of as a negative database that

is hard to reverse, as a security system that co-evolves with the pathogens that try

to subvert it?
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Appendix A

Detectors and Generalization: A

Detailed Derivation

A.1 r-chunks Matching Subsumes rcb Matching

We say L ⊂ U is a language recognized by Schemeα,β using r-chunks [rcb] detectors

if there exists a set Υ of r-chunks [rcb] detectors such that Schemeα,β(Υ) = L.

From the perspective of language recognition, but not necessarily efficiency, r-chunk

detectors subsume rcb detectors as it is now demonstrated.

Lemma A.1.0.1. If d is an rcb detector, there exists a collection T (d) of r-chunk

detectors such that ∀x ∈ U, d[w] = x[w] ↔ ∃ t ∈ T (d), t = x[w].

Proof. Take T (d) to be
⋃

wi
(d[wi]) and the result follows immediately.

It follows from the lemma that, for each of the four detection schemes defined

is Section 3.2, any set L ⊂ U of strings that can be recognized with a set of rcb
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detectors can be recognized with some set of r-chunk detectors. In particular, we

have:

Theorem A.1.0.1. If Υ is a set of rcb detectors, and α and β are any choices for

detector dimensions as above, then Schemeα,β(Υ) = Schemeα,β(T (Υ)).

Proof. It follows from lemma A.1.0.1 that for any of the membership predicates Fα,β

associated with any of the four detection schemes Schemeα,β, and for every string

x ∈ U , [Υ satisfies Fα,β wrt x] ↔ [T (Υ) satisfies Fα,β wrt x].

The converse of this theorem is not true in general, since r-chunk detectors have

a finer granularity than do rcb detectors—a proper subset of T (d) may match fewer

strings in U than does the rcb d.

Example: Consider the detection scheme SchemeND, and let l = 3 and r = 2.

Consider the pair of strings 011 and 010. I claim that whenever both strings 011

and 010 are in the language of SchemeND(Υ) for a set Υ of rcb detectors, then so

too must be the string 110. To see this, note that an rcb detector matching 110

must either end in the pattern ∗10 or begin with the pattern 11∗. But then any way

either of these patterns is completed (i.e., by specifying a bit for the ∗) results in an

rcb detector matching one of 011 or 010. Consequently, if SchemeND(Υ) excludes

110 from the language it recognizes, it must exclude also at least one of 011 or 010.

In contrast, if the r-chunks detector set, Υch, consists of the single detector 11∗,

SchemeND(Υch) includes both 011 and 010 while excluding 110.

The results of the next section imply that the same result holds for SchemePC ,

that is, that the class of languages recognized by SchemePC using r-chunks detectors

properly contains the class recognized by SchemePC using rcb detectors.
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A.2 Detector Set Size

In Section 3.4.1 the size of the detector set for the sliding window r-chunks decom-

position is summarized. In this appendix I present the complete derivation.

Assume a sample S of strings is randomly generated. To provide an estimate of

the average number of detectors that can be produced, for both the SchemePC and

SchemeND detection schemes, note the following:

• The number of strings in U with a specific pattern in any given window of size

r is Al−r, where A is the cardinality of the alphabet over which strings are

defined.

• The probability of selecting at random one such string is Al−r

Al = A−r.

• Assuming r is small compared to l, I approximate the probability that a ran-

domly generated self set of |S| unique strings will contain a specific pattern

by

1 −

(

|S|

0

)

(A−r)0(1 − A−r)|S| = 1 − (1 − A−r)|S|

The equation is approximate because it considers trials to be independent and

sampling to take place with replacement.

• Following the previous item, the expected number of distinct patterns Er, for

a given window of size r, is approximated by Er " Ar − Ar(1 − A−r)|S|.

The following equation denotes the expected size of a set of detectors having the

property that each member matches one window and all windows are matched:

Epos = tEr (A.1)
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Conversely, the expected number of detectors possible for the negative detection

scheme (i.e. detectors that don’t match any window pattern in S) is given by:

Eneg = t(Ar − Er) (A.2)

To establish when one scheme requires a smaller set of detectors than the other

for maximal coverage, I determine the number of strings in S for which both schemes

yield the same number of detectors, i.e. when Epos = Eneg (see Figure 3.4):

Epos = Eneg = t(Ar(1 − A−r)|S|) = t(Ar − Ar(1 − A−r)|S|)

Solving for |S|

|S| =
− ln(2)

ln(1 − A−r)
" (0.693)Ar (A.3)

A.2.1 Reduced Detector Set for Negative Detection

The number of detectors needed in SchemeND, to protect CC(S), can actually be

smaller than the full set described above, since significant redundancy amongst de-

tectors may be present. I examine this property in detail for the case of a binary

alphabet. Number the t windows from left to right:

• Regardless of the composition of S, a detector must be generated for each

pattern in the first window that is not present is S.

• For every window of size r, starting from the second window, and for every

pair of patterns w1 = vi . . . vr+i−2a, w2 = vi . . . vr+i−2ā in such a window:

– If both w1 and w2 are present in self then we cannot generate any detector

for them.

91



Appendix A. Detectors and Generalization: A Detailed Derivation

– If neither is present then we need not generate detectors for them since

the preceding window will be missing its prefix, i.e. bvi . . . vr+i−2 or

b̄vi . . . vr+i−2 and a detector in the previous window will also match strings

with such a pattern.

– If only one is present, say vi . . . vr+i−2a, then we must generate detector

vi . . . vr+i−2ā since no string in S contains it.

With this in mind, the average number of detectors needed in the minimal set is

given by:

EminN = 2r − Er + (l − r)(Er − 2(Er − Er−1)) (A.4)

Following the previous rationale an upper bound can be established for the

number of detectors required in the minimal set. The maximum number of self

strings we can have without creating crossovers, thereby reducing the number of re-

quired detectors, will exhibit only one of every pair of patterns w1 = vi . . . vr+i−2a,

w2 = vi . . . vr+i−2ā for each window. This results from a maximum of 2r−1 distinct

self strings for a detector set size of t2r−1. Figure 3.4 shows the plots of the expected

number of detectors for both the full and reduced detector sets.

A.2.2 Reduced Detector Set Size for Positive Detection

Using similar reasoning to that of Section A.2.1, we can find a significant amount

of redundancy amongst detectors in the form of implicit matches. Consider the case

where window i+1 contains patterns w1 = vi . . . vr+i−2a, w2 = vi . . . vr+i−2ā, then it

must be that window i has either or both of the patterns ending with bits vi . . . vr+i−2

and therefore, a string matched in window i by one of these patterns, will also be

matched in window i + 1 by either w1 or w2. I call such a match an implicit match

92



Appendix A. Detectors and Generalization: A Detailed Derivation

and eliminate w1 and w2 from the detector repertoire. The number of detectors in

the resulting set can be expressed as:

EminP = Er + (l − r)(Er − 2(Er − Er−1)) (A.5)

The size of the sample S for which EminN and EminP yield the same number of

detectors is the same as with the full repertoire, i.e. Eneg and Epos eq.(A.3).

One subtlety about this analysis is that if not all positive detectors are represented

explicitly, then some additional information is required to identify implicit matches.

This could be stored explicitly, requiring at the very least one bit per implicit match

or, it could be derived at runtime by determining, once a match (or implicit match)

at window i has been established, if both w1 and w2 are absent in window i + 1 1.

A plot of EminP for different sample sizes is presented in figure 3.4 without regards

to the extra information required to determine implicit matches.

A.3 The Crossover Closure Expected Size

In order to determine the size of CC for a randomly generated sample of binary

strings, note that the number of substrings of length l that contain pattern vi . . . vr+i−1

in window wi is double the number of substrings of length l−1 that contain the pat-

tern in the same window if there are strings in S that exhibit both vi+1 . . . vr+i−1a

and vi+1 . . . vr+i−1ā in window wi+1, and stays the same if exactly one of these is

present. In terms of the DAG representation (Figure 3.5), the number of paths that

include a node with a given label doubles when such a node has two outgoing edges.

1If the information is stored explicitly the extra bits can be “recovered” as a decrease
in execution time.

93



Appendix A. Detectors and Generalization: A Detailed Derivation

We can write this as a recurrence on the number of windows t:

CC(t) =























Er if t = 1

2CC(t − 1)P (2)

+CC(t − 1)(1 − P (2)) otherwise

Solving the recurrence yields:

CC(t) = Er(1 + P (2))(t−1) (A.6)

where P (2) is the probability of a node having two outgoing edges. In order establish

the value for P (2) consider the following gadget:

!"
#$
10

!"
#$
00

!"
#$
01

!"
#$
00

!

(
(

(
()

!

*
*

*
*+

The probability for a given edge to be present is approximated by Er+1

2r+1 = 1 −
(

1 − 2−(r+1)
)|S|

and its absence by 2r+1−Er+1

2r+1 =
(

1 − 2−(r+1)
)|S|

.

Given that the likelihood of a node having only one outgoing edge is not inde-

pendent of the probabilities related to the second node in the graph (a node at the

same level differing only in the first bit position), I consider the probability P ∗(1) of

either node having one outgoing edge:

P ∗(1) = 4
Er+1

2r+1

(

2r+1 − Er+1

2r+1

)2
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Similarly, for a node in the gadget to have no outgoing edges (or for the node to be

absent):

P ∗(0) =

(

2r+1 − Er+1

2r+1

)4

Finally, the probability of an individual node having two outgoing edges is given by:

P (2) = 1 −
1

2
(P ∗(0) + P ∗(1)) (A.7)

The number of holes |H| (strings deemed to be a part of self (RS) not present in S)

can be derived by simply subtracting |S| from CC(t):

|H| = CC(t) − |S| (A.8)
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Negative Databases: Definitions

and Proofs

Definition B.0.0.1. c-clause: A c-clause is a pattern composed of a c̄-key (see

Definition 4.4.1.2) plus at most two additional specified bit positions.

Lemma B.0.0.1. The Randomize NDB algorithm, under any sequence of random

choices, produces an NDB that corresponds to an instance of SAT that is satisfied

exactly by DB.

Proof. Let nsj be any string in U −DB and let i be the length of the smallest prefix

Vp of nsj that is absent from DB. The algorithm will find this prefix at iteration

i (line 3) and create at least one distinct string with a subpattern p of Vp that is

absent from DB (steps 4–11).

If p is not found in DB then p must be different in at least one bit form every

pattern in DB and p̄ must match every string in DB in at least one position. The

mapping to SAT creates clauses that correspond to p̄ (see Figure 4.5 and lemma

B.0.0.1) and are thus satisfied by every string in DB and unsatisfied by nsj (for all
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nsj ∈ U − DB).

Lemma B.0.0.2. The RNDB algorithm can generate any formula of at most n

c-clauses containing solely the n variables present in window wn (when wn is the first

window considered) that is satisfied exactly by DBα, where DBα consists of all the

n length prefixes of the strings in DB.

Proof. Let φ be a formula satisfied exactly by DBα and C1 . . . Cn the c-clauses com-

posing φ. Uα − DBα. For any c-clause Cq in φ, the complement pattern does not

satisfy it. By definition, any string containing the complement of Cq is in Uα−DBα

and every string containing the complement pattern of Cq is considered by the al-

gorithm, and can generate Cq. Note that each call to Pattern Generate (Fig. 4.5)

returns only one clause. However, up to n ≤ l calls are made on the same Vp, so

even if all n clauses in φ must come from the same Vp, there are sufficient calls to

account for them.

Further, no clause not in φ need be generated when wn is considered because

every string s in Uα − DBα that is considered for window wn must contain (since

it does not satisfy φ) the complement pattern of at least one Cq of φ and thus is

capable, with an appropriate sequence of random choices, of generating this Cq and

no additional clause (clauses generated repeatedly appear only once in the set of

clauses returned).

Note that if there exists one or more formulas of at most n c-clauses containing

solely the first n variables which are satisfied by exactly DBα, RNDB will add

no additional clauses after the initial window wn is considered, because at future

iterations there will be no strings which do not appear in wi+1 that have a prefix in

wi.
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Theorem B.0.0.1. The RNDB algorithm can generate every possible 3-SAT for-

mula such that the number of clauses is bounded by the number of variables.

Proof. Let φ be any 3-SAT formula of l variables and let DB be the set of assignments

that exactly satisfy φ.

For every database DB there exists another database, DBβ, such that DB con-

tains all the l-length prefixes of strings in DBβ and DBβ contains every possible

string of length 2l with those prefixes. The RNDB algorithm on input DBβ will

set its initial window to encompass the first l bit positions, by lemma B.0.0.2 the

algorithm can generate any formula of at most l c-clauses containing only the first

l bit positions of DBβ. After considering this first window the algorithm will not

generate any more clauses, since there are no additional strings in Uβ −DBβ whose

immediate prefix is contained in DBβ. Hence the RNDB algorithm will output φ

by making the appropriate random choices.

Corollary B.0.0.1. The image of RNDB defines an NP-complete restriction of

NESR. Similarly, the image of RNDB defines an NP-hard restriction of ESR and

SR.

Proof. By Theorem B.0.0.1 RNDB can generate an NDB corresponding to (under

the transformation of the proof of Theorem 4.2.0.2) any instance of 3-SAT in which

the number of clauses is bounded by the number of variables. The set of all such

instances of 3-SAT is known to define an NP-complete problem.
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