
An Immunological Model of Distributed Detection and Its Application
to Computer Security

By

Steven Andrew Hofmeyr

B.Sc. (Hons), Computer Science, University of the Witwatersrand, 1991
M.Sc., Computer Science, University of the Witwatersrand, 1994

Doctor of Philosophy
Computer Science

May 1999

c 1999, Steven Andrew Hofmeyr

iii

Dedication

To the Babs for having such patience when I was so far away, and to my dearest Folks for getting me this far.

v

Acknowledgments

The author gratefully acknowledges the help of the following people: D. Ackley, P. D’haeseleer, S. Forrest,
G. Hunsicker, S. Janes, T. Kaplan, J. Kephart, B. Maccabe, M. Oprea, B. Patel, A. Perelson, D. Smith, A.
Somayaji, G. Spafford, and all the people in the Adaptive Computation Group at the University of New
Mexico.

This research was supported by the Defense Advanced Research Projects Agency (grant N00014-96-
1-0680) the National Science Foundation (grant IRI-9711199), the Office of Naval Research (grant N00014-
99-1-0417), the IBM Partnership award, and the Intel Corporation.

STEVEN HOFMEYR

The University of New Mexico
May 1999

vii

An Immunological Model of Distributed Detection and Its Application
to Computer Security

By

Steven Andrew Hofmeyr

Doctor of Philosophy
Computer Science

May 1999

An Immunological Model of Distributed Detection and Its Application
to Computer Security

by

Steven Andrew Hofmeyr

B.Sc. (Hons), Computer Science, University of the Witwatersrand, 1991
M.Sc., Computer Science, University of the Witwatersrand, 1994

Ph.D., Computer Science, University of New Mexico, 1999

Abstract

This dissertation explores an immunological model of distributed detection, called negative detec-
tion, and studies its performance in the domain of intrusion detection on computer networks. The goal of the
detection system is to distinguish between illegitimate behaviour (nonself), and legitimate behaviour (self).
The detection system consists of sets of negative detectors that detect instances of nonself; these detectors are
distributed across multiple locations. The negative detection model was developed previously; this research
extends that previous work in several ways.

Firstly, analyses are derived for the negative detectionmodel. In particular, a framework for explicitly
incorporating distribution is developed, and is used to demonstrate that negative detection is both scalable and
robust. Furthermore, it is shown that any scalable distributed detection system that requires communication
(memory sharing) is always less robust than a system that does not require communication (such as negative
detection). In addition to exploring the framework, algorithms are developed for determining whether a
nonself instance is an undetectable hole, and for predicting performance when the system is trained on non-
random data sets. Finally, theory is derived for predicting false positives in the case when the training set
does not include all of self.

Secondly, several extensions to the model of distributed detection are described and analysed. These
extensions include: multiple representations to overcome holes; activation thresholds and sensitivity levels to
reduce false positive rates; costimulation by a human operator to eliminate autoreactive detectors; distributed
detector generation to adapt to changing self sets; dynamic detectors to avoid consistent gaps in detection
coverage; and memory, to implement signature-based detection.

Thirdly, the model is applied to network intrusion detection. The system monitors TCP traffic in
a broadcast local area network. The results of empirical testing of the model demonstrate that the system
detects real intrusions, with false positive rates of less than one per day, using at most five kilobytes per
computer. The system is tunable, so detection rates can be traded off against false positives and resource
usage. The system detects new intrusive behaviours (anomaly detection), and exploits knowledge of past
intrusions to improve subsequent detection (signature-based detection).

xi

Contents

List of Figures xvi

List of Tables xviii

Glossary of Symbols xix

1 Introduction 1
1.1 Immunology . 1
1.2 Computer Security . 2
1.3 Principles for an Artificial Immune System . 4
1.4 The Contributions of this Dissertation . 5
1.5 The Remainder of this Dissertation . 5

2 Background 7
2.1 Immunology for Computer Scientists . 7

2.1.1 Recognition . 8
2.1.2 Receptor Diversity . 10
2.1.3 Adaptation . 10
2.1.4 Tolerance . 11
2.1.5 MHC and diversity . 14

2.2 A First Attempt at Applying Immunology to ID: Host-based Anomaly Detection 15
2.3 Network Intrusion Detection . 16

2.3.1 Networking and Network Protocols . 16
2.3.2 Network Attacks . 17
2.3.3 A Survey of Network Intrusion Detection Systems 19
2.3.4 Building on Network Security Monitor . 20
2.3.5 Desirable Extensions to NSM . 21

2.4 An Immunologically-Inspired Distributed Detection System 21

3 An Immunological Model of Distributed Detection 23
3.1 Properties of The Model . 23

3.1.1 Problem Description . 23
3.1.2 Distributing the Detection System . 24
3.1.3 Assumptions . 25
3.1.4 Generalization . 26
3.1.5 Scalable Distributed Detection . 26

xiii

3.1.6 Robust Distributed Detection . 27
3.2 Implementation and Analysis . 29

3.2.1 Match Rules . 30
3.2.2 Detector Generation . 31
3.2.3 Detector Sets . 33
3.2.4 The Existence of Holes . 35
3.2.5 Refining the Analysis . 37
3.2.6 Multiple Representations . 39
3.2.7 Incomplete Training Sets . 42

3.3 Summary . 43

4 An Application of the Model: Network Security 44
4.1 Architecture . 45

4.1.1 Base Representation . 45
4.1.2 Secondary Representations . 47
4.1.3 Activation Thresholds and Sensitivity Levels . 48

4.2 Experimental Data Sets . 49
4.2.1 Self Sets, and . 50
4.2.2 Nonself Test Sets, . 51

4.3 Experimental Results . 52
4.3.1 Generating the detector sets . 53
4.3.2 Match Rules and Secondary Representations . 55
4.3.3 The Effects of Multiple Secondary Representations 55
4.3.4 Incomplete Self Sets . 62
4.3.5 Detecting Real Nonself . 64
4.3.6 Increasing the Size of the Self Set . 66

4.4 Summary . 69

5 Extensions to the Basic Model 71
5.1 The Mechanisms . 71

5.1.1 Costimulation . 72
5.1.2 Distributed Tolerization . 72
5.1.3 Dynamic Detectors . 75
5.1.4 Memory . 75
5.1.5 Architectural Summary . 76

5.2 Experimental Results . 78
5.2.1 Costimulation . 79
5.2.2 Changing Self Sets . 80
5.2.3 Memory . 86

5.3 Summary . 89

6 Implications and Consequences 90
6.1 Giving Humans a Holiday: Automated Response . 90

6.1.1 Adaptive TCP Wrappers . 90
6.1.2 Fighting Worms with Worms . 94

6.2 Other Applications . 95
6.2.1 Mobile Agents . 95

xiv

6.2.2 Distributed Databases . 96
6.3 Implications of the Analogy . 99

6.3.1 Understanding Immunology . 99
6.3.2 Insights for Computer Science . 100

7 Conclusions 102
7.1 Principles Attained . 102
7.2 Contributions of this Dissertation . 103
7.3 Limitations of this Dissertation . 104
7.4 Future Work . 105
7.5 A Final Word . 107

References 109

xv

List of Figures

2.1 Detection is a consequence of binding between complementary chemical structures 9
2.2 Responses in immune memory . 12
2.3 Associative memory underlies the concept of immunization 13
2.4 The three-way TCP handshake for establishing a connection 18
2.5 Patterns of network traffic on a broadcast LAN . 20

3.1 The universe of patterns . 24
3.2 Matching under the contiguous bits match rule . 30
3.3 The negative selection algorithm . 32
3.4 The trade-off between number of detectors required, , and the expected number of retries

. 34
3.5 The existence of holes . 35
3.6 Searching the RHS string space for a valid detector . 37
3.7 Representation changes are equivalent to “shape” changes for detectors 41

4.1 Base representation of a TCP SYN packet . 46
4.2 Substring hashing . 48
4.3 Sample distribution of self strings . 50
4.4 Expected number of retries, , for tolerization versus match length, (varies, none) 54
4.5 Trade-offs for different match rules and secondary representations on SE (, varies,

varies, varies) . 56
4.6 Trade-offs for different match rules and secondary representations on RND (,

varies, varies, varies) . 57
4.7 Trade-offs for different match rules and secondary representations on SI (, varies,

varies, varies) . 58
4.8 The distribution of detection rates on SI () . 60
4.9 Predicting using the modified simple theory (, varies) 61
4.10 Predicting for SI using the modified simple theory (varies) 62
4.11 The effect of activation thresholds on false positive rates for (varies) 64
4.12 How the number of detectors impacts on detection rate (varies,) 65
4.13 ROC curve for this system (varies) . 67
4.14 Sample distribution of self strings for 120 computers . 68

5.1 The architecture of the distributed ID system . 77
5.2 The lifecycle of a detector . 78
5.3 The probability distributions for real and simulated self 79

xvi

5.4 False positive rates over time for a typical run with different tolerization periods, for a mas-
sive self change (varies) . 82

5.5 Fraction of immature detectors, , over time for a typical run with different tolerization
periods, for a massive self change (varies) . 82

5.6 False positive rates, , over time for a typical run with different tolerization periods, for
a massive self change (varies,) 83

5.7 Fraction of immature detectors, , over time for a typical run with different tolerization
periods, for a massive self change(varies,) 84

5.8 False positive rate per day with different tolerization periods (varies,
,) . 88

xvii

List of Tables

4.1 Features of nonself sets . 52
4.2 The parameters for the basic distributed ID system . 53
4.3 The effects of nearness (, varies) . 59
4.4 Detection rates against real test sets (varies) . 66

5.1 The parameters for the basic distributed ID system . 80
5.2 Costimulation results (varies, varies) . 81
5.3 Effects of a massive change in the self set (varies,) 85
5.4 Effects of a massive change in the self set (varies, ,) . 86
5.5 Effects of tolerization periods and death probabilities on memory (, varies,

varies,) . 87
5.6 Effects of memory (varies, , per 7 days,

) . 89

xviii

Glossary of Symbols

The symbols are listed in the order in which they appear in the text.

String length

Match threshold

Universe

Self set

Nonself set

Kolmogorov complexity

Detection system

Binary classification function

Detection system memory

Test set

Training set

False positive error

False negative error

Set of locations

Number of locations

Memory capacity at location

Global classification function

Global false positive

Global false negative

Constant

Representation function

Representation of

xix

Match rule

Cover set of detector

Probability of matching under the contiguous bits rule

Probability of matching under the Hamming match rule

The event that does not match any in

Probability of a match

Valid detector

Number of retries in detector generation

Number of detectors at location

Probability of a false negative error

Probability of a false positive error

Algorithm which computes if a given nonself string is a hole

The overlap function

Decimal value of binary string remapped by the linear congruential operator

Parameter for the linear congruential operator

Parameter for the linear congruential operator

Discrete random process

Random variable of at time-step

Sample distribution of self set

Distribution of self set

Number of unique self strings that occur in time-steps

Number of locations

Number of detectors

Parameter set for a representation

Training set

Test set, self strings only

Test set, nonself strings only

Match count for detector

Activation threshold

xx

Match decay probability

Sensitivity level at location

Effect of sensitivity

Sensitivity decay probability

False positive error rate

False negative error rate

Detection rate

Constant used when predicting retries versus detection rate

Hamming distance between binary strings and

Detection rate over all strings in a nonself incident

Detection rate over only the nonself strings in a nonself incident

Offset in power law distribution of self set

Exponent in power law distribution of self set

Ratio of increase in self strings when size of self increases

Costimulation delay

Tolerization period

Queue arrival rate

Queue departure rate

Ratio of queue arrivals to departures

Probability of occurrence of a self string,

Random variable for the number of matches in a queue

Match decay period

Probability of detector death

Fraction of immature detectors

Expected lifetime

Maximum number of memory detectors

xxi

Chapter 1

Introduction

The Immune System (IS) is complex, and to the observer, has novel solutions for solving real-world prob-
lems. We can apply this wealth of evolved solutions to systems design if we can find an artificial system that
faces similar problems to those faced by the IS. To do this we need to have a reasonable understanding of
immunology.

1.1 Immunology
From a teleological viewpoint, the IS has evolved to solve a particular problem. Fundamentally, such a
viewpoint is wrong, because the IS is not necessarily a minimal system (there may be simpler ways to solve
the same problem) but this viewpoint is useful for expository purposes: it is easier to understand the IS to
a first approximation if the components and mechanisms are viewed with the assumption that they exist to
solve a particular problem.

The human body is under constant siege by a plethora of inimical micro-organisms such as bacteria,
parasites, viruses, and fungi, known collectively as pathogens. These pathogens are the source of many dis-
eases and ailments, for example, pneumonia is caused by bacteria, AIDS and influenza are caused by viruses,
and malaria is caused by parasites. Pathogens in particular can be harmful because they replicate, leading to
a rapid demise of the host if left unchecked. In addition to micro-organisms, the human body is threatened
by toxic substances that can do serious harm if they are not cleared from the body. In this dissertation it is
assumed that the “purpose” of the IS is to protect the body from the threats posed by pathogens, and to do so
in a way that minimizes harm to the body and ensures its continued functioning1.

There are two aspects to the problem that the IS faces: the identification or detection of pathogens,
and the efficient elimination of those pathogens while minimizing harm to the body, from both pathogens and
the IS itself. The detection problem is often described as that of distinguishing “self” from “nonself” (which
are elements of the body, and pathogens/toxins, respectively). However, many pathogens are not harmful,
and an immune response to eliminate them may damage the body. In these cases it would be healthier not
to respond, so it would be more accurate to say that the problem faced by the IS is that of distinguishing be-
tween harmful nonself and everything else [Matzinger, 1994, Matzinger, 1998]2. Once pathogens have been
detected, the IS must eliminate them in some manner. Different pathogens have to be eliminated in different
ways, and the components of the IS that accomplish this are called effectors. The elimination problem facing

1This is a limited view of “purpose”; in general, it may be that the purpose of the immune system is to maintain homeostasis, which
includes protecting the body from pathogens that could disrupt that homeostasis.

2However, the fact that the IS does react to “harmless” pathogens is essential to immunization (see section 2.1.3).

1

the IS is that of choosing the right effectors for the particular kind of pathogen to be eliminated.

1.2 Computer Security
Phrased this way, the problem that the IS addresses is similar to the problem faced by computer security
systems: the immune system protects the body from pathogens, and analogously, a computer security system
should protect computers from intrusions. This analogy can be made more concrete by understanding the
problems faced by computer security systems. There are several aspects to computer security [Meade, 1985,
Garfinkel & Spafford, 1996]:

Confidentiality: Access to restricted or confidential data should only be allowed to authorized users, for
example, it is imperative for military institutions to limit knowledge of classified information.

Integrity: Data should be protected from corruption, whether malicious or accidental. In some cases, it is
essential to preserve the integrity of critical information, for example, there should be no tampering
with information used by emergency services.

Availability: Both information and computer resources should be available when needed by legitimate users.
In particular, this is essential in cases where such information is needed to make critical decisions within
a limited time, for example, in air-traffic control.

Accountability: In the case where the compromise of a computer system has been detected, the computer
security system should preserve sufficient information to be able to track down and identify the perpe-
trators.

Correctness: False alarms from incorrect classification of events should be minimised for the system to be
usable. Low levels of correctness can interfere with other aspects of security, for example, availability
will be reduced if a user’s legitimate actions are frequently labeled as alarms, and so not permitted.

The importance of these aspects of computer security depends on the security policy for the computer
system. The policy is a description or definition of what activities are and are not allowed, by the different
users and software components of the system. Policy must first be specified by those in charge of the system,
and then implemented in some form. Both specification and implementation are prone to error, being subject
to the same limitations as program verification and implementation: programs are not verifiable in general,
and implementation is always subject to error.

It is generally agreed that implementing and maintaining secure computer systems is difficult,
in that we have no way of ensuring that a certain level of security has been achieved [Frank, 1994,
Crosbie & Spafford, 1994, Kumar & Spafford, 1994, Lunt, 1993, Anderson, et al., 1995, Blakely, 1997]. Se-
curity holes are exploited by intruders breaking into systems, or by viruses or worms. Such holes are often
the result of faults or design flaws in system or application software, or in the specification or implementation
of security policies. Even if it were possible to design and build a completely secure system, the invest-
ment in systems deployed in the 1990s makes it infeasible to replace every existing system. Furthermore,
the continual updating of old systems, and the addition of new components will continue to produce novel
vulnerabilities.

The similarity between the problem of computer security and that faced by the IS can be shown
by translating the language of immunology into computer security terms: we can say that the IS detects
abuses of an implicitly specified policy, and responds to those abuses by counter-attacking the source of the
abuse. The policy is implicitly specified by natural selection, and emphasises only some aspects of security:

2

availability and correctness are of paramount importance, and to a lesser extent, integrity and accountability.
Availability means enabling the body to continue functioning under an onslaught of pathogens; correctness
means preventing the IS from attacking the body, (i.e., minimising auto-immune disorders); integrity means
ensuring that the genes that encode for cell functions are not corrupted by pathogens; and accountability
means finding and destroying the pathogens responsible for illness3. The one aspect of security that is not
important to the IS is confidentiality: there is no notion of secret or restricted data in the body that must be
protected at all costs from outsiders (e.g., we continuously shed cells with our DNA in them.

The IS is analogous to a computer security system, one that is designed to safeguard against breaches
in an implicit policy. However, the architecture of the IS is different from that of the computer security sys-
tems of the 1990s. The first layer of defense in these computer security systems is provided by static access
mechanisms, such as passwords and file permissions. Although essential, these access mechanisms are either
too limited to provide comprehensive security, or are overly restrictive for legitimate users of the computer
system. Several layers have been added on to the original defenses, some of the most important of these be-
ing cryptography [Denning, 1992], which is used for implementing secure channels and host authentication,
and firewalls [Chapman & Zwicky, 1995], which provide another layer of defense in a networked system by
filtering out undesirable network traffic. Yet another layer of defense is provided by dynamic protection sys-
tems that detect and prevent intrusions. These dynamic protection systems are known as Intrusion Detection
(ID) systems [Anderson, 1980, Denning, 1987].

These computer security systems fall short of what could be accomplished: in a survey carried out
by the Computer Security Institute in collaboration with the Federal Bureau of Investigation, 64% of 520
computer security practitioners surveyed reported security breaches during the 1998 financial year, a 16%
increase from the year before [Power, 1998]. Only half of the respondents could estimate their financial
losses from these incidents, at about 138 million dollars. According to [Power, 1998], we should assume that
these estimates (both of losses and intrusions) are conservative, because many institutions will not be aware
they have been compromised, and of those who become aware, few will report it. However, with all these
dire figures, it is worth noting that only 35% of the respondents used ID systems. It is not clear why this is
the case, whether it is that the current ID systems are not cost-effective, or simply that they are an innovation
that has not yet been widely accepted.

There is some indication that current ID systems are not effective enough, and suffer from lack of
correctness. In an evaluation performed by Lincoln Laboratory in 1998, ID systems detected 50 to 70% of at-
tacks with false alarm rates of between one and ten per day [Lippman, 1998]. Although these false alarm rates
are acceptable according to [Lippman, 1998], the detection rates can be improved, and in particular, none of
the systems tested was able to detect novel new intrusions. Most of these systems carried out signature-based4
detection, meaning that they stored patterns of known intrusive behaviour and then scanned for occurrences
of those patterns. Few systems carried out anomaly detection, where the incidents are unknown ahead of time
(that is, they are not included in a training set), and detection is a process of scanning for deviations from
a known normal behaviour. These systems could not detect novel intrusions because they did not perform
anomaly detection.

By contrast, the IS makes use of both signature-based and anomaly detection. It has mechanisms for
detecting deviations from a set of normal patterns, and it has ways of storing and recalling specific patterns
associated with previous pathogenic attacks. It functions effectively5 in a distributed environment where there
is competition for limited resources, against adversaries that are evolving to evade the IS. Thus the IS can
indicate ways in which we can improve our existing ID systems. This, then, is the topic of this dissertation:
demonstrating how immunology can help us design better ID systems, ones that carry out both signature-

3Accountability in the IS is limited to within the confines of the body.
4Also misleadingly called misuse detection. The term “signature-based” is used throughout this dissertation.
5Without immune systems, we would not survive for more than a few weeks.

3

based and anomaly detection.

1.3 Principles for an Artificial Immune System
The crossover between biology and computer science can be fruitful for both disciplines: computers can
be used to model biological systems to improve our understanding of those systems, and we can use an
understanding of the mechanisms underlying biological systems to improve the way we design computer
systems. Here, the focus is on the latter case: using biological metaphors to enable us to build better computer
systems.

There are several levels at which we can use biological metaphors [Somayaji, 1998]: buzzwords,
architectures, algorithms and principles. Buzzwords can be a useful guide to thinking, but in general they
do not suggest concrete ways of improving systems. We need to extract more information from biological
systems. This dissertation focuses on biological principles, architectures, and algorithms extracted from
immunology and applied to the design of systems, specifically a system for detecting intrusions in networks
of computers.

The design of the ID system presented in this dissertation is guided by the following principles
[Somayaji, et al., 1997]:

Distributed protection: The IS consists of millions of agents or components, distributed throughout the
body. These components interact locally to provide protection in a completely distributed fashion:
there is little or no centralized control or coordination, and hence no single point of failure in the
system.

Diversity: There are several forms of diversity in the immune system. For example, each individual in a
population has a unique IS, which improves the robustness of a population, because all individuals will
not be vulnerable to the same extent to the same diseases. Within an individual, the components of the
IS are different, providing diverse pattern recognition so that the IS can detect a variety of pathogens.

Robustness: Individual components of the IS are multitudinous and redundant, and the architecture of the
IS is such that the loss of only a few of these components will have little effect on the functioning of
the IS. These disposable components combined with the lack of centralized or hierarchical control in
the IS make it robust and tolerant of faults in the form of failures in a few components.

Adaptability: The IS can adapt to pathogenic structures, “learning” to recognize pathogens with increasing
accuracy so that it can mount an increasingly effective response. Adaptation speeds up a current re-
sponse and enables future responses to be more rapid than past responses (see the next point, memory).

Memory (signature-based detection): Adaptations remain in force for periods of time up to the lifetime of
an organism. This immunological “memory” allows the IS to more rapidly the second time around to
pathogens similar to ones it has encountered in the past. Immune memory implements signature-based
detection, by allowing the IS to monitor for characteristics of known pathogens.

Implicit policy specification: The definition of self used by the IS is empirically defined. Self is implicitly
determined by the “monitoring” of proteins that are currently in the body. The advantage of this ap-
proach is that self is equivalent to the actual normal behaviour, and not a specification of what normal
behaviour ought to be. In other words, the IS does not suffer from the problems inherent in trying to
correctly specify a security policy.

4

Flexibility: The IS is flexible in the allocation of resources for the protection of the body. When a serious
infection threatens the body, the IS draws upon more resources, generating more IS components, and
at other times, the IS uses fewer resources. For example, a stressed person is more vulnerable to
illness, and an ill person will generally be better off resting (and thus freeing more resources for the
IS). Furthermore, the IS is flexible in where it directs its resources: the more a particular pathogen type
is responsible for damage, the more likely it is that the IS will tailor its response to that pathogen type.

Scalability: Viewed from the perspective of distributed processing, the IS is scalable: communication and
interaction between all IS components is localized, so there is little overhead when increasing the
number of components. There may be architectural constraints on this scalability, but at the level of
individual components, it is expected that resource expenditure would scale linearly with the number
of components.

Anomaly detection: Through a variety of mechanisms, the immune system has the ability to detect novel pa-
thogens (pathogens to which it has not been previously exposed). In most cases this anomaly detection
is not as effective as signature-based detection (it is the efficacy of a primary response as compared
to a secondary response, see section 2.1.3), but anomaly detection is essential to the survival of the
organism, because any organism will always encounter novel pathogens in its lifetime.

These principles can be regarded as general guidelines for design which can, in general, be achieved
by using algorithms or mechanisms copied directly from immunology. However, there will be times when
the immunological algorithms or mechanisms are not suitable, and in those cases new algorithms will be
required. It is worth emphasizing that for computer security applications the primary concern should not be
exact mimicry of the IS in all its details; rather, the analogy should only be followed to the extent that it
proves useful.

1.4 The Contributions of this Dissertation
There are three primary contributions made by this dissertation.

1. Formalization and new analyses of the immunological model of distributed detection, originally devel-
oped in [Forrest, et al., 1994].

2. Description and empirical testing of several extensions to the basic model of distributed detection.

3. Application of the model of distributed detection to network ID.

These contributions are restated in more detail in section 7.2.

1.5 The Remainder of this Dissertation
The next chapter (2) describes background material necessary for an understanding of the work that follows,
including an overview of salient features of immunology, a description of network security and network ID
systems, and a brief look at the immunological model of distributed detection that is the basis of the results
in this dissertation. Chapter 3 presents the immunological model of distributed detection formally and in
more detail, adds additional features, and explores properties of the model. The model is then applied to the
domain of network ID, and the results of implementation and experimentation are presented in chapter 4.
Further extensions to the model in the context of network ID are described in chapter 5, and the results of

5

experiments testing these extensions are presented. The penultimate chapter (6) presents various implications
of the research, including ways of incorporating automated response, different domains that the model could
be applied to, and perspectives for computer science and immunology. The dissertation is concluded by
chapter 7.

6

Chapter 2

Background

This dissertation investigates a model of distributed detection based on the principles, algorithms and ar-
chitecture of the immune system, and applies this model to the design of a new computer security system,
specifically, an intrusion detection system that monitors traffic on a network of computers. The key word here
is detection: the issue of intrusion response is not investigated, except to give some ideas for an automated
response system in chapter 6. This chapter reviews all material necessary for understanding the remainder
of the dissertation. This includes a brief overview of immunology, a description of a first attempt that used
immunology for the design of an ID system, an overview of network ID in general, and details of previous
work in defining a framework for distributed anomaly detection using immunological algorithms. Because
of the large volume of background material, only information relevant to the dissertation is described; hence
the overview of immunology is limited1, and the survey of ID systems is focused on those applied to network
traffic.

2.1 Immunology for Computer Scientists
The ability of the immune system to detect and eliminate most pathogens is essential for survival; without
an IS we die within weeks. The architecture of the IS is multi-layered, with defenses on several levels.
Most elementary is the skin, which is the first barrier to infection. Another barrier is physiological, where
conditions such as pH and temperature provide inappropriate living conditions for foreign organisms. Once
pathogens have entered the body, they are dealt with by the innate immune system and by the acquired or
adaptive immune system. The innate immune system primarily consists of the endocytic and phagocytic
systems, which involve motile scavenger cells such as macrophages that ingest extracellular molecules and
materials, clearing the system of both debris and pathogens. Most of the inspiration for this research has been
drawn from the adaptive IS, and so this overview is focused on adaptive immunity.

The adaptive immune system is so-called because it adapts or “learns” to recognize specific kinds of
pathogens, and retains a “memory” of them for speeding up future responses. The learning occurs during a
primary response to a kind of pathogen not encountered before by the IS. The primary response is slow, often
first only becoming apparent ninety-six hours after the initial infection, and taking up to three weeks to clear
the infection. After the primary response clears the infection, the IS retains a memory of the kind of pathogen
that caused the infection. Should the body be infected again by the same kind of pathogen, the IS does not
have to re-learn to recognize the pathogens, because it “remembers” their specific appearance, and so can

1In [Hofmeyr, 1998] a more detailed overview of immunology is given, but one that is still accessible to non-immunologists. For
detailed references, the interested reader should consult [Piel, 1993, Janeway & Travers, 1996, Paul, 1989].

7

mount a much more rapid and efficient secondary response. The secondary response is usually quick enough
so that there are no clinical indications of a re-infection. Immune memory can confer protection up to the
life-time of the organism (a canonical example is measles). The adaptive immune system is also known as
the acquired immune response system, because it is responsible for immunity which is adaptively acquired
during the life-time of the organism.

The adaptive immune system primarily consists of certain types of white blood cells, called lym-
phocytes, which cooperate to detect pathogens and assist in the elimination of those pathogens. Although
lymphocytes play a role in the elimination of pathogens, we can abstractly view them as mobile, independent
detectors, which circulate around the body via the blood and lymph systems. There are millions of these lym-
phocytes, forming a system of distributed detection, where there is no centralized control, and little, if any,
hierarchical control. Detection and elimination of pathogens is a consequence of millions of cells - detectors
- interacting through simple, localized rules, to give rise to an efficient,2 distributed system.

2.1.1 Recognition

A detection or recognition event occurs in the IS when chemical bonds are established between receptors
on the surface of an immune cell, and epitopes, which are locations on the surface of a pathogen or protein
fragment (a peptide). Both receptors and epitopes have complicated three-dimensional structures that are
electrically charged. The more complementary the structure and charge of the receptor and the epitope, the
more likely it is that binding will occur. See figure 2.1. The strength of the bond between a receptor and an
epitope is termed the affinity. Consequently, receptors are specific because they bind only to a few similar
epitope structures or patterns. This specificity extends to the lymphocytes themselves: receptor structures may
differ between lymphocytes, but on a single lymphocyte, all receptors are identical, making a lymphocyte
specific to a particular set of similar epitope structures (this feature is termed monospecificity). Pathogens
often have multiple, different epitopes, reflecting their molecular structures, so several different lymphocytes
may be specific to a single kind of pathogen.

A lymphocyte has on the order of receptors on its surface, all of which can bind epitopes. Hav-
ing multiple identical receptors has several beneficial effects. Firstly, it allows the lymphocyte to “estimate”
the affinities of its receptors for a given kind of epitope, through frequency-based sampling: as the affinities
increase, so the number of receptors binding will increase. The number of receptors that bind can be viewed
as an estimate of the affinity between a single receptor and an epitope structure3. Secondly, having multiple
receptors allows the lymphocyte to estimate the number of epitopes (and thus infer the number of patho-
gens) in its neighbourhood: the more receptors bound, the more pathogens in the neighbourhood. Finally,
monospecificity is essential to the immune response, because if lymphocytes were not monospecific, reaction
to one kind of pathogen would induce response to other, unrelated epitopes.

The behaviour of lymphocytes is dictated by affinities: when the number of receptors bound exceeds
some threshold, the lymphocyte is activated (this can be termed a “detection event”)4. Thus, a lymphocyte
will only be activated by pathogens if its receptors have sufficiently high affinities for particular epitope
structures on the pathogens, and if the pathogens exist in sufficient numbers in the locality of the lymphocyte.

2Obviously, the definition of “efficient” is relative; it cannot be claimed that the architecture of the IS is optimal in any sense because
it is not clear that evolution optimizes anything, and furthermore, if it does, it is not clear what is being optimized and over what time
scale. However, the IS possesses many qualities that our artificial systems lack, and it implements these in a way that is efficient when
compared to our artificial systems.

3Of course, this is an idealization, because the receptors may bind different epitope structures, so what is being “estimated” is a rather
arbitrary mean of the affinities between the receptors and different epitope structures. However, as the affinities increase, the estimation
becomes more accurate because the epitope structures must be increasingly similar.

4This is an expository simplification; lymphocytes require additional signals to be activated. This is termed costimulation, and is
discussed in section 2.1.4.

8

structurally
similar -
high affinity

low affinity

receptor
lymphocyte

epitope

Figure 2.1: Detection is a consequence of binding between complementary chemical structures. The surface
of a lymphocyte is covered with receptors. The pathogens on the left have epitope structures that are comple-
mentary to the receptor structures and so the receptors have higher affinities for those epitopes than for the
epitopes of the pathogens on the right, which are not complementary.

9

Such activation thresholds allow lymphocytes to function as generalized detectors: a single lymphocyte can
detect (be activated by) structurally similar kinds of epitopes. If we consider the space of all epitope structures
as a set of patterns, then a lymphocyte detects or “covers” a small subset of these patterns (called a similarity
subset). Hence, there does not have to be a different lymphocyte for every epitope pattern to cover the space of
all possible epitope patterns. There is evidence to suggest that certain kinds of lymphocytes (memory cells)
have lower activation thresholds than other lymphocytes, and so need to bind fewer receptors to become
activated.

2.1.2 Receptor Diversity
Because detection is carried out by binding with nonself5, the immune system must have a sufficient diversity
of lymphocyte receptors to ensure that at least some lymphocytes can bind to any given pathogen. Generating
a sufficiently diverse repertoire of receptors is a problem, because the human body does not manufacture as
many proteins as there are possible pathogen epitopes. [Inman, 1978] has estimated that the IS has available
about different proteins, and that there are potentially different proteins or patterns to be recognized.
One of the main mechanisms for producing the required diversity is a pseudo-random process, in which
recombination of DNA results in different lymphocyte genes, and hence different receptors6.

[Tonegawa, 1983] has estimated that there are at most different receptors. If we assume that there
are different pathogen epitopes, then there will not be a sufficient diversity of lymphocyte receptors to
bind every single possible pathogen. We can expect replicating pathogens to evolve so that they cannot be de-
tected. One solution of the immune system is to make protection dynamic, by providing a continual turnover
of lymphocytes: each day approximately new lymphocytes are generated [Osmond, 1993]. Assuming
that there are at any given time different lymphocytes, and these are turned over at a rate of per
day, it will take 10 days to generate a completely new lymphocyte repertoire. Over time, this turnover of
lymphocytes (together with immune memory; see section 2.1.3) increases the protection offered by the IS.

2.1.3 Adaptation
The IS needs to be able to detect and eliminate pathogens as quickly as possible, because pathogens can
replicate exponentially. The more generalized a lymphocyte is, the slower it will be at detecting specific
pathogens, and the less efficient at eliminating them, so the IS incorporates mechanisms that enable lympho-
cytes to “learn” or adapt to the structures of specific foreign proteins, and to “remember” these structures
for speeding up future responses. Both of these principles are implemented by a class of lymphocytes called
B-cells, because they mature in the bone marrow.

When a B-cell is activated (i.e. its affinity threshold is exceeded), it produces copies of itself (clones
that are produced through cell division). This copying process is subject to mutation rates that are nine orders
of magnitude higher than ordinary cell mutation rates, called somatic hypermutation, which can result in
daughter B-cells that have different receptors from the parent, and hence different pathogen affinities. These
new B-cells will also have the opportunity to bind to pathogens, and if such binding exceeds their affinity
threshold, they will in turn clone themselves. The higher the affinity of a B-cell for the pathogens present,
the more likely it is that the B-cell will clone. This results in a Darwinian process of variation and selection,
called affinity maturation: B-cells compete for available pathogens, with the highest affinity B-cells being the
“fittest”, and hence replicating the most. Affinity maturation enables B-cells to adapt to the specific pathogens
present, so that the most successful B-cells will have a higher affinity for those specific pathogens. The higher
the affinity the more efficient the lymphocyte will be in capturing specific pathogens, and consequently the

5Recall from section 1.1 that the term nonself encompasses all pathogens, toxins, etc. which are foreign to the body.
6This is a simplification. For research concerning receptor diversity, see [Oprea & Forrest, 1999].

10

faster the infection will be eliminated. This is particularly important when the IS is fighting off a replicating
pathogen: we have a race between pathogen reproduction and B-cell reproduction.

A successful immune response results in the proliferation of B-cells that have higher than average
affinities for the foreign pathogens that caused the response. Retention of the information encoded in these
B-cells constitutes the “memory” of the IS: if the same pathogens are encountered in future, the pre-adapted
subpopulation of B-cells can provide a response that is more rapid than the original response. Our understand-
ing of immune memory is problematic because B-cells typically live only a few days, and once an infection
is eliminated, we do not know what stops the adapted subpopulation of B-cells from dying out. There are
two theories that are currently dominant. According to one of the theories, the adapted cells become mem-
ory cells that live up to the lifetime of the organisms [MacKay, 1993]. The other theory postulates that the
adapted B-cells are constantly re-stimulated by traces of nonself proteins that are retained in the body for
years [Gray, 1992].

A consequence of learning and memory is that two types of immune response can be distinguished:
a primary response to previously unencountered pathogens, and a secondary response to pathogens that have
been encountered before. A primary response will typically take up to three weeks, during which B-cells
are adapting to the specific pathogens, whereas a secondary response is much briefer (on the order of a few
days) because the IS retains a memory of those specific pathogens (see figure 2.2). A secondary response
is not only triggered by re-introduction of the same pathogens, but also by infection with new pathogens
that are similar to previously seen pathogens; in computer science terms, immune memory is associative
[Smith, et al., 1998]. This feature underlies the concept of immunisation, where exposure to benign forms of
a pathogen engenders a primary response and consequent memory of the pathogen enables the IS to mount a
more rapid secondary response to similar but virulent forms of the same pathogen (see figure 2.3).

2.1.4 Tolerance

The picture described thus far has a fatal flaw: receptors that are randomly generated and subject to random
changes from somatic hypermutation could bind to self and initiate autoimmune responses. An autoimmune
response occurs when the IS attacks the body. Autoimmune responses are rare7; generally the immune
system is tolerant of self, that is, it does not attack self. Tolerance is the responsibility of another class of
lymphocytes, called T helper cells (Th-cells), because they mature in the thymus, and “help” the B-cells.
Most self epitopes are expressed in the thymus (an organ located behind the breastbone) so during maturation
Th-cells are exposed to most self epitopes. If an immature Th-cell is activated by binding self, it will be
censored (i.e., it dies by programmed cell death) in a process called clonal deletion or negative selection.
Th-cells that survive the maturation process and leave the thymus will be tolerant of most self epitopes. This
is called Central Tolerization (CT) , because the immature Th-cells are tolerized in a single location (the
thymus).

B-cells are tolerized in the bone-marrow, but this is not sufficient to prevent the development of
autoreactive B-cells. During affinity maturation B-cells hypermutate, which can result in previously tolerant
B-cells producing autoimmune clones. Affinity maturation occurs in the germinal centres of the lymph nodes,
of which there are hundreds distributed throughout the body. To ensure tolerance across these distributed
locations requires what can be termed peripheral or Distributed Tolerization (DT) . Th-cells provide this
through a mechanism known as costimulation. To be activated, a B-cell must receive costimulation in the
form of two disparate signals: signal I occurs when the number of pathogens binding to receptors exceeds
the affinity threshold (as described in section 2.1.1), and signal II is provided by Th-cells. If a B-cell receives
signal I in the absence of signal II it dies.

7At the most, five percent of adults in Europe and North America suffer from autoimmune disease [Steinman, 1993].

11

0 10 20 100 110

new
pathogen

previously
encountered
pathogen

primary
response

secondary
response

Days

antibody

Figure 2.2: Responses in immune memory. Primary responses to new pathogen epitopes take on order
of weeks; memory of previously seen pathogens epitopes allows the IS to mount much faster secondary
responses (on the order of days). The y-axis (antibody) is a measure of the strength of the IS response.

12

response
to smallpox

cowpox smallpox

to cowpox
response

0 10 20 100 110
Days

antibody

Figure 2.3: Associative memory underlies the concept of immunization. At time zero, the cowpox pathogen
is introduced. Although harmless, it is recognized as foreign, so the IS mounts a primary response to it,
clears the infection, and retains a memory of the cowpox. Smallpox is so similar to cowpox, that the memory
population generated by the cowpox reacts to the smallpox, eliminating the smallpox in a more efficient
secondary response.

13

To provide signal II to a B-cell, a Th-cell must “verify” the epitopes detected by the B-cell. The way
in which it performs this verification is complex. B-cells engulf pathogen peptides and present these peptides
on the surface of the B-cell, using molecules of the Major Histocompatibility Complex (MHC). These MHC
molecules show the Th-cells what is inside the B-cell, that is, what the B-cell has detected. If a Th-cell binds
to an MHC/peptide complex presented on the surface of a B-cell, it will provide signal II to that B-cell, and
the B-cell will be activated. Because Th-cells undergo centralized tolerization in the thymus, most mature
Th-cells are self-tolerant, and so will not costimulate B-cells that recognize self. The Th-cell “verifies” that
the detection carried out by the B-cell is correct, and not autoimmune.

Unfortunately, the picture is not as simple as this. Some peripheral self proteins are never presented
in the thymus (the exact fraction is unknown), and so Th-cells emerging from the thymus may still be self-
reactive. Self-tolerance in Th-cells is also assured through costimulation: once again, signal I is provided by
exceeding the affinity threshold, but signal II is provided by cells of the innate IS. These innate system cells
are thought to give out signal II in the presence of tissue damage8. This may still allow autoreactive T-cells
to survive, but as soon as an autoreactive Th-cell leaves the region of tissue damage, it will receive signal I in
the absence of signal II and die. This can be termed frequency-based tolerization because an autoreactive Th-
cell should encounter self in the absence of tissue damage with higher frequency than self in the presence of
tissue damage, because healthy self is generally more frequent than nonself. If these frequencies change, then
frequency tolerization can lead to a loss of immune function, which has been observed when overwhelming
initial viral doses result in nonself becoming frequent [Moskophidis, et al., 1993]. The utility of frequency
tolerization is emphasized by the fact that the loss of the thymus does not result in devastating autoimmunity,
which is what we would expect if Th-cells were only tolerized centrally.

The specialization of the different lymphocytes gives the immune system the ability to provide a
faster adaptive response that is not self-reactive. Th-cells have the responsibility for self-tolerance, thus
freeing B-cells to hypermutate and adapt to a specific pathogen. Although Th-cells must be able to recognize
the peptides presented by the B-cells, both classes of lymphocytes are necessary. Th-cells are general, non-
specific detectors, and so are not efficient at detecting specific pathogens. B-cells, by contrast, can adapt to
become more specific, and thus more effective at detecting particular pathogens. It has been estimated that
B-cells detect specific pathogens 10 to 10000 times more efficiently than Th-cells [Matzinger, 1994].

2.1.5 MHC and diversity
It is essential for host defense that MHC can form complexes with as many foreign peptides as possible,
so that those foreign peptides can be recognized by Th-cells. Because of the nature of molecular bonding,
a single type of MHC can form complexes with multiple, but not all pathogenic peptides. Hence, there is
selective pressure on pathogens to evolve so that their characteristic peptides cannot be bound by MHC,
because then they will be effectively hidden from the IS. Therefore, it is essential that the body have as many
varieties of MHC as possible. However, as the diversity of MHC types increases, there is a resulting increase
in the chance that immature Th-cells will bind to complexes of MHC and self, which means that more Th-
cells will be eliminated during negative selection. Eliminated Th-cells are a waste of resources, so evolution
should favour lower rates of Th-cell elimination during negative selection. Hence the number of MHC types
is constrained from below by the requirement for diversity to detect pathogens, and from above by resource
limitations imposed by negative selection. Mathematical models of this trade-off indicate that the number of
MHC types present in the human body (about 4 to 8) is close to optimal [Mitchison, 1993].

MHC types do not change over the life of an organism and are determined by genes that are the most
polymorphic in the body. Hence, MHC is representative of genetic immunological diversity within a popu-

8This is a simplification. For a more detailed exposition of possible tolerization and costimulation mechanisms, see
[Marrack & Kappler, 1993, Matzinger, 1994, Matzinger, 1998].

14

lation. This diversity is crucial in improving the robustness of a population to a particular type of pathogen.
For example, there are some viruses, such as the Epstein-Barr virus, that have evolved dominant peptides
that cannot be bound by particular MHC types, leaving individuals who have those MHC types vulnerable to
the disease [Janeway & Travers, 1996]. The genetic diversity conferred by MHC is so important that it has
been proposed that the main reason for the continuance of sexual reproduction is to confer maximally-varied
MHC types upon offspring [Hamilton, et al., 1990]. There are some studies with mice that support this the-
ory. These studies indicate that mice use smell to choose mates whose MHC differs the most from theirs
[Potts, et al., 1991].

2.2 A First Attempt at Applying Immunology to ID: Host-based
Anomaly Detection

The first project the author was involved in that made use of immunology was that of designing and test-
ing a host-based anomaly ID for the UNIX operating system [Hofmeyr, et al., 1998, Forrest, et al., 1997,
Forrest, et al., 1996]. Although this work was successful, it did not go far in incorporating ideas from im-
munology. The primary drive of the research was to define a “sense of self” for a computer system, that is,
to find some characteristic of a computer system that was universal, robust to variations in normal behaviour,
but perturbed by intrusions. In other words, we were looking for a computer system “peptide”.

As our peptide, we chose short (of length six to ten) sequences of system calls emitted by running
programs. We found these short sequences resulted in a compact signature of self (from 200 to 5000 unique
sequences), and reliably discriminated between self and nonself. The method was simple, and was imple-
mented in two phases: a training phase, and a test phase. During the training phase, a profile or database
of normal behaviour was collected for each program of interest. The database was collected by scanning
traces of normal behaviour and extracting sequences of system calls, ignoring parameters to the system calls
and tracing forked subprocesses individually. Each normal database was specific to a particular system (de-
fined by its configuration, architecture, software version, etc.). In the test phase, the running program was
monitored for deviations from the recorded normal behaviour, that is, the system scanned for occurrences
of sequences not in the normal database for that program. The method was deterministic: every sequence
detected during testing that was not found in the normal database was flagged as a mismatch, and anomalies
were determined by aggregating mismatches over a temporal window (typically 20 system calls).

Experimental results using this method indicate that self is compact (the normal databases were from
200 to 5000 unique sequences) and sequences of system calls distinguish many different types of anomalies.
Normal databases of sequences differed by 42% to 84% between different programs, and there was clear
detection of common intrusions (buffer overflows, symbolic link problems, trojan code and Denial of Service
(DOS) 9) on three different UNIX platforms, for nine different programs (sendmail, ftpd, lpr, swinstall,
lpr, xlock, named, login, ps and inetd). Intrusions were detected with 1 to 20% mismatches counted over
the duration of the intrusion trace. Furthermore, the method exhibited low false alarm rates, for example,
monitoring lpr resulted in about 1 false alarm every other day.

Although inspired by thinking about immunology, this research incorporated little in the way of im-
mune system algorithms and architecture. Three principles that were successfully incorporated were implicit
policy specification, because acceptable behaviour was what the programs were observed to do during nor-
mal operation), anomaly detection, because the system was not trained on known intrusions, and diversity,
because the local variations in program setup and usage between different systems resulted in different nor-
mal databases even for the same program. For example, we collected normal for lpr at both the Computer

9These intrusions are described in more detail in [Hofmeyr, et al., 1998] and in [Warrender & Forrest, 1999].

15

Science Department at the University of New Mexico (UNM) , and at the Artificial Intelligence Laboratory
at the Massachuesetts Institute of Technology (MIT) . It was found that these databases differed by 40% even
though they were both databases of normal behaviour for the same program (lpr).

2.3 Network Intrusion Detection

The research on system calls was promising, but did not lend itself well to a distributed architecture: the
ID system was host-based, and had nothing to gain from the distributed mechanisms used by the IS. By
contrast, a computer network is a distributed environment, and for this reason, the domain of computer
networks was chosen. Furthermore, monitoring network traffic has the advantage that all attacks on a system
must come through the network, unless the attacker is sitting at the console of the target computer. Finally,
computers communicate via standardized protocols, and so monitoring these protocols allows the ID system
independence from the local operating system. This section gives a brief overview of some salient points
in networking before moving onto a review of network intrusion detection, but the interested reader should
consult [Comer, 1995, Hunt, 1992, Stevens, 1994].

2.3.1 Networking and Network Protocols

Information is sent across networks in discrete packets. There are two fundamental ways of transmitting these
packets: broadcast and packet switched. On a broadcast network, all packets are sent to all computers on the
network, and individual computers only accept the packets that are addressed to them (although they see all
packets). This system works well for small networks of computers that are linked together by high-speed
connections (10Mbit/s and more). Such networks are known as Local Area Networks (LANs) because the
computers must be in physically proximity to one another to enable high-speed communication10. When
computers are further apart, they are linked by Wide Area Networks (WANs) , and packets must be trans-
mitted using packet-switching: packets have to be routed from source computer to destination computer via
intermediate computers or routers, and the packets can take different routes, that is, they can be switched be-
tween different routes. The internet is an example of a packet-switched network that connects LANs together,
which are predominantly broadcast networks.

Any attack launched against a computer over a network must make use of communications protocols.
Monitoring network traffic at different protocol levels will yield different information about possible attacks.
The basic protocol which links all computers on the internet together is the Internet Protocol (IP) . Other
protocols are layered on top of IP.

Each computer communicating via IP is assigned a unique 32-bit address11, which is written as four
bytes, for example, 198.15.77.3. IP addresses are assigned by a central authority in blocks, for example,
if is a don’t care symbol, then a block of addresses could be 198.15.77. , which would mean that the
block contained 256 addresses. Each address block is referred to as a network, and is identified by its most
significant bytes, so the block in the example above would be the network identified by 198.15.77. Blocks are
allocated in various sizes; the size determines the network class. There are three different classes that are used
for network addresses: class A networks are identified by only the most significant byte, so they contain
addresses; class B networks are identified by the two most significant bytes, so they contain addresses;
and class C networks are identified by the three most significant bytes, so they contain 256 addresses.

Three main protocols that are layered on top of IP are:

10Not all LANs use broadcast, an issue that is returned to later in section 7.3.
11Computers on different networks that are isolated from one another can have the same IP addresses.

16

Internet Control Message Protocol (ICMP) : This protocol is used for low level communication of con-
trol information between computers on the internet. It enables computers to check routes to other
computers, to change routes to other computers, and similar functions.

User Datagram Protocol (UDP) : This is a connectionless protocol: packets are sent individually and there
is no guarantee that the packets will get to their destination or that they will arrive in the correct order.
For this reason, UDP is sometimes mistakenly believed to stand for unreliable datagram protocol.
However, allowing for unreliability reduces the overhead and can make UDP faster than a connected
protocol. Hence, UDP is useful for communications which are not adversely affected by the occasional
loss or misplacement of a packet, or for communications where the speedup is important.

Transmission Control Protocol (TCP) : By contrast to UDP, TCP is a reliable, connected protocol. Infor-
mation that is transmitted using TCP will always reach its destination in the order transmitted, or the
communicating computers will be informed of a transmission error. A connection is established by a
three-way handshake (see figure 2.4).
Because each computer can support multiple, simultaneous connections, each connection is identified
by a 16 bit number, called a port. The ports on the two computers involved in a connection can
be (and generally are) different. Hence, every connection can be identified by the 4-tuple (source
IP address, destination IP address, source port number, destination port number). Certain ports are
assigned to particular services: by convention, particular servers will respond to connection requests on
particular ports. For example, a web server will respond to requests to connect to port 80, irrespective
of the source port requesting the connection. Generally, only servers use assigned ports; clients use
unassigned, higher-numbered ports. In the UNIX operating system, ports are further classified as
privileged (those under 1024) or nonprivileged (from number 1024 upwards). Usually privileged ports
are reserved for connections to privileged services, such as login, and regular users are not allowed to
run programs that listen to these ports. TCP is used when reliable two-way communication is required,
for example, with file transfers.

2.3.2 Network Attacks
Attacks can be divided into two classes: host-targeted attacks which exploit holes in programs running as
servers, and network-targeted attacks that exploit weaknesses in network protocols. In the previous work
described in section 2.2, we developed a method for detecting host-targeted attacks, but not network-targeted
attacks. There are multiple varieties of network-targeted attacks, most of which rely on the fact that under
the standard protocols, any packets that can be intercepted can also be read. Sensitive information (such as
passwords) can then be used to compromise security. The best way to deal with this problem is to encrypt the
traffic, so that even if an attacker can intercept the packets, the attacker cannot read them.

Whatever the nature of the attack, it must come over the network unless the attacker is physically
present at the computer. In typical attack scenarios, the attacker does not knowmuch about the target network
of computers, and must probe the network in various ways to glean information so that an attack can be
launched. The sophistication of this probing can vary. An example of unsophisticated, crude probing is
portscanning, where the attacker attempts to connect to every single port on the target computer. Another
example is blind address-space probing, where the attacker attempts to connect to every IP address in a
network, regardless of whether or not a computer exists at that address. Generally, more sophisticated probing
is more limited, for example, an attacker might only probe those ports that run services with vulnerabilities
discovered within the last month. Another way in which an attacker can make probing more stealthy is to
spread out the actions over a longer period of time, so there are no bursts of suspicious activity. The attacker

17

repeated ACKs

Computer A initiates connection Computer B accepts connection

ACK (acknowledge packet)

SYN, ACK (acknowledge request to synchronize)

SYN (request to synchronize)

TIME

Figure 2.4: The three-way TCP handshake for establishing a connection. The computer requesting the con-
nection (A) sends a TCP packet to B, with the SYN flag of the packet set. SYN stands for synchronize and
is a request for a connection. In accepting the connection, B sends a return packet to A with the SYN flag
set, and the ACK flag set. ACK stands for acknowledgment and indicates that B has received the request
for a connection and accepts it. From that moment on, information is exchanged using only the ACK bit, to
acknowledge that previous packets were received.

18

could also spread out the attacks over IP space, by probing each port or address from a different location.
Such a Distributed Coordinated Attack (DCA) can be much harder to detect.

2.3.3 A Survey of Network Intrusion Detection Systems

Network ID systems are designed to detect network attacks by analysing and monitoring network traffic12.
Some good overviews of ID systems are given in [Mukherjee, et al., 1994]. This section briefly describes
existing network ID systems, including NADIR [Hochberg, et al., 1993], DIDS [Snapp, et al., 1991],
EMERALD [Porras & Neumann, 1997, Porras & Valdes, 1998], AAFID [Crosbie & Spafford, 1994,
Crosbie & Spafford, 1995a, Crosbie & Spafford, 1995b, Balasubramaniyan, et al., 1998], NID
[Heberlein, 1998], NSM [Heberlein, et al., 1990, Heberlein, et al., 1991, Mukherjee, et al., 1994], GrIDS
[Staniford-Chen, et al., 1996], NetSTAT [Vigna & Kemmerer, 1998], NetRanger [NetRanger, 1999], and
ASIM [ASIM, 1996]13. Many of these systems have both network and host-based components (NADIR,
DIDs, EMERALD, AAFID, GrIDS), but this discussion focuses on the network monitoring components.

Most of the network ID systems described here perform signature-based detection; few perform
anomaly detection (NSM, EMERALD and to a limited extent NID and ASIM). Some systems have only a
single monitor (NSM, NID, ASIM), but most use multiple monitors distributed across the network. These
multi-monitor systems collate information in one of two ways: either centrally (NADIR, DIDs, NetSTAT, Ne-
tRanger) or hierarchically (EMERALD, AAFID, GrIDS). The hierarchical architectures have the advantage
of scalability. The largest difference between the signature-based systems is in the way they model intru-
sion signatures. The most common approach is to use expert systems (NADIR, EMERALD, DIDs, NID).
More unusual approaches include a method of encoding attack signatures with state transition diagrams (Net-
STAT), and representing attack signatures as graphs (GrIDS). The three systems (NSM, EMERALD, ASIM)
that perform anomaly detection both use some form of statistical analyses. In the case of AAFID, it is not
clear what analysis methods are or will be used. The architecture is flexible enough to support different
analysis methods; indeed, it is flexible enough to support both signature-based and anomaly detection.

None of these systems achieves all of the immunological principles laid out in section 1.3. There are
some principles that are obviously achieved: all the systems except NSM perform signature-based detection
and so have the equivalent ofmemory. Three systems (NSM, EMERALD,ASIM) perform anomaly detection,
and these systems also have an implicit policy specification, because any anomaly detection system implicitly
defines normal or common behaviour as legitimate. Some multi-monitor systems achieve scalability through
hierarchical organizations.

Other principles are only achieved to a limited degree. The multi-monitor systems are distributed, in
the sense that the monitors they employ are distributed throughout the network, and they can detect intrusive
activity that happens over multiple computers. However, they are not localized in the sense that the IS is
localized: they employ hierarchies, which means that they are vulnerable to attacks at high levels in the
hierarchy. Multi-monitor systems are robust to the extent that loss of individual monitors will not result
in a total failure of the system, however, as mentioned before, they are not robust to loss of, or faults in,
components high in the hierarchy. The only ID system that shows promise of diversity is AAFID, because its
architecture is general enough to employ a variety of detection methods simultaneously. The other systems
do not achieve diversity because the same detection method is used within each system, and is replicated
across all monitors.

There are two principles that all systems fail to achieve. None of the systems is adaptable in the
way the IS, that is none of them can automatically extract intrusion signatures from novel attacks. The other

12Systems that monitor network traffic are commonly labeled “network-based” [Mukherjee, et al., 1994].
13Because of the number of these systems, these acronyms are not expanded here; consult the glossary for the full names.

19

principle not achieved by any system is flexibility: in the context of the immune system, flexibility means
being able to dynamically and automatically use resources as required, or as the opportunity offers. Note
that AAFID has an architecture that could support both flexibility and adaptability, but there is no notion of
automatic adaptation or reconfiguration in the current models.

2.3.4 Building on Network Security Monitor
The goal of this research was to build a prototype system that could achieve most of the immunological
principles described above. A first requirement was anomaly detection. It would save time to build on some
previous system that had already demonstrated success in anomaly detection, which meant that the only
option was the Network Security Monitor (NSM) (AAFID can support anomaly detection but there is no
description of what that anomaly detection could be, and no results of the efficacy of EMERALD’s anomaly
detection component have been reported). In this section, the concepts behind NSM are described in more
detail. This material is drawn from [Heberlein, et al., 1990].

NSM monitors TCP/IP traffic on a broadcast LAN, which has the advantage that NSM can see all
packets on the LAN without requiring any additional auditing. The benefit of this passive monitoring is that
using NSM does not place any overhead on the network. The TCP/IP traffic is represented as datapaths, where
a datapath is the triple (source computer, destination computer, network service) representing a possible TCP
connection between a source and destination computer using a particular network service (see figure 2.5).
The normal traffic on the network can be characterised by a set of datapaths, and these can be used as the
basis for an anomaly detection system.

broadcast LAN

internal computer

external computer

IP: 20.20.20.5
port: 21

datapath triple
(20.20.20.5, 31.14.21.37, ftp)

IP: 31.14.21.37
port: 1700

Figure 2.5: Patterns of network traffic on a broadcast LAN. Each computer can be thought of as a node in
the graph, with a connection between computers forming an edge between the corresponding nodes. The
dotted line indicates the boundary between the LAN and the external world. Note that a collection of normal
datapaths will include paths between computers on the LAN, and connections between computers on the
LAN and external computers.

NSM stores the profile of normal datapaths in a traffic matrix. Each cell in the matrix stores two
statistics about a particular datapath: the frequency of connections on that datapath, and the rate of packet
transfer over that datapath. In results reported in [Heberlein, et al., 1990], the normal profile was collected
over a period of two weeks, during which any connection that occurred at least once was regarded as normal
(this includes connections between internal computers, and between internal computers and external com-
puters). NSM monitors network traffic for anomalies whenever a new connection is added and at five minute

20

intervals. If the new connection has a low probability of existing in the normal profile, or if traffic flow over
an existing connection has a low probability of being at that frequency (where “low” is defined by an operator,
according to security policy), then an anomaly is signaled, which may or may not indicate an attack. Carrying
out such analysis exhaustively for all datapaths was found to be too computationally expensive, so analysis
was performed on hierarchical decompositions of the traffic matrix14.

In tests over two months at the University of California, Davis, NSM classified 300 out of 11000
connections as anomalous, and subsequent investigations revealed that most of these 300 anomalies were
indicative of attacks. NSM was this successful because most computers in the LAN communicate with few
(3 to 5) other computers, over few services. It was found that of all the possible datapaths in the LAN, only
0.6% were included in the normal, which means that an attacker had a low (0.06) probability of following
normal paths and hence a high (0.94) probability of generating anomalous connections.

2.3.5 Desirable Extensions to NSM
NSM appears to be the right approach because it uses anomaly detection, normal is well-defined and stable
and attackers are likely to perturb normal. To move closer towards the principles embodied in the immune
system, several extensions to NSM are required, namely to make it distributed, robust, adaptable, and flexible.
To achieve these, the concept behind NSM needs to be embodied in multiple detection systems that run on
all computers on the LAN. These local detection systems must be sufficiently flexible and lightweight so that
they can make full use of idle cycles on computers without compromising the usability of those computers.

Distributing NSM according to the immunological principles will make the system more resilient
to insertion and evasion attacks [Ptacek & Newsham, 1998] against the ID system itself. An insertion attack
is where an attacker constructs packets so that the ID system accepts them but the victim computer rejects
them. The ID system could potentially be confused by such packets, especially if it is performing signature-
based detection. An evasion attack is the reverse of an insertion attack: the attacker constructs a packet that
is accepted by the victim computer, but not the ID system, which can be done by exploiting differences in
the TCP/IP implementation between the victim computer and the one on which the ID system resides. Both
of these kinds of attacks will be harder to execute if all computers on the network are running ID systems,
including the victim computer. The attacker must now craft a packet that is rejected by a single computer but
accepted by all others on the LAN, or vice versa.

2.4 An Immunologically-Inspired Distributed Detection System
This dissertation will show that the goals stated above, for an ID system based on NSM, can be
achieved through the use of algorithms and architecture that are based on immunological mecha-
nisms. Previous work has isolated and investigated an immunological model of change detection, called
negative detection. [Forrest, et al., 1994, D’haeseleer, et al., 1996, D’haeseleer, 1996, D’haeseleer, 1995,
Helman & Forrest, 1994]. This research is briefly reviewed here; more details are given later in chapter
3, in the formal description of the model of distributed detection which is a foundation for the results in this
dissertation.

The problem of anomaly detection can be expressed as the problem of distinguishing self from
nonself, where self is all legitimate and acceptable patterns, and nonself is all illegitimate or unacceptable
patterns. These patterns could be a variety of characteristics of a system, for example, sequences of system

14A later version of NSM used an expert system to look for intrusion signatures in the traffic matrix, in addition to the statistical
anomaly detection [Mukherjee, et al., 1994]. NSM is still in use in this later form. In its current incarnation it is called NID, which
stands for Network Intrusion Detector [Heberlein, 1998]. Another direct development of NSM is ASIM.

21

calls, or datapaths in a network. In this model, patterns are represented by strings of fixed length , most
commonly binary strings. These strings are analogous to peptides in the immune system. The negative
detection system works by learning the set of self strings in a training phase, and then classifying new data as
normal or anomalous during a test phase.

A negative detection system consists of multiple negative detectors, each of which is represented
by a string of length . These detectors are analogous to lymphocytes in the immune system, and detection
between a detector and a string is analogous to receptor binding, which is modeled as partial string
matching between and the string representing . In the work discussed here, the contiguous bits rule was
used [Percus, et al., 1993]: two strings match under the contiguous bits rule if they have the same symbols in
at least contiguous positions (is the match threshold). The detectors are called negative because they are
generated so that they match nonself strings, and not self strings. Hence, in a negative detection system, self
is defined in terms of its complement.

The negative selection algorithm is used to generate the detectors, and is similar to negative selection
(clonal deletion) in the thymus. During the training phase, candidate detectors are generated at random and
compared to all self strings. If a candidate detector matches any self strings, it is deleted and replaced by
a new randomly-generated detector, and the process is repeated. The result is a set of detectors that match
nonself, and have the property that when a detector is activated, it is immediately obvious that a nonself string
has been detected and its location can be pinpointed. This property means that the detectors can be distributed
across multiple computers without requiring communication (memory sharing) between them.

The feasibility of negative detection was demonstrated for the problem of protecting files in the DOS
operating system from corruption by viruses [Forrest, et al., 1994]. The self set was derived from the files by
dividing the files into equal-sized substrings of 32 bits in length, and the contiguous bits rule was used with a
matching threshold of between 8 and 13 bits. Infections representing nonself were generated by file infector
viruses. For example, one self set had 655 strings, which could be protected at 100% reliability by no more
than 10 detectors. Similar results were obtained with boot-sector viruses.

Negative detection incorporates many of the immunological principles:

Detection can be distributed by placing different detectors on different computers.

Having different randomly-generated detectors on different computers confers diversity, because dif-
ferent computers will be able to detect different intrusions.

The system is robust because the loss of some detectors on a single computer will not result in a
complete absence of protection.

If the self set is representative of empirical normal behaviour, then policy is implicitly specified.

The system is flexible in that protection and computational requirements both depend on the number
of detectors, so the number of detectors can be automatically increased to take advantage of idle cycles
or decreased so as not to interfere with normal operation.

Because detection is localized and does not require communication, the system is scalable.

The system has the ability to do both anomaly and signature-based detection.

22

Chapter 3

An Immunological Model of Distributed
Detection

The IS is a complex distributed system with a variety of novel mechanisms that can be copied to solve
problems of distributed detection. To understand the issues involved, the problem of distributed detection is
defined in an abstract framework that can be applied to different engineering problem domains. This frame-
work can be used for analysing models of distributed detection; in particular, this dissertation is concerned
with the issues of errors in detection, and what effects these have on the scalability and robustness of the
system.

In this chapter, firstly, the framework is used to derive properties that are necessary for scalability
and robustness (section 3.1). Next a model is described, one that is based on the IS, that exhibits these
properties. This model uses negative detection, as presented in section 2.4. The implementation of the model
is discussed, and analysis the properties of the model presented (section 3.2). The point behind this is to
formalize the claim that the immunological model is an effective way of achieving the desirable principles
listed in section 1.3. To this end I will mention analogies to the IS when appropriate.

3.1 Properties of The Model
The first goal is to define the problem that we are attempting to solve. The definition includes a notion of
distribution, and some idea of resource limitations, both of which are essential for understanding the issues
involved.

3.1.1 Problem Description
The model environment is defined over a universe , where is a finite set of finite patterns1. is partitioned
into two sets, and , called self and nonself, respectively, such that and . Self patterns
represent acceptable or legitimate events, and nonself patterns represent unacceptable or illegitimate events.
Kolmogorov complexity is used to introduce the notion of resources. The Kolmogorov complexity2, ,
of a set of patterns is the length (in bits) of the smallest program that outputs [Chaitin, 1990,
Kolmogorov, 1965].

1The term “pattern” is used to emphasise that this definition is not dependent on the representation of a pattern. In general, a “pattern”
can be thought of as a finite length string; in the IS, a pattern is a peptide.

2Also called the Chaitin or descriptive complexity

23

The problem faced by a detection system, is: given limited resources, classify a pattern as
normal, corresponding to self, or anomalous, corresponding to nonself. A detection system consists of two
components, , where is a binary classification function, and is a set of patterns drawn from
representing the memory of the detection system, . To represent will require bits. The

classification function maps the memory set and a pattern to a binary classification of normal or
anomalous, that is, , where is the power set of . A pattern
is normal if it is in the memory, and is anomalous otherwise, that is,

if
otherwise

Classification errors are defined over a subset, of , called the test set, . The
test set can contain sets of both self and nonself strings, which are denoted and , respectively,

. A detection system, can make two kinds of classification errors: a false positive
error occurs when a self pattern is classified as anomalous, that is

; and a false negative error occurs when a nonself pattern is classified as normal, that is
. See figure 3.1. A detection event occurs when a pattern is classified

as anomalous, regardless of whether or not the classification was in error. A detection system, , is said to
detect a pattern when .

detection system

self

nonself
universe

false positives

false negatives

Figure 3.1: The universe of patterns. Each pattern can belong to one of two sets: self and nonself. Self
patterns represent acceptable or legitimate events, and nonself patterns represent unacceptable, or illegitimate
events. In this diagram, each point in the plane represents an pattern; if the point lies within the shaded area
it is self, otherwise it is nonself. A detection system attempts to encode the boundary between the two sets
by classifying patterns as either normal or anomalous. Where it fails to classify self patterns as normal, false
positives are generated; nonself patterns that are not classified as anomalous generate false negatives.

3.1.2 Distributing the Detection System
The distributed environment is defined by a finite set of locations, where the number of locations is , that
is, . Each location has a memory capacity that can contain at most bits. In this distributed
environment, each location has a detection system , where . There are
two separate, sequential phases of operation to the system: the first phase is called the training phase, and the
second is called the test phase. During the training phase, each local detection system, , has access to a

24

training set, , which can be used to initialize or modify the memory of . During the test phase, each
detection system at each location , attempts to classify the elements of an independent test set, , with
subsets and , such that . The performance of each detection system in terms of
classification errors is measured during the test phase.

The immunological model that is the basis for this research does not use communication between lo-
cal detection systems. There are advantages to be gained from avoiding communication. To understand why
this is the case, a definition of communication is included in the framework, so that the effects of communi-
cation can be analysed. Communication is defined in terms of memory sharing. There are other definitions of
communication possible; this one was chosen for simplicity. A detection system at location has access
to the information contained in all other locations that it communicates with, so if communicates with a
set of locations , this means that the classification function for is redefined as:

if
otherwise

It is assumed that if two locations communicate, then this costs a constant amount, . It is further
assumed that all locations can communicate with any others. Note that there is no notion of time here; either
a pair of locations communicate, sharing memory, at cost , or they do not communicate.

Global properties (properties that are a consequence of considering all locations in combination)
are defined to describe the overall performance of the system. The global classification function of the
distributed system is defined as

if and
otherwise

So, without communication (memory sharing), a pattern will be classified globally as anomalous if
at least one detection system has classified it as anomalous; conversely, if every location communicated with
every other location, then would be classified globally as anomalous only if all detection systems classified
it as anomalous, because having all locations communicate is the same as having a single detection system
with memory .

Global errors are defined as follows. An pattern is a global false positive, , if it oc-
curred in some training set for some detection system, and was classified as anomalous,
and . Conversely, if , then is a global false negative, ,

if, for every training set in which it occurred, the local detection system failed to classify it as anomalous,
.

3.1.3 Assumptions
Seven assumptions are made concerning the system and the problem. These assumptions are necessary to
demonstrate the conditions required to attain the properties of scalability and robustness, which are formally
defined later. All of the assumptions are justified below. Included are assumptions made in the definition of
the problem; they are restated here for clarity (assumptions 1, 2), and are stated first. It is assumed that:

1. is closed and finite. For any given problem domain, patterns must be represented in some fashion.
In this dissertation, a fixed size representation is used, and any fixed size representation implies a finite
and closed universe.

2. and . There may be cases in which this assumption does not hold, which means
that there will be patterns that are both self and nonself. It will be impossible for any detection system

25

to correctly classify such ambiguous patterns, and so they will always cause errors. The analysis will
be valid if there is a subset of for which the partition applies.

3. , that is, every location has sufficient memory capacity to encode or
represent any pattern drawn from . Any location that has insufficient memory capacity to encode
even a single pattern would be useless, and can be disregarded. If there is a subset of locations for
which this assumption holds, then the analysis applies to those locations.

4. , that is, every pattern occurs in at least two different
locations. Distribution only has an effect on the analysis if there is some commonality of patterns
across locations. If each location was always presented with a set of completely different patterns from
any other, then the analysis would devolve to a set of separate problems, one for each location, each
with its own distinct universe, and distribution could never make any difference to the analysis.

5. It is assumed that , that is, the training set is the self set. In the application presented in this
dissertation (chapter 4), this assumption does not hold. This issue is addressed later, in section 3.2.7.

6. , that is, every location contributes to the detection of
nonself (i.e., every local detection system correctly detects at least one nonself string in its local test
set). If a local detection system is not contributing, then it is useless and it can be excluded from the
analysis with no effect. Therefore, even if this assumption is relaxed, the analysis still applies to the
subset of local detection systems for which this is true.

7. , that is, the size of the test set at each location, is always greater than the number of
locations. In the application presented in this dissertation, this is true.

3.1.4 Generalization
In real-world applications, detection systems must be able to encode information compactly because of re-
source limitations. This concept is formalized in the notion of generalized detection. A set is an -
generalization of a set , if and only if, and . If is the maximum bits required to encode
any pattern , , then for any subset of , there exists a -generalization, that
is, such that and .

This can be shown as follows. Given , if then the -generalization is .
However, if , then is created from elements not in as follows. Construct the set by
drawing patterns from (the complement of) until the limit is reached, that is, such
that . Then the -generalization is , because, given that is closed (assumption 1),

, and . The construction of is only possible if is large enough
to encode even the most complex pattern in .

3.1.5 Scalable Distributed Detection
The notion of scalability is essential to distributed systems. For a distributed application to be general requires
that it feasible for systems of a variety of sizes (numbers of elements). There are multiple ways of defining
scalability; the definition used here assumes that the size of the detection problem is fixed3. The question
this definition addresses is: for a fixed detection problem size (i.e. fixed universe), does the detection system

3For example, one way of defining scalability is in terms of problem size; how does the computational complexity scale with the size
of the problem?

26

“scale” when it is distributed across an increasing number of locations? More formally, distributed detection
is scalable if an increase in the number of locations from to , does not violate two conditions:

1. There is no increase in the number of global errors, that is, if is the number of global errors over
locations, and is the number of global errors over locations, then .

2. Communication costs do not increase more than linearly, that is, if the cost of communication with
locations is , then the cost with locations is , where is a constant.

Computational time complexity and space complexity have not been included in this definition.
Within the framework there is no notion of computational time complexity, and space complexity is defined
by the memory capacity of each location, which is regarded as fixed, that is, the memory capacity cannot be
increased to accommodate more complex detection systems.

If we want scalable distributed detection under the assumptions given in section 3.1.3, then false
positives cannot be allowed, but false negatives can be allowed. Let the set of locations be , with
and add a new location . For each , there exists an such that , because of
assumption 4. There are two cases:

is nonself: that is, . There are two possibilities: either is already a global false negative, or is
globally classified as anomalous. In both these cases, if the new detection system incorrectly classifies
, that is, , it will make no difference to the global false negative errors. However,
if the new detection system correctly classifies , and was previously a global false negative, then the
number of global false negatives is reduced by the addition of . This illustrates an important property
of false negatives: as the number of locations increases, the number of global false negatives will not
increase, but can decrease.

is self: that is, . There are two possibilities: either is already a global false positive (i.e. glob-
ally classified as anomalous), or is correctly classified as normal. In the former case, an incorrect
classification of by the new location cannot increase global errors. In the latter case, however, if

, then, without communication (shared memory), will be a new false
positive and the number of global errors will have increased. This increase can be prevented by com-
munication between and a location , that correctly classifies , that is, .
The communication means that the detection system at has access to the memory at and so can
classify correctly.

However, consider the case where , for , where ,
which is possible because of assumption 7, and where every is presented at a different location

and no other, and is classified as normal, that is, , and , and
, . Then must communicate with every to avoid increasing the

number of global false positives, because for every , the new detection system at must communicate
with a different location. If each new location has to communicate with all previous locations, then
communication costs do not increase linearly.

3.1.6 Robust Distributed Detection
This section defines the conditions that are required for a distributed detection system to be robust. Robustness
means that the loss of functioning at a few locations will not cripple the system. There are varying degrees
of robustness, so robustness is defined as follows: a system is -robust if removal of a subset of locations

, of size does not result in detection system failure. Here detection system failure is

27

defined as the occurrence of any global false positives (because of scalability), or complete failure to globally
detect nonself. So, detection is -robust if, such that and then

, and . Note that this
definition includes removal of the empty set, so to be -robust for any , requires no false positives.

It is shown that a scalable distributed detection where detection memories are all -generalizations
of the self set will always be more robust than a system in which some memories are not -generalizations
of , under the assumptions given in section 3.1.3.

First it is shown that any distributed detection system with memories that are all -generalizations
of the self set is -robust. Because of assumption 5, a complete description of the self set is available.
In general, it cannot be assumed that or , consequently each memory
must be some -generalization of some subset of , which is possible because of assumption 3. Let every
memory set be a -generalization of , that is, and . Then the false
positive rate is zero because , . If a subset is removed
from , there still cannot be false positives, because each individual memory is a -generalization of .
Furthermore, removing will only result in a gradual degradation in detection (i.e., a gradual increase
in errors), because of assumption 6, that is, ,
providing . So removal of any subset will not cause false positives or catastrophic failure,
which means that this system is -robust.

Every detection system with memory which is not a -generalization of requires
communication, for without memory sharing operating on can produce false positives, because

. The robustness of a communicating system depends on how many local memories
are required to form a -generalization of . If memories are required, , (where
is the communication group size constant), and we assume that any set of memories will form a -
generalization of , then the communicating system is -robust, because as locations are removed, the
remaining locations can always communicate until only locations are left, at which point operating
on any of the remaining memories can result in false positives. As the number of memories required to
form a generalization decreases, so the robustness increases. At the limit, if (only two memories are
required), and , then the system is -robust.

False positives in a communicating system can be avoided altogether by modifying each classifica-
tion function so that it classifies patterns as anomalous only if there are enough memories () to form a

-generalization of , that is,

if or
otherwise

With this modified function, if the number of memories available is less than , the number needed
to form a -generalization of , will always return . Hence, there can be no false positives, but
there also cannot be classifications of anomalous when more than locations have been removed. So there
is failure of detection, in that nonself can never be detected. Hence, this solution is also -robust.

In conclusion, any system for which not all memories are -generalizations of will require com-
munication. Communication makes a system -robust, where . A system for which
all memories are -generalizations of is -robust and hence is always more robust than a system
in which not all memories are -generalizations of . As decreases in size, the difference in robustness
decreases, but then the amount of shared memory also decreases.

28

3.2 Implementation and Analysis

To achieve two of the principles listed in section 1.3, namely scalability and robustness, requires a distributed
detection system where each local system uses a generalization of the self set, and where communication is
minimized. The IS provides inspiration for the design of such a system. This section describes the imple-
mentation of a distributed detection system, one that is based on the architecture of the IS. This implemen-
tation is an extension of previous work [Forrest, et al., 1994, D’haeseleer, et al., 1996, D’haeseleer, 1996,
Helman & Forrest, 1994] that was described in section 2.4. The salient points are reiterated here.

Firstly, every pattern must be represented in some way, and there must be some way of compactly
encoding generalizations of patterns. All patterns are represented by binary strings of length . A
representation is a function mapping a pattern in to a string of length in , that is, 4.
The size of is then . Note that because is a representation of , it could be that . will
then be represented by the set of strings and will be represented by the set of strings . Under the
representation, and , will hold if is a one-to-one mapping and assumption 2
holds. In all the analysis presented here (except in section 3.2.7) it is assumed that the training set is the same
as the representation of the self set (i.e. assumption 5 holds), .

Generalization is implemented using detectors and partial string matching. There are other ways of
implementing generalized detection, for example, neural nets, but partial string matching is used because it
was used in the previous immunological models that are the foundation for this work. A single detector is an
abstraction of a lymphocyte in the IS, and receptor binding is modeled by partial string matching. A detector
is a binary string, so the Kolmogorov complexity of is , because each detector is a binary

string of length . Each detector compactly represents a set of strings , called the cover of , which is
determined by a match function, or match rule , . The event that
matches under is denoted as , and the event that does not match under is denoted as

, thus, and . When
there is no ambiguity, the match function will be omitted. All analysis here assumes that the match rules are
both reflexive (i.e., ,) and symmetric (i.e., ,).

The cover of is defined as , that is, the cover5 is the set of all
strings that are matched by under the given match rule . A detector , together with a match rule is a

-generalization of any set , if , because , where is constant representing
the bits required to encode the operation of the match rule. According to assumption 3, a location
always has enough memory capacity to encode any event , that is, . This assumption is
modified as follows: any location has enough memory capacity to encode any string , and store a
match rule, thus, . Any detector always has a Kolmogorov complexity of .
For brevity, a detector is sometimes referred to as a generalization of set , which means that together
with some match rule forms a -generalization of .

This section describes and analyses two different kinds of match rules, how detectors can be con-
structed so that they are generalizations of , how different representations are useful for minimizing errors,
and mechanisms for reducing false positives in the case when the training set does not include all of .

4The representation could also be a variable length string of some alphabet other than binary; fixed length strings were used to ease
analysis and implementation, and a binary alphabet was used because this gives the most flexibility for partial matching, an issue which
is explained later.

5Note that any arbitrary string has a cover, because a detector is a string, and because it is assumed that matching is symmetric and
reflexive.

29

3.2.1 Match Rules
The two match rules discussed here both have a parameter , which is a match threshold; by
adjusting the value of , the size of the cover of a detector can be modified. In all cases, if , then the
cover of is all strings, , and if , then the cover is a single string, , . The lower the
value of , the more general the match; the higher the value of , the more specific the match. Furthermore,
note that both these rules are symmetrical and reflexive.

The first match rule considered is based on Hamming distance and is termed the Hamming match:
two strings and match under the Hamming match rule if they have the same bits in at least positions. So
if and , then only if is there a match, that is, . The probability6
of two random strings matching under the Hamming rule is

This probability is derived by noting that is the probability of a single string occurring, and
is the number of strings in that have the same bits in positions.

The second match rule is called the contiguous bits rule, and has been used as a plausible abstrac-
tion of receptor binding in the immune system [Percus, et al., 1993]. Two strings, and match under the
contiguous bits rule if and have the same bits in at least contiguous locations (see figure 3.2). The
probability of two random strings matching under the contiguous bits rule is [Percus, et al., 1993]:

(3.1)

0110100101

1110111101

0100110100

1110111101

Match No match

r = 4

Figure 3.2: Matching under the contiguous bits match rule. In this example, the detector matches for ,
but not for .

These rules have different matching probabilities for the same value of ; the way the matching
probability changes with also varies. For the Hamming rule, a decrease of 1 in will change the match
probability by

This means that the further is from the middle value, the less the match probability will change
with changes in . For the contiguous bits rule, a decrease of 1 in will change the match probability by

6The probability of an event is denoted by .

30

which means that a decrease of 1 in approximately doubles the match probability, for all values of
.

The choice of rule depends on the application, and on the representation (see section 3.2.6). In
chapter 4 these two rules are compared in the context of network intrusion detection.

3.2.2 Detector Generation
In section 3.1 it was shown that for scalable, robust, distributed detection, it is required that the memory, ,
for every local detection system must be a -generalization of the self set. Detectors are -generalizations
of some sets; it is necessary to ensure that they are also -generalizations of the self set. One method is to
ensure that the cover of a detector is a -generalization of , which means that it must include every

, that is, . Because is the set of all strings that are matched by , it is required that
match all strings .

An alternative method is to copy the IS and define generalization in terms of the complement of ,
which is possible because is closed. If is generated so that it includes no self, that is, ,
then the complement of is a -generalization of , because . Then it
is required that match no strings in . Such a detector is a generalization of , and is called a negative
detector [Forrest, et al., 1994] because it is generated to match the complement of self, that is, to match
nonself. A negative detector is analogous to a lymphocyte in the IS, because a lymphocyte is tolerized to bind
only nonself peptides.

Negative detectors can be generated using the negative selection algorithm described in section 2.4.
As described before, the negative selection algorithm is an abstraction of the negative selection of lympho-
cytes that happens in the thymus. The negative selection algorithm will guarantee that a detector is a
generalization of the training set, that is, and . If then is a
-generalization of the self set7. A detector which is a generalization of is called a valid or tolerized

detector, and is denoted (see figure 3.3). The process of generating a valid detector using the negative
selection algorithm is termed tolerization (borrowing a term from immunology), because the algorithm gen-
erates detectors that are tolerant of the self set. To generate negative detectors using the negative selection
algorithm requires access to the self set during training, but no prior knowledge about the kinds of nonself
strings that could be encountered. Consequently, if any nonself strings are detected during the test phase,
then the system is performing anomaly detection (one of the principles listed in section 1.3).

The time complexity of the negative selection algorithm is proportional to the number of times a
candidate detector must be regenerated before it becomes valid. The number of retries can be probabilistically
computed as follows. Let be a candidate detector, and let be the event , that is,
the event that does not match any in . Then the probability that is a valid detector is8:

(3.2)

If it is assumed that the probability of a candidate detector matching a self string is inde-
pendent of its probability of matching other self strings, and the probability of a match is denoted by

, then , and hence

(3.3)

7In section 3.2.7 the case where is analysed.
8The intersection of the events and is denoted as .

31

negative
detector

ACCEPT REGENERATE

Randomly generate
detector string

If detector matches self,
regenerate
otherwise accept

Figure 3.3: The negative selection algorithm. Candidate negative detectors (represented by dark circles) are
generated randomly, and if they match any string in the self set (i.e. if any of the points covered by the
detector are in the self set), they are eliminated and regenerated. This process is repeated until we have a set
of valid negative detectors that do not match any self strings.

The number of retries required to generate a valid detector is a geometric random variable with
parameter , so the expected number of trials9, until success is [Forrest, et al., 1994]:

(3.4)

Hence the expected number of retries to generate a single valid detector is exponential in the size of
the self set. This assumes that there are no similarities between self strings. The more similar the self strings,
the fewer the number of retries. If this assumption does not hold, then equation 3.2 cannot be reduced to
equation 3.3, because if a detector does not match one of the self strings, the probability of it matching the
others is reduced. A more sophisticated analysis that takes into account similarities within the self set is given
in section 3.2.4.

The negative selection algorithm can be applied to any match rule (and even to any detection op-
eration). However, because of the exponential time complexity of negative selection, two other toleriza-
tion algorithms have been developed specifically for the contiguous bits rule: the linear time algorithm
[Helman & Forrest, 1994], and the greedy algorithm [D’haeseleer, 1995]. Both algorithms trade space com-
plexity for time complexity, that is, they have time complexities that are linear in the size of the self set, but
space complexities on the order of , as compared to the space complexity of for
the negative selection algorithm. Although the time complexity is reduced, there are two reasons why these
algorithms are not used in this dissertation. Firstly, the increased space complexity can be prohibitive for
large enough values of and (this is the case for the network ID application), and commonalities in the self

9The expectation of a random variable is denoted as .

32

set do not reduce the space complexity, whereas commonalities in the self set reduce the time complexity for
negative selection. Secondly, these algorithms are not general: they apply only to the contiguous bits rule,
and so cannot be used for the Hamming match rule.

3.2.3 Detector Sets

The negative selection algorithm generates detectors that are valid. However, a given location may have
sufficient memory to store more than one detector. This is analogous to the IS, in which a location such
as a lymph node can contain multiple lymphocytes. Thus a local detection system is implemented as
a set of detectors, , together with a match rule, , that is, . A benefit of
implementing local detection systems as collections of detectors is flexibility: detectors can be added and
deleted as computational costs and memory allow.

In general, because the detectors are randomly generated, . If , will not
produce false positive errors. The matching probability, , can be used to compute the relationship between
the number of detectors and the probability of a false negative error, . Assuming that the detectors in are
drawn randomly from , and the probability of one detector matching is independent of the other matching,
then the probability that a random nonself string is a false negative, , is [Forrest, et al., 1994]

(3.5)

For example, if and , then under the contiguous bits rule, , and a false
negative probability of is achieved with detectors10. This number of detectors is small
compared to the possible strings, most of which could be nonself. Combining detectors in
this way exhibits a useful property: the probability of an error decreases exponentially with an increase in the
number of detectors. In the previous example, if the number of detectors is doubled to , the error
probability drops by two orders of magnitude to .

Equation 3.5 holds only if the probability of a random nonself string being matched by one detector
is independent of the probability of matching by other detectors. This is approximately true if detectors are
strings randomly drawn from , and the self set is small in comparison to the universe, , because
then and hence the negative selection algorithm will not bias the detectors towards certain strings.
Note that equation 3.5 is derived for the case where the nonself string is randomly drawn. If a local test set
contains a random subset of nonself strings, then this assumption is approximately true, but if the local

test set contains a biased subset of nonself strings, then this result will not hold. This latter case is discussed
in more detail in section 3.2.4.

A consequence of this implementation of generalization is that there is a computational trade-off
between the number of detectors, , in a set and the number of retries, , needed to generate that set. As
the match length increases, the probability of a match decreases (for both match rules) and hence the
number of retries decreases, but there is a corresponding increase in the number of detectors required for a
given false negative error probability. Combining equations 3.5 and 3.4

(3.6)

This trade-off is illustrated in figure 3.4.

10In this and other examples, the value of . This is not an arbitrary choice; it is the shortest bit string in which a single pattern
for the network ID application can be encoded. See section 4.1.1.

33

1 10 100 1000 10000 100000
Number of Retries Per Detector

1000

10000

100000

1000000

N
um

be
r o

f D
et

ec
to

rs

Figure 3.4: The trade-off between number of detectors required, , and the expected number of retries .
The curve is plotted from equation 3.6 by holding the false negative error probability fixed at , the
string length fixed at , and the size of the self set fixed at . Not all points on the curve
can be achieved, because is an integer, so the points which can be achieved are marked by dots. Each dot
on the curve corresponds to a different value for the contiguous match rule, increasing from on the
right to on the left. As the match length, , increases, the number of retries decreases but the number
of detectors required increases. Note that both axes are logarithmic.

34

3.2.4 The Existence of Holes

The assumptions in the analysis in the preceding section were that each local test set is randomly drawn from
and that the self set is also a random set. If either of these assumptions fail, the analysis performed

above will not apply. In reality, strings in the self set may not be randomly distributed, which means that
they could be closer together in the match space. As the similarities in the set of self strings increases, so
the number of retries required to generate a detector will decrease. However, as the similarities increase
between the set of nonself strings (contained in a local test set) and the self strings, so the number of retries
required to generate valid detectors will increase. For a match rule with a constant probability of matching,
there can exist nonself strings for which no valid detectors can be generated. Such strings are called holes
[D’haeseleer, et al., 1996], because they are “holes” in the detection system’s coverage of the nonself set. A
nonself string is a hole if and only if, , such that , is a self string, that is,

. See figure 3.5.

holes

holes

Figure 3.5: The existence of holes. There are patterns in the nonself set that cannot be covered by valid
negative detectors of a given specificity. The size of the dark circles representing detectors is an indication of
the generality of those detectors. The detectors depicted in the example here are too general to match certain
nonself patterns without also matching self.

The concept of holes can be illustrated by an example. Consider three binary strings ,
and . For the contiguous bits rule with , the subset of detectors that matches

is , where is the set of 8 strings instantiated by the
template (“ ” is a “don’t care” symbol indicating either a or). All the detectors in match
either or . Now if both and are part of the self set, , and is a nonself string, ,
then any detector that matches will also match at least one string in the self set, and so a valid detector
cannot be generated for . Hence is a hole.

The number of holes is dependent on the generality of the match: as decreases, so the number of
holes increases. In the limit, if , every nonself string will be a hole and no detection will be possible.
Alternatively, if , then every detector can only match a single nonself string (itself) and there will
be no holes. The number of holes not only depends on and , but also on the similarities in the self set
(the structure of the self set). As such, there is no general closed formula for the expected number of holes
that is independent of the structure of the self set. An algorithm for computing the number of holes in the
whole self set, when using the contiguous bits rule, is given in [D’haeseleer, 1995]. This algorithm has
time and space complexities that are exponential in the match length (the time and space complexities are

and respectively), and so can be infeasible to compute for
longer match lengths on longer strings. Furthermore, the algorithm counts every single possible hole in the
nonself set, even though the detection system is trying to detect only nonself strings that occur in each local

35

test set.
An alternative is to compute whether a particular, given nonself string is a hole. Then a representative

sample of the nonself strings in a local test set can be used to compute the probability of a nonself string being
a hole. An algorithm has been developed that does this for the contiguous bits rule. Both the space and time
complexities of this algorithm are linear in , but these complexities are per nonself string. To count all
the holes, the time complexity would be on the order of . The linear running time per nonself
string is achieved by an approximation in the algorithm that can result in loss of accuracy: the algorithm does
not count the exact number of holes but produces an upper bound on the number of holes. The algorithm has
the advantage that no extra cost is required to determine when the approximation is being used, so we can
identify the cases in which the result is approximate. In the network ID application, the algorithm is exact for

, when .
The algorithm determines if an anomalous string is a hole under the contiguous bits match rule for

a given . Define a string -template as a string consisting of contiguously defined positions, and
undefined or “don’t care” positions. For example, is a -template over a string of length

. A template is called the -th template if the first defined position is the -th bit; in the previous
example, would be the 3rd-template. A template matches a string if the -contiguously
defined positions in occur at corresponding locations in , and is denoted . For example,

matches , so . The algorithm is as follows:

1. Find a single -template that matches but does not match any self strings, i.e. and
, . If no such template exists, exit: is a hole.

2. Attempt to construct a valid detector for , using as the matching template. This is done by searching
the space of all strings matched by template . At each iteration of the search, an additional specific bit
is added to the template, which is initially set to , and the resulting template is checked

against to determine if it is valid, which is the case if does not match any . If
is valid, the search continues. If is invalid, is set to the alternative bit, . The algorithm
carries out a depth-first search of the string subspace defined by the -template, backtracking when it
reaches dead-ends. This means the algorithm is exponential in , but it can be made tractable by
limiting the search steps to a constant , that is, to nodes in the search tree. It is assumed that if a valid
detector is not found in steps, then such a detector does not exist. This assumption means that the
algorithm gives an upper bound on the number of holes. The accuracy of this bound can be assessed
by reporting the number of times the search is terminated by the bound .

3. If a valid detector cannot be constructed from , repeat steps 1 and 2 until either a valid detector is
constructed, or none can be found, in which case is a hole.

The algorithm can be illustrated by an example. Let , and
. Is a hole when r = 3? The -template

matches but does not match any , so the subspace defined by can be searched. An attempt is
made to construct a valid detector for using . The search is conducted in two parts: the left hand side of
and the right hand side. The search through the right hand side is shown in figure 3.6. The combined LHS

and RHS searches yield as a valid detector.
It has been shown in [D’haeseleer, et al., 1996] that holes can exist for all symmetrical match rules

with constant probabilities. By definition, a nonself string is a hole if and only if, such that
, we have . Thus is a hole if every string that matches is in the self set, because a

valid detector must consist of a string that matches , but if every such string is in the self set, then a valid
detector for does not exist. Because of symmetry, the set of strings that match is simply the cover of ,

36

101***

011* ***010****

****101***

*****011** *****010**

******101*******110*******111*

*******011 *******010

1 0

1

1 0

1 0 1

1 0

Figure 3.6: Searching the RHS string space for a valid detector. The search follows the arrows, always
moving down and to the left first. The arrows are labeled with the defined bit value added to . Double
ended arrows indicate backtracking. The 8-template is valid.

that is, the set of strings matched by . Then a self set of size is always sufficient to induce a
hole. Here is the cover of , that is, all the strings matched by . For a random self set, .

For some rules (such as the Hamming rule), the size of the self set necessary to induce a hole may be
smaller. If is a nonself string, and the bits of are , then, for the Hamming rule with

, only one string is needed in the self set (the over-line indicates the complement of the
bit). For the contiguous bits rule two strings are needed: and . Note that under the
assumption that , there can never be holes for completely specific match rules, that is, where

.

3.2.5 Refining the Analysis
A variant of the hole-counting algorithm described in section 3.2.4 is used to refine the predictions for the
probability of a false negative error (equation 3.5), and the expected number of retries (equation 3.4), for the
contiguous bits rule. Assuming detectors are independent of one another, and the same match rule is applied
to all of them, then the probability of a detector set (at location) not matching a random nonself string
, is given by:

can be computed by a variant of the same algorithm described in section
3.2.4 that computes whether a given nonself string is a hole. Call this algorithm (i.e.
computes), then

The computation of is similar to the computation performed for holes, but more expensive: instead
of terminating the search of the string space upon finding a valid detector, the searching must continue until

37

all valid detectors have been found. In the worst case this will necessitate search steps, which can be
intractable. Instead an approximation is used. Each valid -template could match strings. Because
the templates in a string overlap each other, this overlap must be taken into account when computing
the number of possible matches. The first valid template encountered gives matches, but after that,
the matches from a valid template must be reduced according to the overlap. Assume that the -th template
is valid, and that the previous valid template was the -th template, , then the -th template will give

matches, where is the overlap function and is defined as

if
otherwise

The total number of matches for a string is given by the sum of the number of matches for all the
overlapping templates matching :

total matches

where

if the -th template is invalid
if the -th template is the first valid template
if -th template is valid and the
-th template was the previous valid template

The probability of a match between a valid detector and a nonself string is:

total matches

If no templates are valid, then and is a hole. If all templates are valid, then

which agrees with the approximation for the matching probability of two random strings under the
contiguous bits rule given in equation 3.1.

The expected number of retries can also be more accurately calculated using . Without assuming
independence, equation 3.2 becomes:

where is the complement of the event , that is, is the event that . Now the
term

and
and

38

is computed by the algorithm . Using a shorthand notation
, the expected number of retries is:

(3.7)

If the self set is available and is not too large, and a reasonable sample of nonself can be obtained,
then the equations and algorithms given here can be used to compute more accurate predictions for real
systems when the contiguous bits rule is used. Chapter 4 demonstrates how these theoretical calculations can
more accurately predict performance in a real environment, that of network intrusion detection.

3.2.6 Multiple Representations
Holes can exist for any symmetrical match rule with constant matching probability, and the existence of holes
places a lower bound on the false negative probability. However, different matching rules generate different
holes for the same self set, so it was suggested in [D’haeseleer, et al., 1996] that using different matching
rules for different detectors could reduce the overall number of holes. Alternatively (and equivalently), one
match rule could be used and the representation changed, because the universe of strings is mapped from
the set of events by a representation, . Multiple representations from to could be used,
but in general it is easier for implementation to use a single base representation , to map to a set of base
strings , and then to apply every new (or secondary) representation to , .

One way of generating a set of different secondary representations is to use pure permutation: the
bits of the representation are permuted according to a randomly generated permutation mask. For example,
given the strings , and a secondary representation , defined by
a random permutation mask 1-6-2-5-8-3-7-4, then these strings would become , and

. Using the contiguous bits rule with , under the base mapping, ,
because the last 3 positions are the same, but under secondary representation, .
To implement pure permutation requires storing the random permutation mask, which will require integers;
each integer must be less than , so bits will be required.

However, this pure permutation scheme will not work for the Hamming match rule, because only
permuting the bits will not change the Hamming distance between two strings. Furthermore, pure permutation
cannot eliminate holes for the contiguous match rule, because the contiguous match rule operates on a metric
in Hamming space. A self set of strings will always suffice to induce holes for the contiguous bits rule
with any set of permutation masks. This is shown as follows. A nonself string , is
a hole under the contiguous bits rule (with , obviously) for any permutation if the base representation
of the self set contains every -template that matches , which is the case if the self set contains strings

such that

...

If the bits of are reordered using a random permutation, then the bits of the strings in will also
be reordered, but the set of strings in will still contain every -template that matches . Hence is a hole.
However, note that although holes still exist, a larger self is needed to induce them (strings as compared to

39

2 strings), so permutation masks lower the bound on false negative probability, even if they do not eliminate
it.

Because both the contiguous bits rule and the Hamming rule rely on metrics in Hamming space, a set
of representations is needed that moves strings arbitrarily far apart in Hamming space. This can be achieved
if each representation is a different, perfect hash function, , that uniquely hashes strings, that is, for any

, . Perfect hashing eliminates holes for any , because it is always
possible to find a perfect hash function, , such that for , there exists and

. In general, perfect hashing is too expensive, because the hash function requires a hash table
that has an entry for each element in the universe. There are two possible solutions: imperfect hashing and
substring hashing.

Imperfect hashing relies on a hash function that is cheaper to store (or compute), but
that does not guarantee uniqueness, that is, for any , it is possible that

. The consequence of this is that nonself strings that are hashed to self strings will be holes. In
this work the the linear congruential operator [Lehmer, 1949] was used to implement imperfect hashing, be-
cause it is efficiently implemented in the form of a random number generator in the C programming language.
The linear congruential operator is given by

(3.8)

where is the numeric value of a string and is the numeric value of . The
parameters and are integers , and are randomly chosen for each different representation.
To implement this representation requires storing the two parameters, each of which are integers less than

, so at most bits will be required.
With substring hashing, a string is divided into substrings of equal length , and a perfect hash

function is applied separately to each substring. The storage requirements are dependent on the length of the
substrings. A hash table of entries will be required, where each entry is a binary string of length ,
so bits of information will be required per hash function. If a different hash function is applied to
each substring, then the total number of bits will be . If substring hashing is used with the contiguous
bits rule, then the substrings can also be permuted with a random permutation mask. This would require
an additional bits. Substring hashing is the most expensive representation of those
considered here, but it has the property that it guarantees that any random substring hash function will not
increase the number of holes over the base representation. The linear congruential operator does not have this
property; as we shall see in chapter 4, section 4.3.3, it can increase the number of holes and so increase the
number of false negatives.

All of the representations require storage. If every detector used a different representation, this would
more than double the space required for the detectors. To avoid this, the representation is applied to each local
detection system, that is, each representation is applied to a set of detectors at a single location. Then the
computation of the secondary representation has to be performed only once per string for each detector set.
Furthermore, for substring hashing the same hash function is used for all substrings within a detector set, so
the storage expense is reduced to per detector set.

Having a different representation for each local detection system is equivalent to changing the
“shape” of the detectors, while keeping the “shape” of the self set constant. If the shape of a detector
is defined by its cover set, , then different representations change . This is illustrated in figure 3.7.

If multiple representations are used, the refined analysis for the contiguous bits rule would have to be
performed for every new random representation. Applying the refined analysis to only the base representation
would not give accurate predictions. However, the less the representations change the distribution of the self
set from the base representation, the more accurate the analysis for retries. Alternatively, if every representa-
tion randomly redistributed the self set, then the simple analysis for retries would apply. Furthermore, if the

40

detection across all hosts

local detector set 1 local detector set 2 local detector set 3

Figure 3.7: Representation changes are equivalent to “shape” changes for detectors. The problem of holes
can be ameliorated by using different a representation for each local detection system. Here the shape of the
detector represents the cover set generated by a match rule, under some representation. There are different
holes for different representations. or equivalently different shaped detectors can cover different parts of the
nonself space, for a global reduction in holes.

multiple representations not only randomly distributed the self set, but also randomly distributed the nonself
in a local test set, then the simple analysis would apply to the prediction of false negative rates.

It is important to note that we do not necessarily want to randomly distribute the self set. The closer
the self set is to a random distribution, the greater the number of retries needed to generate valid detectors.
In practise, we would like a set of representations such that every representation clumps the self set, while
distributing the nonself strings in a local test set randomly.

There is another reason why we may not want to spread the self set out to a random distribution. If a
compactly represented self set induces holes, those holes could be close to the self strings in the representation
space, because holes are a consequence of the interaction between self strings [D’haeseleer, et al., 1996].
Now, if the training set is incomplete, that is, it does not contain all self strings, ,
and the self set is compactly represented, then it could be that the self strings not in are close to
and therefore more likely to be holes. In other words, the holes induced by a compact could increase
the tolerance of the system to an incomplete representation of self.

Multiple representations were introduced with the goal of eliminating holes, because what may be
holes under one representation may not be holes under another. In effect, multiple representations confer
an important kind of diversity. Another form of diversity is conferred by the fact that each local detection
system has a set of independently generated random detectors, and so even if one local system does not detect
a particular nonself string, it is still possible that another system will.

Because lymphocytes are generalized detectors, it can be assumed that the IS faces a similar prob-
lem with holes. It is possible that MHC is a mechanism that implements multiple representations and so
ameliorates the problem of holes. This is discussed more fully in section 6.3.1.

41

3.2.7 Incomplete Training Sets
In the preceding analysis, it was assumed that the training set contained all self strings, , and
hence there could be no false positives. This is not true in the network ID application, because the set of self
events changes over time, and the time available in which to collect the self events is too short to collect every
event. This is also true in the IS: not all self proteins are expressed in the thymus. In this section the effects
of incomplete training sets are analysed.

The first step is to expand the analysis to include the notion of time. It is assumed that all self
strings11 in the training set and in the local test sets are generated by a discrete random process , which is
defined by a set of random variables , where each random variable is a function
mapping events from a sample space to a state space [Grimmet & Stirzaker, 1992]. In this case, the sample
space is and the state space is also , so .

It is assumed that is strongly stationary, meaning that the distribution for all random variables is
the same at all times, , for all . Hence, is defined by a
single distribution. The training self set is collected over a time period to , called the training
phase, and every unique string seen during this period becomes an element of , that is, .
Note that depending on the distribution of , a string may be repeated multiple times during the training
period. Thus the output of during the training period defines a sample distribution, .

If this sample distribution approximates the actual distribution of (i.e.), then the approxi-
mate number of false positive errors expected from an incomplete training set can be calculated. The results
are derived for a single self test set, at a single location; extension to the global system is straight-
forward, assuming every detection system is independent. It is assumed that the test set is collected
after the training set, that is, . Denote the size of the training set by , and the
number of self strings in the test set by , then . If the strings in the
self set are , then the training set is and the test set is

In the worst case, every self string that is in the test set but not in the training set will be a false
positive12, that is and , for . Given
a sample distribution for , the probability of seeing a string for the first time after time steps,

, is a geometric random variable with parameter , so the probability that is a false positive
is . The probability of any false positive occurring after time steps is then
(this is approximate because is a sample distribution):

Assuming that the self strings occur independently,

Using an approximation this becomes

11In this analysis, nonself strings that may occur in the training and test sets are ignored, because they will, by definition, have no
effect on the number of false positives. However, this is an important issue which is addressed later.
12Because of generalization, it may be possible that the system will not detect every self string not in the training set.

42

For large, , so

(3.9)

If the sample distribution approximates the real distribution, and is actually a strongly stationary
process, then equation 3.9 can be used to predict the probability of a false positive, given the number of time
steps in the training period and the size of the training set.

3.3 Summary
This chapter showed that for any subset of the universe, there always exists an -generalization, where
is the maximum Kolmogorov complexity of any pattern in the universe. Furthermore, it was shown that a
distributed detection system which makes false positive errors is not scalable in general, whereas an increase
in locations can reduce false negative errors, and for a scalable distributed detection system, robustness in-
creases with an increase in the number of local detection systems that are -generalizations of the self set.
These results hold under the following assumptions: the universe is closed; self and nonself are disjoint and
partition the universe; every location has sufficient memory capacity to encode the most complex pattern in
the universe; if a nonself pattern occurs in a local test set, it occurs in at least one other local test set; the
training set is the self set; each local detection system detects at least some of the nonself patterns in its test
set; and the number of elements in any local test set is always greater than the number of locations.

Generalized detection is implemented by representing detectors as strings and using string matching.
Each local detection system has a set of detectors. Detectors are generated using the negative selection
algorithm, which guarantees that a detector is a generalization of the self set, provided the self set is a subset
of the training set. In the network ID application, the training sets do not contain all of the self strings;
such incomplete training sets will result in false positives. It is possible to predict the false positive rates by
assuming that self strings are generated by a strongly stationary random process.

There is a trade-off between the detection rate and the computational requirements for generating
detectors. This trade-off is tuned by adjusting the number of detectors and the generality of the match rule.
However, the trade-off is limited by holes, which are undetectable nonself strings; as the generality of the
detectors increases, the number of holes also increases. Using different representations can reduce the num-
ber of holes. Hence, the secondary representation function for each local detection system has randomly
determined parameters so that the representations differ between locations. The best representation is one
which moves the nonself in a test set furthest from the self to minimize holes, but that keeps the self strings
the most clumped together, to minimize the number of retries needed to generate detectors.

43

Chapter 4

An Application of the Model: Network
Security

This chapter describes an application of the abstract model to network security. An Intrusion Detection (ID)
system is described that is based upon the Network Security Monitor (NSM) (section 2.3.4), which monitors
TCP/IP traffic on a broadcast LAN.

The environment in which NSM was used consisted of a collection of internal computers on a LAN,
and a collection of external computers outside the LAN. Communication between computers (both inter-
nal and external) happened via TCP/IP, and was defined by datapath triples (source computer, destination
computer, service). A similar environment is used here, with several simplifications:

1. The ID system only monitors network traffic for the presence of unusual datapaths. It does not consider
the frequencies of traffic flow over datapaths.

2. The ID system monitors only TCP SYN packets. The start of a connection is indicated by an exchange
of TCP SYN packets (see section 2.3.1), so these SYN packets define a pair of datapaths when they
first come into existence. All packets following on the same connection use one of the pair of datapaths
defined by the SYN packets, so monitoring these non-SYN packets would be superfluous because the
ID system only monitors datapaths and not the traffic flow over datapaths (point 1 above).

3. The services are grouped into a few classes. Some assigned services are distinguished (this is explained
later), whilst a single port number is used to represent all other unassigned privileged services, and a
single port number is used to represent other unassigned non-privileged services.

4. Some services are filtered out from the traffic because it is expected that new datapaths involving these
services will always occur; these new datapaths are generally acceptable and should not be regarded as
anomalous. For example, all connections to WWW servers are filtered, whether those connections are
from external computers to an internal WWW server, or from internal computers to external WWW
servers

The first two simplifications reduce the volume of traffic monitored and the size of the self set,
hence reducing computational costs. The last two simplifications reduce the probability of acceptable new
datapaths occurring in the test set and not the training set, which is desirable because as the probability of new
acceptable variations in the test set increase, so the false positive rate will increase. In general, the simpler the

44

data being monitored the better; we should use the simplest possible system that still works. This principle
guided our previous research in the domain of host-based ID (see section 2.2).

Section 2.3.5 mentioned several extensions to NSM, including robustness, scalability, flexibility, and
adaptability. It was claimed that these properties could be achieved with a distributed ID system, one in
which each computer in the LAN has a lightweight detection system. Chapter 3 showed how an architecture
based on the immune system can achieve robust and scalable detection, and so the application to network ID
should preserve those properties, as indeed it does: it will be shown that the ID system is robust in that every
computer contributes towards detection, and scalable, in that, for any given LAN, increasing the number of
computers that run detection systems will decrease false negative errors. It will be shown that seven real
attack incidents can be detected with local detector sets consisting of no more than 100 string of length 49
bits each, which means that each detector set is lightweight. The ID system is also flexible in that adjusting
the number of detectors adjusts the resource usage to error rate trade-off. However, in section 2.3.3, a stricter
definition of flexible was used, one that required an ID system to adjust automatically its resource usage
according to available resources. The ID system was not distributed across a network, rather a network of
computers was simulated on a single computer, so this issue was not investigated. However, the abstract
model does not preclude this stricter form of flexibility, and chapter 6 describes some ideas for implementing
automatic flexibility. Finally, adaptability will be described in the next chapter (5) where it will be shown how
dynamic detectors and distributed tolerization are used to respond to changing self sets, and how dynamic
detectors, together with memory, can provide the advantages of signature-based detection.

4.1 Architecture
The abstract model can be applied to network ID by mapping the datapath triples to patterns. Then it is
assumed that the set of all acceptable or legitimate connections between computers both internally and ex-
ternally is the self set, and everything else is nonself. The consequences of this assumption are discussed in
section 7.3. The patterns or datapaths must have some base representation, for which binary strings of fixed
length bits are used. This base representation is described in section 4.1.1.

The internal computers are mapped to locations, and each location can run a local detection
system. A local detection system, , at location , consists of a set of detectors , together with a
function for implementing the secondary representation, and a match rule , that is, .
All detector sets are the same size, that is, , . Furthermore, all detector
sets use the same match rule, , . Each detector is a binary string of fixed
length , drawn from and tolerized using the negative selection algorithm. The detector generation
phase is performed off-line, with all detectors being generated in a single location against a single training
set. These detectors are then distributed across all locations. When the distributed system is monitoring, all
local detection systems see the same traffic because the LAN is broadcast; effectively, all locations have the
same test set, .

This ID system is distributed in the sense that all internal computers in the LAN can run components
of the detection system. It is assumed that a uniform policy applies to all computers in the LAN, so the system
is distributed within a uniform policy domain. It is not distributed across different policy domains, and so
does not address the problems inherent in such distribution.

4.1.1 Base Representation
A SYN packet representing a datapath triple is mapped to a -bit binary string (see figure 4.1). The value of
49 bits was chosen as the minimum number needed to represent the relevant information. The composition

45

of the string is as follows. Because at least one computer in the datapath must be on the LAN, the first 8 bits
represent an internal computer, and are taken from the least significant byte of its IP address1. The following
32 bits represent the other computer involved in the communication, which will require 32 bits for the IP
address if that computer is external. If the other computer is internal, then only 8 bits are needed, but 32
bits (the full IP address) are still used to maintain a fixed length representation. If an external computer is
involved, it is always represented in the second 32 bits, so an extra bit is used to indicate whether or not the
first computer is the server; if the first is the server, the bit is set to one, otherwise it is set to zero.

The final 8 bits represent the type of service. The service type is mapped from its category to a
number from 0 to 255. All non-assigned privileged ports are represented by a single number, and all non-
assigned non-privileged ports are represented by a different, single number. In the following list, ports are
numbered in order, beginning with commonly assigned, privileged ports, followed by commonly assigned
non-privileged ports, and finally with a single number for all other privileged ports and a single number for
all other non-privileged ports.

Commonly assigned privileged ports (numbered from 0 to 66): 1, 7, 9, 11, 13, 19, 20, 21, 22, 23, 25,
37, 38, 42, 43, 53, 68, 70, 79, 80, 87, 94, 95, 109, 110, 111, 113, 119, 123, 130, 131, 132, 137, 138,
139, 143, 156, 161, 162, 177, 178, 194, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 213,
220, 372, 387, 396, 411, 443, 512, 513, 514, 515, 523, 540, 566

All other privileged ports: (numbered 67) 1023

All other non-privileged ports: (numbered 68) 1024

Commonly Assigned Non-privileged ports (numbered 69): 6000–6063

There are only 69 numbered services, which means only 7 bits are required for their representation,
not 8 bits as shown in figure 4.1. The extra bit is included to accommodate numbering for more services.

1 98 494240

service

bits:

internal computer
or
server internal computer

external computer
or
client internal computer

server flag

Figure 4.1: Base representation of a TCP SYN packet.

There are several categories of datapaths that are filtered out:

WWW and ftp servers: Traffic to WWW and ftp servers is varied, and it is acceptable for multiple new
computers to connect to the server every day. Definitions of self in terms of datapath triples will be
useless for distinguishing normal from anomalous behaviour. Other methods will be needed to monitor
abuses of WWW and ftp servers, possibly methods that study the contents of packets in addition to the

1It is assumed here that all computers on the LAN have the same class C network address. This representation is thus limited in that
there can be at most 256 computers on the LAN, which is true for the network used to collect data for all experiments in this dissertation.

46

source and destination. However, within the set of internal computers, only one or a few will be set up
to be WWW or ftp servers, so if any other internal computers suddenly begin functioning as WWW or
FTP servers, this is suspect, and hence this kind of traffic is monitored.

Dynamic IP addresses: If any service (for example, telnet) on an internal computer is frequently connected
to by computers that have dynamic IP addresses (such as those allocated by internet service providers
to dial-up clients), then that service could experience a new connections, because the same client com-
puter could be allocated a different IP address on each dial-in. This will create a new datapath on
every connection to the service, even though the same two computers are always communicating. It is
possible that with the correct generalizations, dynamic IP addresses would not be a problem, but here
this traffic is filtered out.

Unusual internal computers: In the data collected for these experiments, there was one internal computer
that was excluded because a system administrator used it as a base for periodically and randomly
portscanning internal computers. Such behaviour is legitimate, but new legitimate connections can
occur at any time, so it is not amenable to characterization by datapaths.

4.1.2 Secondary Representations
Three types of secondary representation functions were described in section 3.2.6: pure permutation, sub-
string hashing, and imperfect hashing. Each of these defines a parametric family of representations. The
same family, is used for all local detection systems, but the parameter sets are randomly deter-
mined, so effectively each local detection system has a different secondary representation, determined by

. The parameters for each family are:

Pure permutation: , where is a permutation mask, that is, each is an integer,
, indicating the position to which the current bit value must be mapped. For example, if

, then the bit in position 3 must be mapped to position 10. Note that is randomly generated
such that , that is, the are generated without replacement.

Imperfect hashing: , where and are the parameters for the linear congruential operator
(see equation 3.8). In this implementation, the 32-bit C-language random number generator was used
for efficiency; it is defined by two C functions: lcong48 and lrand48. The first function, lcong48,
initializes the random seed, using the parameters (a 48 bit number), (a 16-bit number) and (a
48-bit number). lrand48 has no input; it returns a 32-bit number. These two functions map the 48-
bit number to a 32-bit number, which is the output of lrand48. So to map a 49-bit string to a
secondary representation , the following sequence of calls is made: first, , where
is the decimal value for the first 48 bits of , then for the first 32 bits of , and

again, using the first 16 bits returned for the last 16 bits of 2. For efficiency, the final 49-th bit is
mapped across with no change.

Substring hashing: , where is a permutation mask and is a hash table. The substrings for
the perfect hash function are 8 bits in length, so is an array of 256 unique
random values, , and is a permutation, ,

. Each of the 6 bytes in a 49-bit string is permuted using , and then these bytes
are hashed to new byte values using . The 49-th bit is mapped across with no change. Figure 4.2
illustrates this representation.

2Two calls are required to lrand48 because it only returns a 32 bit number, in spite of its name. In C syntax,
.

47

112 31 83 172 18201

112

1 2 3 4 5 6

17218

1-3-4-2-6-5

Hash table

Permutation mask

83 201 31

82 84 8583

183 22 7141

553 11227 237183

1

1

1

byte values

byte index

extra (49th) bit

Figure 4.2: Substring hashing. A binary string of length , consists of 6-byte values plus an additional
bit. These bytes are permutated via the permutation mask, , which is randomly
generated, and then is remapped via a randomly generated hash table, . The additional bit is not remapped.

4.1.3 Activation Thresholds and Sensitivity Levels

Section 3.2.7 analysed the case where the training set does not include all self strings. Such a circumstance
will result in false positives, which, as shown in section 3.1, cannot be tolerated if we want a system that
is scalable. If a complete training set cannot be collected, then false positives must be minimised in some
other way. Two mechanisms are introduced to reduce false positives. These mechanisms are based on two
assumptions, both of which hold for the real network data that are reported in sections 4.2 and 4.3. The
assumptions are:

1. An incident will generate multiple nonself strings. This is true for the real incidents described in section
4.2, where each of seven incidents consists of at least 36 nonself strings.

2. When an incident occurs, it will generate nonself strings at a greater rate than the rate of occurrence of
new self strings, over some given period of time.

These assumptions imply that nonself strings tend to occur in temporal clumps relative to new self
strings. As the number of connections used by an attacker is reduced, so the difficulty of attacking increases,
because the more connections there are, the more information an attacker can gain about the target network.
Furthermore, the more the attacks are separated in time, the longer it will take to execute an attack, requiring
more patience and possibly skill from an attacker. As these assumptions are increasingly violated, so the
mechanisms for reducing false positives will be of decreasing effectiveness.

The two mechanisms for reducing false positives are:

48

Activation thresholds: This mechanism is based on the concept of affinity thresholds in the immune system:
multiple receptors on a lymphocyte must bind to epitopes before that lymphocyte is activated (see
section 2.1.1). An analogous mechanism is used in which each detector has to match a certain number
of times before it is activated and signals an anomaly. Each detector has a match count ,
which is incremented every time matches a string. When exceeds the activation threshold, ,
an anomaly is signaled and the counter for is reset to 0, that is, . The activation threshold,

, is a global parameter, that is, it is the same for all locations. This mechanism has a temporal
horizon: the match count decays at a rate determined by a decay parameter, , which indicates
the probability of the match count dropping by one. Decay is modeled by a negative binomial random
variable, with expected time steps until the match count for is reduced to 0. The effect of
this mechanism is that anomalies will be detected only if they are caused by groups of similar strings
that occur sufficiently frequently within a limited time period.

Sensitization: This mechanism is intended to improve detection of DCAs and similar attacks. Activation
thresholds are not sufficient, because they require that a single detector match repeatedly, and if the
attacks are launched from different sources, a single detector may not match all the attacks. This
additional mechanism is intended to “sensitize” the detection system so that a a burst of connections
from multiple different locations will generate anomalies. This is analogous to the effect of cytokine
levels in the IS. When suspicious activity is detected by some cells of the IS, cytokines are released
which alert (or effectively “sensitize”) the rest of the IS. Each detection system has a sensitivity
level , which is a non-negative real. Every time the match count for a local detector goes
from 0 to 1, the sensitivity level is increased by a factor , that is, and

, for . This mechanism also has a temporal horizon: the sensitivity
decays over time with a decay parameter, , which is the probability that the sensitivity will drop

by 1. The sensitivity affects local detectors by reducing the number of matches needed for activation:
detectors at location will only need matches to be activated. The sensitivity can never reduce
the activation threshold below one, that is . The effect of this mechanism
is that anomalies occurring within a limited time period, even if they involve different strings, can still
be detected.

Both of these mechanisms are tunable. If security is important and an organization has enough
resources to cope with higher false positive rates, then the sensitivity factor and the activation threshold
can be set low. Conversely, if security is not so important, and minimizing false alarms is, these parameters
can be set higher.

4.2 Experimental Data Sets

The ID system was tested with a simulation, using data gathered at the University of New Mexico (UNM),
from a subnet at the Computer Science department. The subnet consisted of 50 computers on a single seg-
ment; these 50 computers were simulated on a single computer. Data were collected using the tcpdump
program from the subnet for a period of 50 days, to yield a total of 2.3 million datapaths (TCP SYN packets).
After filtering out WWW, ftp and other traffic (as described in section 4.1.1), the 50 days of traffic mapped to
1.5 million strings. These data were used for both self training and test sets, and nonself test sets. All nonself
traces were manually extracted from the data, thus separating the self and nonself patterns.

49

4.2.1 Self Sets, and

Of the 1.5 million strings, 1.27 million were used as the training set, , corresponding to the first 43 days
of network operation, and the remaining 182000, corresponding to the last 7 days, were used as the self test
set, . The training set consisted of 3763 unique strings, , and the self test set consisted of
869 unique strings, , of which 137 were not found in . The distribution of the self strings
(training plus test sets) was analysed to determine if there is an approximation to a strongly stationary process
underlying the system. The results are shown in figure 4.3, which is a plot of the sample distribution of the
self set, , . The 200 most frequent strings account for approximately
of the strings occurring. Of the remaining 3700 less-frequent strings, their distribution is accurately described
by a power-law of the form

(4.1)

where , and is the index of the -th most frequent string. It was
stated in section 3.2.7 that a strongly stationary process, , is one in which the random
variables at each time index have the same distribution, that is, for all
. This power-law can be used to model a strongly stationary process where the probability of occurrence

of any string is given by equation 4.1.

1 10 100 1000
String Index

0.000000

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

Pr
ob

ab
ilit

y

Figure 4.3: Sample distribution of self strings. The unique strings are ranked by frequency of occurrence, and
the probability is computed as the frequency normalized to a value between 0 and 1. The strings are plotted
in order, from the most frequent at string index 1, to the least frequent at string index 3900. The dotted line
indicates the power-law, . Note that both axes are logarithmic.

50

4.2.2 Nonself Test Sets,
A total of 10 nonself test sets were used. Each test set contained a different intrusive incident. The first seven
of the test sets are faithful logs of real incidents, extracted from the 50 days of network traffic, and the last
three were synthetically generated. The incidents are:

Address Probing (AP): An internal computer was compromised, and then the intruders used the internal
computer to address probe many external domains. About 4500 external computers were probed, all
on the telnet port (23).

Portscanning (PS): An external computer, cartan.cas.suffolk.edu, portscanned 33 internal computers, trying
to connect to all ports.

Limited probing 1 (LP1): An external computer, xtream.fce.unal.edu.co, attempted to connect to four ports,
telnet (23), smtp (25), dns (53) and pop (110), on 35 internal computers.

Limited probing 2 (LP2): An external computer, pc35.esp.ele.tue.nl, portscanned 30 internal computers,
trying to connect to 3 ports: telnet (23), dns (53) and imap (143).

Limited probing 3 (LP3): An external computer, sauron.atcomp.cz, made repeated attempts to connect to
three ports, telnet (23), dns (53) and imap (143), on a single internal computer.

Single port probing 1 (SP1): An external computer, phear.cwave.com, probed tcpmux (port 1) on 30 inter-
nal computers.

Single port probing 2 (SP2): An external computer, dt031n93.midsouth.rr.com, probed the imap port (143)
of 30 internal computers.

Synthetic internal (SI): This test set consisted of 1000 random connections between internal computers.
The source and destination computers were chosen randomly from all available internal computers,
and the service was chosen randomly from a list of common services, namely, ftp (21), telnet (23),
smtp (25), and finger (79). This test set can be regarded as modeling a collection of attacks in which
the attacker already has access to at least one internal computer, or it can be regarded as a model for
the pattern of intrusions caused by a worm propagating across the LAN, via a few vulnerable services.

Synthetic external (SE): This test set consisted of 1000 random connections between external computers
and internal computers, on a few common services (ftp, telnet, smtp, finger). One computer in the
connection was a randomly selected internal computer, and the other was a randomly selected external
computer. This test set can be regarded as a simulation of a Distributed Coordinated Attack (DCA),
because it involves many different attacking computers.

Random (RND): This test set consisted of 1000 randomly generated strings of length 49 bits.

Most of the incidents involved probing of telnet (AP, PS, LP1, LP2, LP3), imap (PS, LP2, LP3,
SP2) and dns (PS, LP1, LP2, LP3) ports. Within the last six months of gathering this data, vulnerabilities
in imap and dns have been publicized; clearly, the attackers were looking for the most recent security flaws.
Presumably the telnet port was being probed for weak passwords or default accounts. The probing on port
1 is a method for determining if the target computer is an SGI, because SGIs usually respond in a particular
way to requests on port 1.

For the real incidents, the detection system was tested against the trace of the incident, which con-
sisted of all network traffic between (and including) the first and last nonself SYN packets. Thus these real

51

Test Set Number Fraction Fraction
strings nonself unique nonself

AP 8600 0.540 0.340
PS 2966 0.435 0.196
LP1 1174 0.617 0.118
LP2 114 1.000 0.842
LP3 1317 0.102 0.002
SP1 36 1.000 0.833
SP2 285 0.165 0.130
SI 1996 1.000 0.997
SE 1996 1.000 1.000
RND 3763 1.000 1.000

Table 4.1: Features of nonself sets. Number strings is the total number in the trace, from first nonself string
to last, including all self strings that occurred during that time. Fraction nonself is the fraction of the trace
that consisted entirely of nonself strings, and Fraction unique nonself is the fraction of the trace represented
by unique nonself strings, which is the size of the nonself test set for the incident.

incidents reproduced the timing of the attack, as well as including all normal traffic that was interspersed
throughout the attack. Table 4.1 summarizes the total number of strings in the trace of each incident, the
number of strings that are nonself, and the number of unique nonself strings, which is the size of the nonself
test set for that incident. The synthetic test sets were created to test particular aspects of the model. The
simple theory relies on a random nonself test set, so a random set was created to test this theory. The SI test
set consisted of nonself strings that are closer to self than random strings, and so should be harder to detect
than random strings, and hence the predictions of the simple theory should be less accurate. The SI test set
was included as an extreme case to determine how proximity to the self set affects the simple theory.

4.3 Experimental Results
Several experiments were conducted using these data sets. For all experiments, a false negative error refers
to a single nonself string that was not detected, and a false positive error refers to a single self string that was
detected (any string that is detected is classified as anomalous). False positives are reported as error rates,
where the error rate, , is the number of errors normalized over the length of the trace, or over some time
period (usually a day), that is,

and

Detection rates are reported instead of false negative error rates, where the detection rate, , is the
number of successful detections of nonself over the length of the trace, that is, .

These definitions of error rates and detection rates differ from those normally used in ID. There a
false negative refers to an intrusive incident that was not detected. By contrast, in this dissertation, a false
negative refers to a single connection (string) that was not detected. Under the assumption that an intrusive
incident will involve several connections, it suffices to detect only some of the connections to detect the
incident. In the simplest case, if for a single incident, the incident will be detected. We want to
be as much above zero as possible, because the higher the value of , the clearer the separation between the
incident and possible false positives. can be thought of as the strength of the anomaly signal.

52

Parameter Description Default Value
number local detection systems 50
number detectors per location 100
string length 49
match length 12
secondary representation substring hashing
match rule contiguous bits
activation threshold 1
match decay 0
sensitivity 1.5
sensitivity decay 10

Table 4.2: The parameters for the basic distributed ID system. Unless stated otherwise, all experiments use
these default values. Note that when , the settings for , , and are irrelevant, because can
never be less than 1

A summary of all the parameters, together with their default values, is given in table 4.2. These
parameter settings were chosen according to pilot studies and the experimental results reported later in this
chapter. Parameter settings for experiments are always stated in the caption of a figure or table. Usually
only a few parameter settings are given; those omitted have the default values. Where multiple runs with
different random seeds are performed for an experiment, the usual number is 30, unless otherwise stated. For
experiments that involve multiple runs, the mean and a 90% confidence interval in the mean are reported,
unless stated otherwise. The confidence interval is indicated by error bars in figures, and by signs in tables.

For most of the experiments in this chapter, the synthetic nonself test sets were used, because the
structure of these test sets is known, and they represent extremes of nonself test sets. This makes it easier to
understand and interpret results. The various aspects of the model are explored using the synthetic data, and
then section 4.3.5 reports results for experiments with the real nonself test sets.

4.3.1 Generating the detector sets

The first experiment determined how many retries are needed to generate detectors, and tested if the theories
developed in chapter 3 are good predictors of the empirical results. No secondary representations were used
for this experiment. To test the simple theory (equation 3.4), a random self training set was generated, one
of the same size as the real or structured training set, that is, strings. The number of retries per detector
was computed for 200 detectors, for two cases: tolerization against the random training set, and tolerization
against the structured training set. The results are shown in figure 4.4. The simple theory more accurately
predicts the number of retries against the random self than against the structured training set. However, the
refined theory (equation 3.7) more accurately predicts the retries for the structured self. The important point
about this figure is that the structure in the training set reduces the number of retries required over a random
training set; for example, when , the number of retries against the random set is 6200, but against
the structured set it is only 4, which is 3 orders of magnitude less. This emphasizes the point that we do not
want the self set to be randomly distributed across the string space, because then detector generation is more
expensive.

53

10 12 14 16 18 20
Match Length

1

10

100

1000

10000

N
um

be
r o

f R
et

rie
s

pe
r D

et
ec

to
r

Simple Theory
Exp., Random Self
Refined Theory
Exp., Structured Self

Figure 4.4: Expected number of retries, , for tolerization versus match length, (varies, none).
The plot shows predictions given by equation 3.4 (Simple Theory) and equation 3.7 (Refined Theory), and
experimental results with a random self training set (Exp., Random self), and with the structured self training
set (Exp., Structured self). Note that the y-axis is logarithmic.

54

4.3.2 Match Rules and Secondary Representations
One way to evaluate different match rules and different secondary representations is in terms of the trade-off
between detection rates and retries3. The best combination of match rule and secondary representation will
be that which minimizes retries and maximizes detection rates for a fixed number of detectors. The two
match rules, contiguous bits and Hamming were tested with each of the secondary representations, imperfect
hashing (using the linear congruential operator), and substring hashing. In addition, the contiguous bits rule
was tested with pure permutation. The results for SE and RND are shown in figures 4.5 and 4.6, respectively.
With these plots, the higher the curve the better, because this implies higher detection rates with fewer retries
(the best point is in the top left-hand corner). For these test sets, the secondary representation does not help
at all; in the case of linear congruential hashing, performance is worse (the curve is lower), because this
imperfect hashing can introduce new errors by mapping several strings to a single string.

These curves can be matched with a slight modification to the simple theory. Rearranging equation
3.6 gives

(4.2)

where is a constant. The value of is given in parentheses after the Theory label in the two figures
(4.4 for SE, and 5.5 for RND). This modification implies that the performance of the system with most of the
match rules and secondary representations can be modeled as if were smaller and/or larger. can be
regarded as an indication of how close the test set is to the training set in match space: the higher the value
of , the more random the test set compared to the training set.

For SI, all the secondary representations improve performance (they have higher curves), except
for pure permutation, which is to be expected, because (as shown in section 3.2.6), holes still can exist for
pure permutation. Pure permutation does worse than having no permutation at all with the contiguous bits
match rule; this is a consequence of the pure permutation spreading out the training set (and hence increasing
retries), but not improving detection because holes are not eliminated. Although the linear congruential
operator improves performance when used with the Hamming match rule, it is not as good as contiguous bits
with either the linear congruential operator, or substring hashing. Once again, the simple modified theory
predicts performance, with . Thus the modification is unnecessary, which implies that although the
training set can be regarded as smaller because of similarities in the set, the effect of the numbers of detectors
is also reduced because of the proximity of the test set to the training set. This implies that these two effects
cancel each other out. What this indicates is that we can use the simple theory, without modifications, as a
lower bound on expected performance.

The conclusion to draw from these experiments is that the contiguous match rule, combined with
substring hashing works the best in all the cases tested here. In the remainder of the experiments reported in
this dissertation, this combination is used: contiguous match rule with substring hashing (note that these are
the default parameter settings in table 4.2).

4.3.3 The Effects of Multiple Secondary Representations
It was shown in the previous subsection that having multiple secondary representations improves performance
when the nonself test set is “close” to the training set. In this section the notion of closeness is defined and
measured. The contiguous bits rule is based on a metric in Hamming space, so Hamming distance can be
used to measure closeness. For each nonself string , the minimumHamming distance to the training
set is determined (the smallest Hamming distance between and all), and then the average over

3If detector generation is rare, and resources are not limited, then it may be better to evaluate match rules only in terms of detection
rates.

55

1 10 100 1000 10000
Number of Retries per Detector

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n
R

at
e

contig, none
contig, substring
contig, lcong
contig, pure
hamming, none
hamming, substring
hamming, lcong
theory (4.4)

Figure 4.5: Trade-offs for different match rules and secondary representations on SE (, varies,
varies, varies). contig refers to the contiguous bits rule, hamming refers to the Hamming match rule, none
means no secondary representation, pure refers to pure permutation, substring refers to substring hashing,
and lcong refers to the linear congruential implementation of imperfect hashing. The theory is derived from
equation 4.2 with . Note that the x-axis is logarithmic.

56

1 10 100 1000 10000
Number of Retries per Detector

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n
R

at
e

contig, none
contig, substring
contig, lcong
contig, pure
hamming, none
hamming, substring
hamming, lcong
theory (5.5)

Figure 4.6: Trade-offs for different match rules and secondary representations on RND (, varies,
varies, varies). contig refers to the contiguous bits rule, hamming refers to the Hamming match rule, none
means no secondary representation, pure refers to pure permutation, substring refers to substring hashing,
and lcong refers to the linear congruential implementation of imperfect hashing. The theory is derived from
equation 4.2 with . Note that the x-axis is logarithmic.

57

1 10 100 1000 10000
Number of Retries per Detectors

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n
R

at
e

contig, none
contig, substring
contig, lcong
contig, pure
hamming, none
hamming, substring
hamming, lcong
theory (1)

Figure 4.7: Trade-offs for different match rules and secondary representations on SI (, varies,
varies, varies). contig refers to the contiguous bits rule, hamming refers to the Hamming match rule, none
means no secondary representation, pure refers to pure permutation, substring refers to substring hashing,
and lcong refers to the linear congruential implementation of imperfect hashing. The theory is derived from
equation 4.2 with . Note that the x-axis is logarithmic.

58

Test Set nearness Ratio of Improvement in
substring lcong

SI 0.93 1.60 3.46
SE 0.74 0.99 0.85
RND 0.72 1.00 0.77

Table 4.3: The effects of nearness (, varies). Nearness is calculated according to equation 4.3.
substring refers to substring hashing, and lcong refers to the linear congruential operator. The ratio of im-
provement in is the ratio of when using multiple secondary representations, to when only using the
base representation, . The base detection rate is , that is, .

all the nonself strings in the test set is computed. The nearness is then the string length minus this average,
normalized:

(4.3)

where is the Hamming distance between and .
The higher the nearness, the closer the test set is to the training set, so it is expected that the higher

the nearness, the more multiple secondary representations will improve performance, and when nearness is
low enough, the effects will be negligible. This is indeed the case, as shown in table 4.3. As expected, SI
is the nearest, with both SE and RND further away (roughly the same nearness values). The table shows
the effect of multiple secondary representations on detection of a given test set. Linear congruential has the
most effect on the SI (3.46 times the base representation detection rate) because it spreads the self set out the
most; substring hashing has less effect but still improves the detection rate by a factor of 1.6. Although this
shows that linear congruential is better for SI, it also makes it more difficult to generate detectors and so the
advantage is cancelled, as was previously shown in figure 4.7. For SE and RND, substring hashing makes no
difference: the detection rate is the same as for the base representation (the ratio is one). However, for SE and
RND, using linear congruential results in a reduction in detection rate (the ratio is 0.85 and 0.77 of the base),
because the imperfect hashing scheme introduces more errors by mapping several strings to one string.

Most local detection systems contribute to global detection rates, as is shown in figure 4.8. This
figure gives a frequency histogram, indicating howmuch each local detection system contributes to the global
detection rate against SI. Almost all of the local detection systems contribute; few have . Furthermore,
most locations contribute similar amounts; the best is only 60% better than the median, and is not high (

) compared to the global detection rate for this problem, which is . These results imply that the
system is robust: loss of a few locations will not result in complete failure of detection. These experimental
results give support for assumption 6 made in section 3.1.3 (all local detection systems have a non-zero
detection rate).

It is possible to predict detection rates when multiple secondary representations are used. In the case
where the nonself test set is randomly distributed, the simple theory still holds, as shown by the upper curve in
figure 4.9. However, this theory does not apply in the case of SI, but nonetheless, the curve for experimental
detection rate on SI can be defined by the same function, modified by a linear transformation on the matching
length, , so that equation 3.1 becomes

(4.4)

59

0.0 0.2 0.4 0.6 0.8 1.0
Detection Rate

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Figure 4.8: The distribution of detection rates on SI (). The frequency on the y-axis indicates the
fraction of locations with the corresponding detection rate given on the x-axis. The global detection rate was

, and is indicated by the vertical dotted line.

60

where and are constants.
As shown in figure 4.9, this modified match probability with and , used in

equation 3.5 gives accurate predictions of the detection rate for SI. Equation 3.5 is derived assuming that
the nonself strings are randomly generated, and hence the probability of detection of one nonself string
is independent of the probability of detection of other nonself strings. The fact that the prediction is still
accurate, with a linear transformation to equation 4.4, implies that we can model the probability of detection
of the nonself strings by assuming independence, but with a lower probability of matching than that predicted
by equation 3.1. This is justifiable because SI consists of randomly generated internal connections, so the
resulting nonself strings should be random with respect to each other, but harder to detect because of their
proximity to the self set.

10 12 14 16 18 20
Match Length

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n
R

at
e

SI
RND
Theory, (-0.895, 3.67)
Theory, (1.0, 0.0)

Figure 4.9: Predicting using the modified simple theory (, varies). The theory curves are derived
using equation 4.4, and the numbers in parenthesis after the Theory labels indicate the parameter settings for
and , respectively.

This modified theory does not continue to give accurate predictions as the number of detectors is
increased, as shown in figure 4.10. This figure shows the results for detecting SI when increasing the size of
the local detector sets, . For low , the modified theory is accurate. However, as increases, the theory
becomes less accurate, consistently predicting a detection rate that is too high. A possible explanation is that
the theory is becoming more inaccurate as increases because as approaches 1, it becomes harder to
detect the few remaining nonself strings, so the theory that adding detectors will reduce errors exponentially
no longer holds, because most added detectors will not cover those few remaining strings. The assumption
of independent detectors no longer holds because the domain is a closed world. It is also possible that those
few remaining strings are holes for all secondary representations, so the detection rate is limited. If this is the
case, there are still fewer holes than for the base representation: using the algorithm given in section 3.2.4,
the hole limit on the detection rate for SI is computed as , so, for all , having multiple secondary

61

representations has overcome this hole limit.

20 40 60 80 100 120
Number Detectors per Location

0.0

0.2

0.4

0.6

0.8

1.0
D

et
ec

tio
n

R
at

e

SI
Theory, (-0.895, 3.67)

Figure 4.10: Predicting for SI using the modified simple theory (varies). The theory curve is derived
using equation 4.4, and the numbers in parenthesis after the Theory label indicates the parameter settings for
and , respectively.

4.3.4 Incomplete Self Sets
Section 3.2 analysed the case where the training set is incomplete, that is, . Here, that
analysis is applied to the experimental data for the purpose of predicting false positive rates. In section 4.2.1
a power-law was fitted to the tail of the sample distribution of self (equation 4.1). This distribution can be
substituted into equation 3.9, because for the analysis only the tail of the distribution is required (new strings
and hence false positives will occur in the tail of the distribution). This gives

Approximating the summation with an integral and setting ,

62

(4.5)

As a first approximation, it is assumed that is large enough so that , then

The self test set, , and the training set are contiguous, so (the length of the
training trace), and . With ,

. Note that the error rate is a predictor of the false positive probability over a sufficiently long
period of time, so the predicted false positive rate (assuming all new self strings are detected) for is

per day. The number of unique strings seen in is 137, which gives
, assuming all these strings are detected. Hence, the predicted false positive rate is in

the same order of magnitude, but higher than empirical results. One of the sources of error is the assumption
that the size of the self set is large, that is, . The experimental value can be used to estimate the
probability of a false positive as ; this can be used with equation 4.5 to determine a value
for ,

Neglecting the higher order terms,

So , which is an estimate of the size of the self set, . From this it is possible to
estimate, that at a rate of , it will take 9 million iterations to sample every self string at least once.
This translates to 300 days, so for all practical purposes it is likely that there will always be false positives
occurring, although the error rate will be dropping. For this reason, it is essential to have mechanisms such
as activation thresholds and sensitivity levels to reduce false positives.

Figure 4.11 shows the effects of activation thresholds and sensitivity levels on . In this figure,
only the activation threshold is varied; the sensitivity, , and the decay factors, and are all set to
the default values. If the detection system produced one false positive per unique new self string in ,
then the false positive rate per day would be . With a threshold of , it is higher, at 70
per day. This indicates that the new self strings occur multiple times, and counting repeats, there are 78 new
strings per day. To reduce false positives, the detection system should have some mechanism whereby new
self strings only cause false alarms a single time, that is, the first time they appear. Such a mechanism is
described in the next chapter (5).

The use of activation thresholds reduces , for example, when , drops from to .
Note that the effects of activation thresholds can be predicted by assuming that false positives are reduced in
proportion to the threshold, that is,

(4.6)

where is the false positive error rate for a threshold of .
So, for , the predicted false positive rate would be , which is close to

the actual value of .

63

0 5 10 15
Threshold

0

20

40

60
Fa

ls
e

Po
si

tiv
e

Er
ro

r R
at

e
pe

r D
ay Experimental

Theory

Figure 4.11: The effect of activation thresholds on false positive rates for (varies). The y-axis gives
the number of false positives per day against . The Theory curve is derived from equation 4.6.

4.3.5 Detecting Real Nonself

The performance of the system on real nonself test sets is described here. Table 4.4 summarizes the detection
rates against the real test sets for and . For all these results the sensitivity was set to the default,
although sensitivity only makes a difference for the SI test set; for the others it has no effect (data not shown).
This table shows the detection rate computed over the whole trace, including self strings, , and it shows
the detection rate computed over only the nonself strings, .

With , for all test sets , indicating that there were no false negative errors. When
the threshold is increased to , all incidents are still detected, assuming an incident is detected when

. The higher the value of the better, because high values emphasize the separation between
intrusive incidents and false positives. Even with , the average detection rate is high ().

Figure 4.12 shows how changing the number of detectors affects the detection rate when using a
threshold of . The lower curve plotted in the figure is the average over all test sets, .
The horizontal dashed line indicates the maximum possible , which is determined by the fraction of
nonself strings in the traces. The average detection rate is approaching the maximum possible, but there
are diminishing returns: as more detectors are added decreasing increments in performance are gained; at

, , as compared to 0.46 for . The upper line indicates the fraction of
incidents detected, that is, the fraction of incidents for which . For , all seven incidents
are detected. Although it is true that it suffices to detect a few nonself strings to detect these incidents,
as mentioned before, the higher the detection rates, the clearer the separation between incidents and false
positives. Furthermore, higher detection rates improve robustness: the higher the detection rates, the less
damaging the compromise of a few detection systems.

64

0 100 200 300 400
Number of Detectors per Location

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n
R

at
e

Average Detection Rate
Fraction Incidents Detected
Maximum Detection Rate

Figure 4.12: How the number of detectors impacts on detection rate (varies,). Fraction Incidents
Detected denotes the fraction of incidents detected, that is, the fraction of incidents for which .
The Maximum Detection Rate is the fraction of nonself strings in each trace, averaged over all test sets, and
Average Detection Rate is the average over all test sets, .

65

Test Set

AP 0.54 0.00 1.00 0.48 0.01 0.89
PS 0.44 0.00 1.00 0.41 0.01 0.93
LP1 0.62 0.00 1.00 0.59 0.01 0.95
LP2 1.00 0.00 1.00 0.86 0.01 0.86
LP3 0.10 0.00 1.00 0.02 0.00 0.85
SP1 1.00 0.00 1.00 0.56 0.05 0.56
SP2 0.17 0.00 1.00 0.11 0.01 0.65
average 0.55 1.00 0.43 0.81

Table 4.4: Detection rates against real test sets (varies). is the fraction of anomalous strings in the
complete trace, including self strings, and is the fraction of nonself strings in the trace that are
classified as anomalous.

ID systems are usually evaluated in terms of a Receiver Operating Characteristics (ROC) curve,
which indicates the trade-off between false positives and detection rates. The ROC curve for this system
is shown in figure 4.13. This plot is derived by varying the activation threshold, although there are other
parameters that can be varied to effect this trade-off. The detection rate is averaged over all seven real
test sets. On an ROC curve, the best system is the one which has performance closest to the top left-hand
corner of the plot. The default threshold that that is used, , is close to this corner. However, the
actual threshold chosen will depend on the application. If detection of nonself is critical and false positives
can be tolerated, then a lower threshold will be more suitable. If, however, false positives are completely
undesirable, then a higher threshold will be preferable. Note that decreasing the threshold below 7 makes
little difference for detection rates on this suite of test sets, and increasing it beyond 13 makes little difference
for false positive rates. However, the false positive rate can always be reduced to zero with a large enough
threshold; in the extreme case, if is the length of the trace there can be no false positives, and no detection
either.

4.3.6 Increasing the Size of the Self Set
The impact of the size of the LAN being monitored on the false positive rate was tested by collecting network
traffic from a different subnet at the Computer Science department at UNM. This subnet was larger than the
original subnet, with 72 computers instead of 50; both data sets were combined for a total of 120 computers.
For these 120 computers, there were 7500 unique strings, representing 7500 unique datapaths, which means
that the additional subnet contributed 3700 new unique strings.

Figure 4.14 shows the probability distribution for the 120 computer self set, . The power-law
fitted to the data has the same exponent as before (), but has a different offset, . This offset is
roughly double that for the 50 computer set, , which has half the number of unique self strings. If the
number of strings in the sample self set is doubled, this will result in a “doubling” of the distribution, provid-
ing the added strings have the same power-law exponent. The consequence of “doubling” the distribution is
a doubling of . If the size of the sample self set is doubled and the exponent is unchanged, the power-law,
equation 4.1, becomes

66

0 20 40 60 80
False Positive Error Rate per Day

0.0

0.2

0.4

0.6

D
et

ec
tio

n
R

at
e

Figure 4.13: ROC curve for this system (varies). Each point corresponds to a different threshold, from
on the extreme upper right, to on the lower left. The detection rate is the average of over

all 7 test sets.

67

where is the “doubled” probability distribution. Let

(4.7)

then

So is the offset for , and , from equation 4.7. Thus the offset should double. In general,
if the number of strings increases by a ratio , then the offset should be multiplied by .

1 10 100 1000
String Index

0.0000000

0.0000001

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

0.9999999

Pr
ob

ab
ilit

y

Figure 4.14: Sample distribution of self strings for 120 computers. The dotted line indicates the power-law,
. Note that both axes are logarithmic.

The predicted false positive rate for is , assuming that , which is 50%
greater than that for . So doubling the size of the sample self set (by combining the two separate subnets)
has not doubled the false positive rate. In general, if the exponent stays the same, increasing the size of the
self set should increase the false positive rate, so that the probability of a false positive, given an increase in
size determined by a ratio , is

68

because , and .
This equation indicates that the growth of the false positive rate is sub-linear in the growth of the self

set. This is not scalable as the number of computers increases, but scalability was defined in terms of a fixed
problem size in section 3.1.5. The problem of scalability in this context is defined by the question: given
a self set generated by computers, will running detection systems on computers be scalable to running
detection systems on computers, where ? This is the case for false negative errors, because
increasing the number of detection systems will increase the total number of detectors and hence decrease the
false negative rate. This system does not scale in terms of false positives, but, as was shown in section 3.1.5,
any system that produces false positives will not scale.

4.4 Summary
This chapter described a network ID system that is based on NSM, but differs as follows: it does not mon-
itor traffic frequencies; only TCP SYN packets are monitored; services are grouped into a few well-known
services; and some services (such as WWW servers) are filtered. It is not clear how these changes affect
performance over that of NSM, because there are no points of comparison. There are no published results
of the performance of NSM (in terms of either false positives or false negatives) on data sets that allow for
replication of experiments.

Two mechanisms were introduced for reducing false positives: activation thresholds and sensitivity
levels. These mechanisms are based on the assumptions that nonself strings occur in temporal clumps relative
to new self strings, and that intrusive incidents are characterized by multiple nonself strings (connections).
This assumption holds for the self and nonself sets collected on a real system and used in the experiments.
Activation thresholds and sensitivity levels reduce false positive rates, and so can be used to adjust the trade-
off between false negatives and detection rates. Generally, false positive rates are reduced by a factor of ,
where is the activation threshold. However, detection rates are reduced less, because the nonself strings
are clumped, for example, the detection rate averaged over all real nonself incidents is reduced from
at , to at . Consequently, activation thresholds provide a mechanism for increasing the
separation between detection of nonself and false positive errors.

The distribution of the less frequently occurring self strings in the real sample is accurately modeled
by a power-law, which can be used to model the self strings as a strongly stationary random process. This,
together with the theory developed in chapter 3, makes it possible to predict false positive rates. Because of
this long-tailed distribution, it is unlikely that all the self strings can be collected in a practical period of time,
so new self strings should always be expected to occur, albeit at a slow rate. A power-law distribution with
the same exponent also holds for a different LAN, one that consists of 50% more computers. However, the
offset differs; it is proportional to the number of strings distributed according to a power-law with the same
exponent. So doubling the number of self strings doubles the offset. Increasing the size of the self set also
increases the number of false positives; in these experiments doubling the self set resulted in a 50% increase
in the false positive rate.

When the nonself test set is near to the self set (measured in Hamming space), having multiple
secondary representations improves detection rates, by up to a factor of three. When the nonself test set
is randomly distributed with respect to the self set, multiple secondary representations make no difference,
except that in the case of the linear congruential implementation of imperfect hashing, the detection rates are
reduced, because imperfect hashing introduces new holes. On all test sets, the contiguous bits match rule
together with substring hashing works best in terms of the trade-off between detection rates and the expense
of detector generation. It is important that the secondary representation does not spread the self strings too
much, because the number of retries for detector generation is less with a structured or clumped self set than

69

for a random self set (as much as three orders of magnitude less).
All local detection systems contribute similarly to the global detection rate; there is no single sec-

ondary representation that is significantly better than any others. This indicates the need for multiple rep-
resentations, but it also implies that the distributed detection system is robust because loss of one or a few
locations will result only in slight reductions in detection rates. With only 100 detectors per location on 50
computers (simulated), all 7 nonself incidents are clearly detected (56 to 100% of nonself strings detected),
even with activation thresholds high enough to reduce the false positive rates to 8 per day.

70

Chapter 5

Extensions to the Basic Model

This chapter describes the implementation and testing of mechanisms to achieve three goals:

Elimination of autoreactive detectors: If a detector is activated by a self string (that is, it is autoreactive),
then it should be eliminated as soon as it becomes clear that a false alarm has been raised. This will
reduce the false positive rate because the same self string will not trigger the same detector multiple
times.

Adaptation to changing self sets: The self set can change, for example when new computers are added,
users change their habits, new software and hardware are installed, etc. All these changes can lead
to false positives, so the system must adapt to the changing self sets. It must do this in a way that is
automated, distributed, and resistant to subversion.

Signature-based detection: For known patterns of intrusions, signature-based detection can be more effec-
tive than anomaly detection, with reduced false positive rates and higher detection rates. To improve
protection, every detection system should perform anomaly detection, and once an intrusion is de-
tected, encode the characteristic patterns associated with that intrusion as a signature, so that in future
that anomaly can be responded to more rapidly and with less error. Other ID systems use signature-
based detection, but the signatures are usually crafted by a human with prior knowledge; they are not
automatically extracted from the anomalies that have been detected. The Immune System (IS), by con-
trast, has mechanisms that allow it to automatically extract the signatures of anomalies and store those
to facilitate future responses.

There are four mechanisms that have been used to achieve these goals: costimulation, distributed
tolerization, dynamic detectors, and memory detectors. These mechanisms will be explained in detail in this
chapter.

5.1 The Mechanisms

This section describes the implementation of the four mechanisms. Because these mechanisms increase the
complexity of the system, little theory is presented for predicting performance. However, the simple theory
that is reported explains some of the the effects of the mechanisms, and the empirical results reported in
section 5.2.

71

5.1.1 Costimulation
Costimulation in the immune system provides a way of eliminating autoreactive lymphocytes. Section 2.1.4
described how every lymphocyte requires two signals to be activated: signal I is provided by binding to
pathogen epitopes, and signal II is provided by other cells of the immune system (see section 2.1.4). If signal
I is received in the absence of signal II, the lymphocyte dies or becomes anergic. The second signal is a way
of confirming that nonself was indeed detected. In the immune system signal II for Th-cells is thought to be
provided in the presence of tissue damage, so this suggests a damage indicator for an artificial system.

Similar mechanisms are used here, where signal I is provided by matching strings and being acti-
vated, and signal II is a damage signal provided by a human operator. Whenever a detector is activated, it
raises an alarm, and that alarm is communicated to some location where it can be observed by a human op-
erator (for example, as an email message). If the human operator determines that the alarm is indeed caused
by nonself, then he or she sends signal II to . If does not receive signal II within a period of time ,
called the costimulation delay, then will “die”, that is, it will be removed from the detector set (the in
stands for signal). The costimulation delay is intended to give a human operator time to react to anomalies,
so, typically it is set to 1 day. The default is that the detection is incorrect, and the human operator sends a
signal to counteract this default, so this is a False Positive Default (FPD) scheme.

An alternative way of implementing costimulation would be for the default to be that detection is
correct, and the human operator only sends a signal if the detector is autoreactive; this is a True Positive
Default (TPD) scheme. Then any detector receiving signal II would die, otherwise it would not be affected.
This scheme has two disadvantages. Firstly, false positives would require action on the part of the human
operator, whereas with a FPD scheme, the human operator can ignore false positives and the system will
automatically correct the problem. Because false alarms are undesirable, it is important to minimise the
amount of human effort required to deal with false alarms. Secondly, TPD is vulnerable to subversion. If the
system were corrupted so that an adversary was in the position of the human operator, then that adversary
could send signals to all detectors telling them to die, thus disabling the detection system completely. With
TPD, the worst that such an adversary could do is not confirm autoreactive detectors, which could only result
in higher false positive rates.

Ideally, a human operator should not be needed; the system should have some notion of “damage”
on which to base costimulation. This would require automated response, an issue which is discussed later in
chapter 6.

5.1.2 Distributed Tolerization
The previous section described how autoreactive detectors can be eliminated from detector sets. If the self
set changes, detectors will be continually eliminated through costimulation, and the number of detectors will
drop to zero over time, with a corresponding drop in detection rates. What is needed is a way of generating
new detectors on-line to replace those which have been eliminated. One way of doing this would be a Central
Tolerization (CT) scheme: a single location would have an accurate generalization of the self set,
and detectors would be generated using the negative selection algorithm at and then distributed to
other locations as necessary. This is similar to CT in the immune system, which takes place in the thymus,
hence the subscript for the location (see section 2.1.4). CT was used for the off-line generation of detectors
in chapter 4.

There are several problems with CT. Firstly, having a single central location for tolerization means
the system is not robust: compromise of that location will disable the system. Secondly, the more accurate the
generalization of the self set, the more information required for storage of this generalization; this information
could exceed the storage capacity of any one location. This is not the case for the ID system developed here,

72

but in general it cannot be assumed that there will be enough capacity at any one location. Finally, CT
requires communication: when a local detection system needs a new detector it must communicate with

, which must then reply with the information concerning the new detector. As the number of local
detection systems needing detectors increases, and the frequency with which detectors are needed increases,
so the communication costs increase. It is possible that for certain applications these cost could make the ID
system impractical.

For these reasons, a method for Distributed Tolerization (DT) has been implemented. One way of
generating a new valid detector at location would be to tolerize it using the information stored in the
existing detector set, . However, this is pointless. Recall from section 3.2.2 that a valid or tolerized
detector , is one for which the complement of its cover is a generalization of the self set, that is, .
So, for a set of detectors ,

A new detector will only be valid if , but the only information available about self at
location is from the detector set , so we require that

which means . Hence, every string matched by must also be matched by some
detector . So is useless because it adds nothing to the detection.

What is required is some additional source of information regarding the self set. If it is assumed that
self strings occur more frequently than nonself, then this information is provided by the random process that
produces the self strings, that is, it is provided by the system being monitored. This information is used to
implement DT as follows. When a new detector, , is created, it consists of a randomly generated bit string.
It is initially in an immature state, which means that if it matches anything once, it does not signal an anomaly
(raise an alarm), but is eliminated and replaced (regenerated)1. This immature state lasts for time steps;
is called the tolerization period. If survives the tolerization period (it does not match anything for

time steps), it becomes mature. When mature, functions exactly as an ordinary or naive detector: it only
becomes activated after accumulating matches (where is the current sensitivity level at location),
and it will die time steps after activation if it does not receive costimulation. With this implementation of
Distributed Tolerization (DT), no communication is needed, but during tolerization, immature detectors are
consuming resources and not contributing to the detection of nonself.

There is a trade-off between the fraction of immature detectors, , and the false positive rate, which
is governed by the match decay, , and the tolerization period, . The accumulation of matches can
be modeled as a queue [Williams, 1991, pages 215–217], where the time between arrivals is modeled by an
exponential random variable, with parameter (the arrival rate), and the time between departures is also a
random exponential variable, with parameter (the departure rate). If , then there is no stationary
distribution for the number of matches in the queue, and the queue could grow indefinitely. This means that
any match will contribute to activation, and over a sufficiently long period of time, every new self string
will cause a false positive. Conversely, if , then the queue is stable, and is described by a unique
stationary distribution. In this case, the queue will not grow indefinitely, which means that only some new
self strings will cause false positives.

1This is a temporal version of the negative selection algorithm.

73

The probability that the queue and hence the number of matches exceeds the threshold can be com-
puted as follows. Let the random variable be the number of matches in the queue, then the probability that
there are matches in the queue at any time is given by [Williams, 1991]

where is the ratio of arrivals to departures. So, the probability that the number of
matches exceeds the threshold , is

(5.1)

The queue of matches for a detector has an arrival rate which is determined by the probabilities of
occurrence of the strings matched by , that is by all , and a departure rate given by the probability
of match decay, . Now if the probability of occurrence of a string is , then is
expected to occur at least once during the tolerization period . Hence, it is expected that is tolerized to
, and will not be activated by ; only strings for which are expected to activate . Assuming

that there is only one such string, that matches, then the arrival rate for the match queue of is given by
. Substituting in equation 5.1, and expressing the probability of match decay as a decay period, ,

gives

Because , this becomes

(5.2)

When the decay period, , is close to the tolerization period, , the activation threshold has less
effect on the probability of activation, and as the increases relative to , the activation threshold has an
increasing effect. But note that, for practical purposes, if is moderate, then once the tolerization period
is even moderately larger than the decay period, the probability of activation is so low that increasing the
tolerization period further has a negligible effect. For example, consider the case where the decay period is

day, and the threshold is , then for days, , which is close enough
to zero that an increase in will have no practical effect. So, in practice, it is expected that changes in the
tolerization period will only have an effect on false positive rates if the tolerization period is similar to the
decay period.

According to this analysis, if , then , which means that every new self string
will be a false positive every time it occurs. However, this is not the case, because the match queue dynamics
do not agree with this model: not only is an element in the queue removed according to the departure rate,

74

but all elements are removed whenever the queue reaches a size of . This means that the queue cannot grow
indefinitely, and the activation threshold should still reduce the false positive rate, in the simplest case by a
factor of roughly , as shown in section 4.3.4. In fact, in this case there is no unique stationary distribution
for the number of matches (the length of the queue).

5.1.3 Dynamic Detectors
If coverage of nonself by the detection system is incomplete, then an adversary could discover and exploit
the gaps to evade detection. The longer the period of time over which the coverage remains unchanged, the
more likely it is that an adversary will find gaps, and once found, those gaps can be exploited more often.
The replacement of autoreactive detectors will change the coverage, but if false positive rates are low, then
the change in coverage will be correspondingly slow. One solution is to increase the number of detectors so
that there are no gaps, but when resources are limited this may not be possible. An alternative solution is to
change the detectors over time, that is, to make them dynamic. This can be done by giving each detector a
finite lifetime, measured in time-steps. At the end of this lifetime, the detector is eliminated and replaced by
a new randomly-generated detector that is tolerized using the DT scheme described in the previous section.

If all the detectors have the same lifetime, and they begin life at the same time-step (for example, at
the start of monitoring), then having a fixed lifetime will mean a complete loss of detection when all detectors
die at the same time-step, and are replaced by new immature detectors. So detectors are given a probabilistic
lifetime, defined by a parameter , which is the probability that a detector will die at any given time-
step. Using a constant probability means that the lifetime of a detector is a geometric random variable, with
an expected value of . With a probabilistic lifetime, death events should be more evenly distributed
over time2.

A limitation is imposed on detection rates by dynamic detectors: detectors must remain immature for
some period of time, during which they will not be contributing to the detection rate. The expected fraction
of immature detectors, , is given by

(5.3)

Equation 5.3 implies that , that is, the expected lifetime, , must be
greater than the tolerization period. The tolerization period, and the lifetime, , must be adjusted to
give detectors sufficient time to mature and be useful. The closer is to , the more detectors will be
immature, but the further it is, the more attackers will have time to discover and repeatedly exploit particular
vulnerabilities in the coverage. This trade-off depends on how long it takes an attacker to find and exploit
a vulnerability, over what period of time the attacker is likely to repeatedly exploit the same vulnerabilities,
and on how fast the self set is changing.

5.1.4 Memory
Although dynamic detectors protect against repeated exploitation of vulnerabilities, dynamic detectors alone
will not improve average detection rates. If the nonself test set, , is new or novel, the only way to
improve detection would be to increase the number of detectors and/or change the specificity of the match
rule. However, if has been encountered before, then the detection rate can be improved by retaining
a “memory” of and using this for subsequent detections; that is, by using signature-based detection.
Information about previous nonself is stored in the form of memory detectors. A memory detector is an
ordinary detector with certain additional properties:

2An alternative would be to initialize the detectors to die asynchronously.

75

Unlimited lifetime: A memory detector has no probability of dying. For memory detectors, .

Heightened sensitivity: A memory detector will signal an anomaly after a single successful match. For
memory detectors, .

Memory detectors are selected as follows. Whenever a naive (non-memory) detector is activated by
a string , it enters into a competition to become a memory detector. If several other detectors have also
been activated by , the detector with the best match is chosen to become a memory detector. For
the contiguous bits rule, this is the detector which matches in the most contiguous bits. does not
immediately become a memory detector, but is a provisional memory detector until it receives costimulation,
confirming that the match was nonself. At that time it becomes a full memory detector.

There is a limit, , to the number of memory detectors that can exist in any location. This limit
is expressed as a fraction of the total number of detectors at the location, so the number of allowed memory
detectors is given by . This limitation is intended to prevent all naive detectors from becoming memory
detectors, which could mean a loss of anomaly detection capability. If a provisional memory detector,
receives costimulation, and the number of memory detectors is less than , will become a memory
detector. However, if the number of memory detectors is equal to , then an existing memory detector
must be removed to make into a memory detector. The detector to be removed is selected randomly
from amongst the existing detectors.

Memory detectors alone will not improve subsequent detection of nonself, except for the fact that
memory detectors have reduced activation thresholds. If a string was never detected previously by
a memory detector, there is no reason why it will be detected by one later. For this, dynamic detectors are
essential, because they provide the changing coverage to detect , while the memory detectors ensure that
what has been detected in the past will still be detected now. Together, memory detectors and dynamic
detectors improve detection rates, as well as eliminate consistent vulnerabilities and improve responses to
previously encountered nonself.

5.1.5 Architectural Summary
To summarize, the architecture of the distributed ID system is shown in figure 5.1. All internal computers
(those on the LAN) are assumed to run local detection systems. These local detection systems all monitor
the same traffic because of the broadcast assumption. The only aspect of traffic that is monitored are the
datapaths formed by TCP SYN packets, which are represented as 49-bit strings, using the base representation
(see section 4.1.1). Each local detection system has the following components:

Sensitivity level: This indicates the current sensitivity value that must be subtracted from the threshold, ,
for activation. See section 4.1.3.

Secondary representation parameters: These are the parameters necessary for implementing the sec-
ondary representation. Each local detection system has different, randomly determined values for
these parameters. In the case of the default secondary representation, substring hashing, there are two
parameters: a 256-byte hash table, and a permutation mask of 6 digits. See section 4.1.2.

Detector set: The detector set consists of a fixed number of detectors. See section 4.1. Detectors are gener-
ated off-line using the negative selection algorithm (see section 3.2.2), or on-line using DT (see section
5.1.2).

Each detector in a detector set has the following components:

76

State: This can be immature, naive or memory. Immature detectors are described in section 5.1.2, memory
detectors are described in section 5.1.4, and naive detectors are detectors that are neither memory nor
immature.

Activation flag: This indicates that the detector has been activated, and has yet to receive costimulation.

Last activation: This indicates the number of time-steps since the last activation. This, together with the
activation flag, is used for costimulation. See section 5.1.1.

Number of matches: This is the match count, , which keeps track of the number of times the detector has
matched. See section 4.1.3.

Binary string: This is a 49-bit string which is used to encode compactly the generalization of the training
set.

sensitivity
level

secondary
representation

parameters

set
detector

sensitivity
level

secondaryrepresentationparameters

set
detector

sensitivity
level

secondaryrepresentationparameters

set
detector sensitivity

level
secondaryrepresentationparameters

set
detector

external computer

broadcast LAN

datapath triple

port: 25
IP: 20.20.20.5

port: 1700
IP: 31.14.21.37

Detector

internal computer

Local Detection System

(20.20.20.5, 31.14.21.37, smtp)

Negative Selection
Algorithm
(Offline)

& death)
(distributed tolerization
Dynamic Detectors

= 1110111...11

{immature, naive, memory}

state last activation # matchesactivation flag

0001010010011100011101110...01110

Figure 5.1: The architecture of the distributed ID system.

The lifecycle of a detector is given by figure 5.2. A detector consists of a randomly created bit
string that is immature for the tolerization period (in this diagram, two days). If it matches anything once
during that period it dies and is replaced by new randomly generated detectors. If it survives tolerization,
it becomes a mature, naive detector, that lives for an expected time-steps (in this diagram seven
days). If the detector accumulates enough matches to exceed the activation threshold, it is activated. If the

77

activated detector does not receive costimulation, it dies. If it receives costimulation, it enters a competition
to become a memory detector. Once a memory detector, it lives indefinitely, and only requires a single match
for activation.

randomly created

mature & naive

immature

death

activated

exceed activation
threshold

no match in 2 days

match anything
in 2 days

no costimulation

costimulation

memory

threshold in 7 days
don’t exceed activation

match

01101011010110...110101

Figure 5.2: The lifecycle of a detector.

5.2 Experimental Results
The effect of these mechanisms was tested on the elimination of autoreactive detectors, on changing self
sets, and on signature-based detection. For the first experiment (section 5.2.1), actual data were used, but
for the last two experiments (sections 5.2.2 and 5.2.3), the self strings were produced by the simulation of
a strongly stationary discrete random process, , where each random variable is a
function producing a self string at time-step . The random variables all have the same distribution,
which is taken as the sample distribution of the real data collected for (see section 4.2.1). So,
at each time-step, a string is randomly selected from the distribution of . The actual
probabilities from the sample are used, and not simply the power-law approximation to the distribution.

Simulation increases the flexibility in the way the experiments can be set up and run; in particular,
there is no limit on the number of time-steps for which the simulation can be run. This enable periods of
months to be simulated. Figure 5.3 compares the distribution of the simulated self strings, with the distribution
of the actual self strings, over the same time period. The curves are identical except at low probabilities
(). It was assumed that the self set is generated by a strongly stationary process.

The parameters for the full distributed detection system are given in table 5.1. As in the previous

78

1 10 100 1000
String Index

0.000000

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

Pr
ob

ab
ilit

y

Real
Simulated

Figure 5.3: The probability distributions for real and simulated self. Note that both axes are logarithmic.

chapter, the default values given in the table are used throughout these experiments, unless otherwise stated.
Parameter values that differ from the default are given in the captions for every table and figure. Where
multiple runs with different random seeds are performed, the usual number is 30, unless otherwise stated.
The results of multiple runs are reported as a mean, followed by a confidence interval after a sign,
unless otherwise stated. Elapsed time for the experiments is reported in days. For all simulated data, one day
is assumed to be equivalent to 25000 time-steps, that is, 25000 TCP SYN datapaths. Where the fraction of
immature detectors, , is reported, this fraction is measured over all detector sets at all locations.

5.2.1 Costimulation

The goal of costimulation is to eliminate autoreactive detectors. Autoreactive detectors are detectors that
incorrectly detect self datapaths and so cause false positives. Costimulation in this context is based on the
immunological mechanism of costimulation, where a lymphocyte needs two disparate signals to be activated.

Costimulation was tested using the training data, , and the self test set, , described in section
4.2.1. The test data were not simulated. The default parameter settings were used for the tolerization period,
that is, days, so no new detectors matured during the testing phase, because the test set only spans
seven days and it was assumed that all detectors were mature at the start of the test phase. In an on-line system,
a human operator would have to provide the second signal to detectors that send alarms. To automate these
experiments, it has been assumed that for all detectors matching nonself strings (i.e. autoreactive detectors),
a human operator confirms the anomalies and sends signal II to the detectors, within the costimulation delay
period, . Thus it has been assumed that the human operator is prompt and correct. In the experiments
reported in this section, however, there are no nonself strings in the test set, so the effect of the costimulation
is that all detectors that are activated will die after the costimulation delay has elapsed, that is, after

79

Parameter Description Default Value
costimulation delay 25000 (1 day)
tolerization period 350000 (14 days)
maximum fraction memory detectors 0.0
death probability 0.0
number locations 50
number detectors per location 100
string length 49
match length 12
secondary representation substring hashing
match rule contiguous bits
activation threshold 10
match decay 0.0
sensitivity 1.5
sensitivity decay 10

Table 5.1: The parameters for the basic distributed ID system. Unless stated otherwise, all experiments use
these default values. Note that when , the settings for , , and are irrelevant, because can
never be less than 1

time-steps.
The idea behind costimulation is to reduce false positive rates to those equivalent to the number

of unique new self strings. As shown in table 5.2, this does not happen, because of the delay before the
autoreactive detectors die, during which they can continue to trigger false alarms. The shorter the delay, the
lower the false positive rate. The shortest delay shown in the table is days, but actually the delay is
100 time-steps (the equivalent of about 6 minutes), which was assumed to be the minimum reasonable time
for an operator to react, assuming the operator was present at a console immediately the signal was sent. For
this shortest delay, the false positive rate comes close to the number of unique new self strings: when the
activation threshold is one, the false positive rate is per day, whereas the number of unique new self strings
is per day. There is no unique count for .

Costimulation reduces false positive rates. In the table, indicates that there is no
costimulation, so autoreactive detectors are not eliminated. In this case, the false positive rates are two to
three times higher than the best false positive rates for costimulation. For a costimulation delay of
day, the false positive rate is halved from the case with no costimulation. , measured at the end of the seven
days of test data, is less than or equal to 0.061 in all cases, indicating that no more than 305 out of 5000
detectors are immature at any given moment.

5.2.2 Changing Self Sets
The efficacy of distributed tolerization and costimulation as mechanisms for adapting to changing self sets
was tested with a simulation of a massive change in the self set. The detectors were tolerized off-line on 7
days of data (the self test set,), and then the simulation was run for 12 weeks of simulation time, or
2.1 million time-steps. During this test phase, the simulation of the random process , produced self strings
drawn from the distribution of the set of self strings, . So, whereas the detectors were tolerized
against 869 self strings during the test phase, they were presented with 3900 self strings during the training
phase. Because of computational constraints, each experiment was carried out for only 10 runs with different
random seeds, instead of the usual 30 runs.

80

days per day
1 unique count 17.6 n/a
1 0.0 30.0 1.5 0.061 0.001
1 1.0 52.0 2.0 0.039 0.001
1 infinite 70.3 2.9 n/a
10 0.0 2.6 0.2 0.007 0.000
10 1.0 4.3 0.3 0.004 0.000
10 infinite 7.8 0.5 n/a

Table 5.2: Costimulation results (varies, varies). The unique count indicates the number of unique
self strings in that were not in , the costimulation period of 0.0 days () was actually a
costimulation period of 100 time-steps, and is the fraction of immature detectors at the end of the run.

Figure 5.4 shows the changing false positive rate of a typical run for each of five different tolerization
periods, days. The false positive rates are high initially, over 1000 per day, but then
drop exponentially (note that the y-axis is logarithmic); after a week the false positive rate has dropped to
under 100 per day. The rates continue to drop, but more slowly. These results are to be expected because of
the distribution of : of the self strings occur of the time, so the strings that would cause
false positives most of the time tolerize the system rapidly. Note that the false positive rates are different for
the different tolerization periods, as expected if there is no decay of the match counts. False positive rates
averaged over the last 7 days of the simulation, over 10 runs, are 39 per day for day, and per day
for days (4 weeks). In the latter case, the false positive rate is still double that achieved against
in the previous section, where it was 4.3 (see table 5.2).

Although longer tolerization periods are preferable for reducing false positives, they will increase
, and so reduce detection rates for a fixed number of detectors. Figure 5.5 shows the change in for the
five different typical runs. climbs initially at the same rate for all tolerization periods, because there is no
difference in the rates at which autoreactive detectors are eliminated. However, once new immature detectors
have survived the tolerization period and become naive, starts to decrease, which is reflected by the drop-off
in the various curves. As expected, the drop-off occurs at roughly the tolerization period, that is, time-
steps after the start of the simulation. Because of these dynamics, the tolerization period makes a significant
difference to , for example, the final (after 12 weeks) is 0.01, averaged over 10 runs for day,
compared to for days. So, to reduce , short tolerization periods are to be preferred.

Both the false positive rates and the fraction of immature detectors can be reduced by using a non-
zero match decay. In the results to follow, a match decay of was used, which is equivalent
to a decay period of day. A non-zero match decay reduces false positives because it reduces the time
interval over which matches can be accumulated to reach the activation threshold; as the simulation period
increases, this can make an increasing difference in performance. However, a match decay of
will have little effect on the detection rates of the real nonself test sets. The largest nonself test set is AP,
which consists of a trace over 8600 time-steps; the probability of a single match decaying in this period is

, and for the next largest nonself test set, the probability of a single match
decaying is .

Using a non-zero match decay, there appears to be little difference between false positive rates for
the different tolerization periods, as shown in figure 5.6. Once again, this figure shows typical runs for the five
different tolerization periods, but now the false positive rates are closer together. However, the tolerization
period still has a larger effect on . Figure 5.7 shows the change in over time for a typical run, for each of
the five tolerization periods.

81

0 20 40 60 80
Time (Days)

1.0

10.0

100.0

1000.0

10000.0

Fa
ls

e
Po

si
tiv

e
R

at
e

pe
r D

ay
28 days
21 days
14 days
7 days
1 day

Figure 5.4: False positive rates over time for a typical run with different tolerization periods, for a massive self
change (varies). The legend indicates the tolerization period in days. Note that the y axis is logarithmic.

0 20 40 60 80
Time (days)

0.0

0.2

0.4

0.6

Fr
ac

tio
n

Im
m

at
ur

e

28 days
21 days
14 days
7 days
1 day

Figure 5.5: Fraction of immature detectors, , over time for a typical run with different tolerization periods,
for a massive self change (varies). The legend indicates the tolerization period in days.

82

0 20 40 60 80
Time (Days)

0.1

1.0

10.0

100.0

1000.0

10000.0

Fa
ls

e
Po

si
tiv

e
R

at
e

pe
r D

ay

28 days
21 days
14 days
7 days
1 day

Figure 5.6: False positive rates, , over time for a typical run with different tolerization periods, for a
massive self change (varies,). The legend indicates the tolerization period in
days. Note that the y axis is logarithmic.

83

0 20 40 60 80
Time (days)

0.0

0.1

0.2

0.3

Fr
ac

tio
n

Im
m

at
ur

e

28 days
21 days
14 days
7 days
1 day

Figure 5.7: Fraction of immature detectors, , over time for a typical run with different tolerization periods,
for a massive self change(varies,). The legend indicates the tolerization
period in days.

84

per day Final Max. Max. Immature
1 3.8 0.4 0.001 0.000 0.048 2.1
7 2.4 0.2 0.007 0.001 0.152 8.1
14 2.4 0.3 0.022 0.001 0.195 15.1
21 2.4 0.2 0.047 0.002 0.222 22.0
28 2.1 0.2 0.082 0.003 0.241 29.0

Table 5.3: Effects of a massive change in the self set (varies,). The simulation
was run for 12 weeks, with the detectors initially tolerized off-line against . The false positive rate, ,
is computed over the final two weeks of the simulation. The Final is at the end of the simulation, and the
Max. is the maximum during the simulation, and the number of days after the start of the simulation at
which this maximum was attained is given byMax. Immature.

Table 5.3 summarizes the different effects of the different tolerization periods, over 10 runs for
each different value of , when using a match decay period of day. The final indicates that after
a sufficiently long period of time (12 weeks), most detectors have matured, and in the case of the shorter
tolerization periods (1 and 7 days), a negligible fraction of immature detectors remain (5 and 35 out of 5000,
respectively). The maximum indicates the highest during the run, corresponding to the drop-off point on
the temporal curve. For example, this drop-off happens when if day, but it reaches if

days. The maximum immature point indicates the day in the simulation at which the maximum was
reached and the drop-off begun. For all tolerization periods, this value is almost days. The reason for
the additional day is that the costimulation delay is one day, so any detector that is autoreactive will only get
eliminated a day after the first time it is activated.

Note the difference between these results and those when . The final false positive rate
is less when using a non-zero decay, for example, even when , the false positive rate is half what it
was when previously . is also reduced, because fewer detectors are matching, for example, the final
for days has been reduced to 0.082 from 0.25, and the peak is half what it previously was. So a
non-zero match decay reduces false positives and the fraction of immature detectors.

In section 5.1.2 the accumulation of matches was modeled with queues. That analysis implied that
as the tolerization period grows larger than the decay period, , the tolerization period should make a
negligible difference, which is the case; when (and), all false positive rates are about 2.4.
However, when , the false positive rate is higher, at 3.8. The analysis further indicates that when is
close to , the activation threshold should have little effect on the false positive rate. However, this does not
take into account the fact that after every matches, the match count or queue size is reset to 0, so even for
values of close to , it is expected that will influence the false positive rate. This is indeed the case, as is
shown in table 5.4. When , has increased from 3.8 for to 6.6 for ; when ,

has increased from 2.4 to 3.8, so in this case the false positive rate has been more affected by a change
of at shorter tolerization periods.

These experiments with a massive change in the self set are a simulation of what will happen if the
distributed ID system is trained on a small sample of normal data (collected over a week), and then left to
monitor all traffic for several months, without any further training. In other words, these mechanisms suggest
a practical way in which an on-line system could be initialized.

85

per day Final Max. Max. Immature
1 6.6 1.5 0.002 0.000 0.079 2.0
7 3.8 1.0 0.014 0.004 0.233 8.0

Table 5.4: Effects of a massive change in the self set (varies, ,).
The simulation was run for 12 weeks, with the detectors initially tolerized off-line against . The false
positive rate, , is computed over the final two weeks of the simulation. The Final is at the end of the
simulation, and the Max. is the maximum during the simulation, and the number of days after the start of
the simulation at which this maximum was attained is given byMax. Immature.

5.2.3 Memory
It was proposed that memory of past intrusions together with dynamic detectors could improve detection
rates. This section demonstrates that this is indeed the case. Once again, ideas have been borrowed from
immunology; a detector is the equivalent of a lymphocyte, and like a lymphocyte, a detector can become a
long-lived memory detector, and has a finite lifespan.

The shorter the tolerization periods, the shorter the lifetimes of detectors, and the more useful dy-
namic detectors will be for providing changing coverage. The results in the previous section showed that a
tolerization period of day gave false positive rates of 3.8 as compared to 2.4 to 2.1 for longer peri-
ods, so these experiments were carried out using a tolerization period of day, and a match decay of

, which is 1 per day.
The experiments performed here are simulations. First, the detection system is tolerized on ,

then it is run against a trace which is constructed as follows. At the start of the trace is the synthetic internal
nonself test set, SI. Following this is a sequence of 250000 self strings generated by the random process
from the distribution of . Finally, the trace is ended with the same nonself test set, SI. The total
time represented by the trace is approximately 10 days.

The goal of these experiments was to determine the effect of dynamic detectors and memory on
detection rates when the system is re-exposed to the same nonself trace 10 days after the first exposure.
Borrowing terms from immunology, the detection rate on the first exposure is called the primary response,
and that on the second exposure is called the secondary response. Having self traffic in between tests the
effect of dynamic detectors on false positive rates. The system was tested on SI because this is the hardest
of the ten nonself sets to detect, and so memory and dynamic detectors should have the most influence on
performance. The normal costimulation delay of 1 day was used, with the assumption that autoreactive
detectors are never confirmed, and detectors that match nonself are always confirmed.

Table 5.5 shows the effects of different tolerization periods and different death rates on the detection
system. The different parameters make a difference in the fraction of immature detectors, and in the false
positive rates. is accurately predicted by equation 5.3, for example, when and the expected lifetime,

, the prediction is 0.16 and the empirical value is 0.15. The predictions could be affected by
elimination of autoreactive detectors (because these are not dying according to the death probability), but
this number is so small (; see table 5.2), that the effect is negligible. The secondary response reflects
an improvement on the detection rates over the primary response which is typically over 3 times better;
this indicates that dynamic detectors together with memory make a significant difference for detection rates.
Although for all experiments, the actual fraction of detectors that were memory detectors is lower,
at about one in ten.

The false positive rates for the case of a tolerization period of one day () are better (at
per day) than the values in table 5.2, where the false positive rate was 4.3 per day for a costimulation

86

E(life) Memory Primary Secondary Empirical Predicted
Fraction Response Response per Day

1 3.5 0.12 0.01 0.22 0.01 0.75 0.01 0.27 0.00 0.29 3.5 0.5
1 7.0 0.12 0.01 0.25 0.03 0.76 0.02 0.15 0.00 0.14 3.1 0.2
2 7.0 0.11 0.01 0.23 0.03 0.74 0.02 0.27 0.00 0.29 0.3 0.1

Table 5.5: Effects of tolerization periods and death probabilities on memory (, varies,
varies,). E(life) refers to the expected lifetime, which is . TheMemory
Fraction is the fraction of detectors that are memory detectors. The Primary and Secondary responses are the
detection rates against SI, at the beginning of the simulation, and at the end of the simulation (after 10 days),
respectively. The Empirical is the average fraction of immature detectors over the simulation, the Predicted
is the fraction of immature detectors predicted by equation 5.3, and the is the average number of false
positives per day over the simulation. All values are averaged over 10 runs.

delay of one day and . This improvement can be attributed to using a match decay, because for the
experiments reported in this section the decay period is one day, , whereas in the experiments reported
in section 5.2.1 the decay period was infinite. Once a period of is reached, the false positive rate is
already so low that there is no point in increasing further. However, there is a disadvantage to having longer
tolerization periods: the lifetime must be increased to reduce the fraction of immature detectors. Longer
lifetimes mean fewer new detectors over short time periods, which will make the system more vulnerable to
repeated exploits of existing gaps in the coverage.

The effect of varying the tolerization period and keeping the decay period constant is shown in figure
5.8. The decay period was one day, and the expected lifetime of all detectors was seven days. This plot
includes points where the tolerization period is less than the decay period; it is in this regime that the standard
queuing theory fails, because it predicts that there will be no stable distribution for the length of the queue
(number of matches). However, as figure 5.8 shows, there is a clear relation between the tolerization period
and the false positive rate, given by

(5.4)

where and are constants, the false positive rate is per day, and the tolerization period is in days.
The dashed line in figure 5.8 indicates the curve when and . A consequence of this relation
is that the change in the tolerization period affects the false positive rate more slowly than it would in the case
of simple queuing. With a simple queue, a change in tolerization period from to would
result in a 6-fold decrease in false positive rate, whereas in the experiments the false positive rate is halved.

Table 5.6 shows the effects of limiting the number of allowablememory detectors. In this experiment,
the expected lifetime was 7 days, and the tolerization period was 1 day. Three different memory limits were
tested, . Neither the fraction of immature detectors nor the false positive rates are
affected by the memory limit. Memory could have an effect on the fraction immature because memory
detectors live indefinitely; memory preserves detectors from dying and being replaced by new immature
detectors. However, the fraction of detectors that are memory is low enough for this effect to be negligible.
Furthermore, the memory limit is only reached for ; for the other limits, the fraction of memory
detectors never approaches those limits. In the case where the fraction of memory detectors is limited by

, the secondary response is worse, dropping from 0.76 in the unlimited case, to 0.64.

87

0.0 0.5 1.0 1.5 2.0
Tolerization Period (days)

0

1

10

Fa
ls

e
Po

si
tiv

e
Er

ro
r R

at
e

pe
r D

ay

Figure 5.8: False positive rate per day with different tolerization periods (varies,
,). The solid line represents the experimental results, and the dashed line is the

curve given by equation 5.4. Note that the y-axis is logarithmic.

88

Actual Primary Secondary
Memory Response Response per Day

0.07 0.07 0.00 0.24 0.02 0.64 0.01 0.16 0.00 3.4 0.3
0.27 0.10 0.01 0.22 0.04 0.73 0.02 0.16 0.00 3.3 0.3
1.00 0.12 0.01 0.25 0.03 0.76 0.02 0.15 0.00 3.1 0.2

Table 5.6: Effects of memory (varies, , per 7 days,
). The maximum allowable fraction of memory detectors is given by

and Actual Memory refers to the fraction of detectors which are actually memory detectors. The Primary and
Secondary responses are the detection rates against SI, at the beginning of the simulation, and at the end of the
simulation (after 10 days), respectively. is the average fraction of immature detectors over the simulation,
and the is the average number of false positives per day over the simulation. All values are averaged
over 10 runs.

5.3 Summary
This chapter introduced four mechanisms (costimulation, distributed tolerization, dynamic detectors and
memory), with three goals in mind: eliminating autoreactive detectors, adapting to changing self sets, and
improving detection rates through signature-based detection. Costimulation is intended to eliminate autore-
active detectors, and was shown to reduce false positive rates from 8 per day to 3 or 4 per day. Distributed
tolerization together with match decay allows the system to adjust to changes in the self set, with 3000 initial
false positives per day dropping over time, down to 50 per day after a week, and 10 per day after 3 weeks.
In the case where the self set is not undergoing a massive change, tolerization periods of 1 and 2 days, when
used in conjunction with match decays, are sufficient to reduce the false positive rates further, for example,
from 8 per day to one every three days. Dynamic detectors are useful for preventing repeated exploitation of
existing gaps in detection coverage, and together with memory, improve detection rates for repeated attacks;
detection rates improve from 0.25 for the primary response to 0.75 for the secondary, with one tenth of the
detectors being memory detectors.

There is a trade-off between false positive rates and the fraction of immature detectors (which affects
detection rates). This trade-off is adjusted by varying the tolerization period and the detector lifetime relative
to the match decay period. Some aspects of this trade-off can be understood and some explanations for
empirical data can be gained by modeling the match counts with simple queues. The conclusions to draw
from this simple modeling are that the tolerization period should be greater than the decay period, but only
moderately greater, because if the tolerization period is much greater, it will make little difference to the false
positive rate. As the tolerization period is increased, so the lifetime must be increased to avoid having too
many immature detectors (which will reduce detection rates). Longer lifetimes mean less dynamic coverage,
and more opportunity for an attacker to exploit existing gaps in the detection coverage.

89

Chapter 6

Implications and Consequences

This chapter explores some implications and consequences of the results presented in previous chapters. Most
of ideas discussed here could be viewed as future work; however, they do not necessarily follow on directly
from the results already presented. Section 7.4 in the next chapter discusses future work that is directly related
to previous results.

The first section (6.1) discusses automated response: ways in which the computer system could be
designed to respond automatically to intrusions, with minimal input from a human operator. In section 6.2
two other domains are described in which the model of distributed detection would be useful. Finally, in the
last two sections, some implications of the analogy are discussed, both for immunology (section 6.3.1) and
for computer science (section 6.3.2).

6.1 Giving Humans a Holiday: Automated Response
The Immune System (IS) is an autonomous system: it detects pathogens and acts to eliminate those pathogens
without outside interference or global control. The immune analogy can be extended so that the model of
distributed detection described in chapter 3 includes automated response, and can be applied to make the ID
system autonomous, so that the system takes care of itself, detecting intruders and taking steps to protect
itself from those intruders, without the input of a human operator. Automated response can have negative
effects, because any automated response that denies access to legitimate users is in effect a denial of service,
making the system vulnerable to spoofing attacks in which an adversary stimulates the response system to
shut off legitimate access. There is thus a trade-off between the harm done by the attacker and the harm done
by the response system. The IS faces a similar problem, but unfortunately, what is known about response in
the IS is too little to be of use as inspiration for artificial systems design (for an early model of this aspect,
see [Segel, 1997]). Consequently, we must invent our own response mechanisms without the benefit of the
biological inspiration.

6.1.1 Adaptive TCPWrappers
A proposed basis for the automated response system is to automatically modify access to services by filtering
out anomalous behaviour. This is a similar concept to having a dynamic or adaptive firewall, but each com-
puter must be adjusted separately, and furthermore, to avoid single weak points, each computer should be able
to filter its own traffic. This filtering can be achieved using TCP Wrappers [Venema, 1992], which are pro-
grams that “wrap around” individual services, and can be programmed to allow or disallow any connections

90

or combination of connections to individual services. Each computer on the LAN would have TCPWrappers
for all its services, and automated response would take the form of modifying the wrappers to disallow traffic
from suspicious sources.

The detection system would have to be modified so that each detector retains a list of all the strings
that it has matched, that is, it retains information about which string caused each match in the match queue.
Then a detector would have to retain information about at most strings. When the match count exceeds
the threshold and the detector is activated, it sends out alarms to all internal computers that appear in any of
the list of strings (at least one of the computers in each string has to be internal). For example, if a detector
on computer detects an anomaly that involves a connection from an external computer to an internal
computer on the telnet port, then sends a signal to informing that an anomalous connection was
detected, coming from location on the telnet service. A voting system could be used to ensure robustness: if
receives alarm signals from a sufficient number of other computers on the LAN about the same connection,

then it assumes that the connection is indeed suspicious and modifies the relevant TCP wrapper to disallow
those connections in future.

A problem with this automated response scheme is that false alarms can cause permanent denial
of service to legitimate users, and as the experiments in this research have shown, new patterns are to be
expected, although infrequently. So costimulation is still required to eliminate autoreactive detectors. Fol-
lowing the IS, costimulation should be provided in the presence of “damage” to the system, but for the
moment, consider that costimulation is provided by a human operator, as described in section 5.1.1 (the issue
of costimulation as a consequence of damage is discussed further on).

Each detector that signals an alarm posts a message to a human operator, called the System Security
Officer (SSO) . The SSO inspects all the messages and decides which are true alarms. For those that are, the
SSO sends messages to the computers that raised the alarms, confirming that they are indeed anomalous. If
within the costimulation period, the detector on that posted the alarm does not receive confirmation from
the SSO, then the detector dies off and is replaced (as described in chapter 5). When a detector receives
costimulation, it sends a message to indicating that the classification was correct. Once again, voting is
used: if does not receive costimulation signals from a sufficient number of computers, then reverts its
TCP wrapper back to the original state.

There are 5 ways an attacker could subvert this system:

1. Ensure that the anomalous strings do not occur frequently enough to trigger an alarm.

2. Ensure that once an alarm is triggered, it is not confirmed by the SSO as an anomaly. There are two
ways of doing this (short of physically incapacitating the SSO). Firstly, the attacker could somehow
disrupt communication between the computers which detected the anomaly, and the SSO. Secondly,
the attacker could try to launch the attack in such a way that the traffic is does not appear anomalous to
an SSO, even if it is identified as anomalous by the detection system.

3. Compromise enough computers so that they can all send correction signals to the victim computer,
causing it to modify its TCP wrappers in a manner favourable to the attacker. Note, however, that
they could only cause it to modify wrappers to correct some mistake of the past, which means that the
attacker must be interested in forcing the system to revert some block on past connections. The more
computers required for a voting majority, the harder this would be to accomplish.

4. Compromise enough computers so that they all send alarm signals to the victim computer. Such attacks
could only deny service to legitimate users, and once again, a voting majority of internal computers
would have to be compromised. Furthermore, for the denial of service to be persistent, either the SSO
would have to be subverted (because costimulation would be required for permanent effects), or the

91

alarms would have to be sent repeatedly, which will increase the chance that the SSO will become
suspicious.

5. An attacker could completely compromise the system if communication to and from the SSO could be
spoofed. Spoofing can be prevented by the use of public key cryptography to verify the parties in a
communication.

A negative consequence of this scheme is that false alarms will lead to a denial of service, at least for
the period of the costimulation delay. With alert security officers this could be minimised. The costimulation
delay effects a trade-off between the debilitating consequences of false positives and the chance of missing an
intrusion. This trade-off can be adjusted to suit the security policy of a particular LAN. One could imagine a
system in which a user attempts to do something new, but legitimate, and triggers alarms. The user then waits
(impatiently, almost certainly!), for the costimulation delay to expire, which may involve waiting, say, half a
day, and then the user tries again, knowing that the system is now adjusted and will not signal alarms again.
Of course, during this waiting, the user may well get a call from the SSO. A positive aspect of this scheme is
that the system would react almost instantaneously to any intrusions, providing sufficient computers detected
the anomaly. Messages could be dispatched and TCP wrappers modified rapidly enough so that suspicious
connections are rejected before they can do harm.

Although this scheme automates response, it still requires a human operator (the SSO) to make the
final decision as to whether behaviour is truly anomalous. Presumably the SSOmake this decision by bringing
into play additional knowledge about the usage of the system, the behaviours of typical computers and users,
and typical methods and routes of intrusions. This suggests that the SSO could be replaced by some sort
of expert system that uses knowledge about both the network, the software the computers are running, and
typical intrusive activity to make decisions. This is an approach that has been taken in ID systems, but it
is limited in that the automated response system must know something about what to expect; it is not as
flexible as a human being who can make more broad-reaching inferences to reach informed conclusions.
Unfortunately, for humans to do this successfully, they need to have expertise in computer security and
knowledge of their own systems. Such experts are a limiting factor for all computer security systems that
have to report to human operators. So how can we eliminate the human being from the loop, once and for
all? Is this even possible?

In the immune system, one way in which costimulation is triggered is in the presence of damage.
Cells in the body are continually dying and being replaced with new cells. In the course of normal func-
tioning, cells usually die by apoptosis, or programmed cell death, whereas cells that die from damage (from
pathogens, toxins, physical trauma), die a necrotic death. There is evidence to suggest that necrotic death
produces different signals from apoptotic death. Such signals can be termed damage signals. Matzinger
[Matzinger, 1998] proposes two classes of damage signals that are a consequence of necrotic death: implicit
signals are given when proteins or other cellular material never normally seen outside the cell (even during
apoptosis), are exposed to the immune system; and explicit signals are synthesized by cells that are under
stress and likely to die a necrotic death, an example being heat-shock proteins which are given off by cells
stressed by heat or cold, and some virus-infected cells, or those damaged by bacterial toxins. These explicit
damage signals also give information about the nature of the threat that caused the harm.

How can these damage signals be mapped into a computer system? What is damage in a computer
system? In the IS, damage is measured by a lack of functionality in the body; this translates directly into avail-
ability in a computer system: provided the system continues to function, the system has not been damaged.
This definition is useful for identifying damage caused by Denial of Service (DOS) attacks, but it may not be
useful when the damage is a consequence of loss of integrity or confidentiality. A possible explicit damage
signal in such cases could be provided by host-based ID systems, such as Tripwire [Kim & Spafford, 1994]

92

(which monitors critical files for changes), or an anomaly ID system that uses sequences of system calls such
as that described in section 2.2. If the host-based ID system detects something suspicious, it provides the
second signal required for costimulation. The problem with costimulation via explicit damage signals is that
the victim computer, , must itself provide the costimulation, and may be compromised before it can
provide the damage signal. If the damage signals can be subverted in this manner, then there is no way to
determine whether has been compromised, or “damaged”. In this case subversion would have to take the
form of preventing the damage signal from being emitted; any emission of a damage signal from , even if
it was the incorrect one, would alert the security system to the fact that is potentially compromised.

What are the possibilities for implicit damage signals? The requirements are that these signals should
indicate that the victim computer is not functioning normally, and these signals should be hard to spoof if
is compromised. If availability is all we are concerned about, then the damage signal could be to test whether
or not is functioning at the normal level of performance. One way of doing this would be to communicate
with and time the responses. If was sluggish in responding, or did not respond at all, then it would be
assumed that had been damaged, or compromised [Kaplan, 1998]. However, lack of availability may not
make itself felt through the timing of network connections; what if all we cared about was the availability
of processing power on ? Heavy usage of processing power need not affect the network communication
speeds between and other computers. In this case, the computer doing the checking, , could have prior
knowledge about the power available to , and could query to compute a function , which knows the
answer to, and which knows should take a given amount of time for to compute. If cannot be “guessed”
or pre-calculated by , then can check on the processing power available to , and hence determine if
is functioning normally. Because such an implicit signal is based on an actual functioning capability of , it
will be hard to spoof when is not functioning normally.

Such implicit damage signals should work for detecting DOS attacks, but would not be useful for
detecting compromises of confidentiality or integrity. What is needed is some indication of normal function-
ing, something that is equivalent to MHC in the body. MHC presents proteins from the interior of a cell to the
immune system; similarly, a mechanism is needed to present indications of the internal state of a computer
to the rest of the network. It is not clear what such a mechanism should be, and how it could be implemented
to prevent subversion. Fundamentally, if an attacker in no way changes the internal state of a computer, then
there can be no implicit damage signal. However, this is unlikely: an attacker usually has to modify some
part of the system simply to gain access in the first place.

In conclusion, there are several implications of this proposed scheme of automated response. Firstly,
each detector requires more storage (at most an increase by a factor of), to record past matches. Secondly,
each local detection system would have to have sufficient detectors so that the detection rate per computer was
high enough to form a voting majority. These first two points are feasible, considering how few detectors (100
per computer) are currently needed to globally detect all intrusions with clear separation, and considering that
a voting majority need not be the majority of computers on the LAN, but only a sufficient number to make
compromise of all of them extremely unlikely. The third implication is that damage signals are needed, either
implicit, or explicit, or both. A few ideas for damage signals have been proposed, but in general this is an
open question.

Finally, the implicit assumption behind this description of automated response is that the compromise
of a single computer, or a few computers, is not critical; what is important is to prevent compromise of many
computers. In other words, it has been assumed that individual computers are disposable. This assumption
will not hold for all computer systems, particularly those concerned with the confidentiality of data on a
single computer, unless sensitive data are stored in a distributed way such that confidentiality cannot be
compromised without compromising many computers.

93

6.1.2 Fighting Worms with Worms

Aworm is a program that automates intrusions so that it can spread itself from computer to computer. A worm
must use the same attack routes as an human intruders, entering a computer system through vulnerabilities in
services, guessed passwords, etc. The fundamental difference between a worm and a human intruder is that
a worm is a programmed threat [Garfinkel & Spafford, 1996, chapter 11], and as such can spread faster than
a single human could break into computers, provided there is some vulnerability that the worm can exploit.
A virus is another form of programmed threat, but unlike a worm, a virus inserts itself into files on a system
and is copied when those files are copied. Under the biological metaphor, a virus is aptly named, because it
uses the copying machinery of the host to propagate. A worm, by contrast, has its own copying machinery,
and so is more like a bacterium1.

In [Garfinkel & Spafford, 1996], it is suggested that if you suspect that your LAN is under attack
from a worm, you should sever all contact with the outside world until the worm is isolated and removed.
There are two reasons behind this suggestion: the first is to prevent the worm from spreading to other net-
works, and the second is to prevent confidential information frommoving outside your network. Nonetheless,
the measure is drastic, and being disconnected from the outside world could certainly be regarded as a denial
of service. It is proposed that a worm could be stopped if an automated response was used that detected the
presence of the worm, and moved information fast enough across the network to prevent the spread of the
worm. Not only are worms automated, but they also replicate, and so a replicating response is needed to
combat worms.

One implementation of a replicating response would be to replicate detectors and move them around
the network. To make the system effective requires that some characteristic signature of the worm be propa-
gated across the network. Unless it is possible to characterise the signature in terms of a few targeted services,
datapaths cannot be used as the signature, because the worm will continually be attacking from new loca-
tions and moving to new locations. It is more likely that the packets in which the worm is encapsulated will
be characteristic in some way, so the solution would be to have a new class of detectors that match packet
contents. These detectors will be mobile, moving from one computer to the next over the LAN.

Whenever a detector is on a computer, it will check all packets coming in to that computer. If a
detector successfully detects a worm, it will make copies of itself, and those copies will be spread to other
computers in the network. A form of affinity maturation can also be used to evolve detectors so they match
the worm signature more closely. Affinity maturation may require an additional class of detectors, equivalent
to Th-cells, that perform distributed tolerization. If the copies of an activated detector are memory detectors,
then they will have the ability to detect and eliminate the worm without need for costimulation from a human
operator. Hence they could spread across the network faster than the worm, because detectors spread by
legitimate means, but worms have to find and exploit vulnerabilities before they can spread. If the spreading
of detectors is sufficiently fast, the spreading of the worm can be halted by alerting computers beforehand to
the presence of the worm2.

Motile detectors would essentially be worms themselves, spreading by means of legitimate channels.
If detectors become compromised or corrupted, they could become a security threat. Fortunately, the detectors
will check each other, because any new detector that migrates to a computer will be checked by all detectors
already on the destination computer. If corrupted detectors “look” different to normal detectors, then they
will be detected and eliminated by other detectors. The IS functions in a similar way to eliminate corrupted
lymphocytes.

1The term bacteria is also used to describe programs that replicate exponentially, without necessarily propagating across a network
[Garfinkel & Spafford, 1996]. This is an unfortunate use of the term, which is more suitable for describing worms. Luckily, exponentially
replicating programs are also called rabbits, so all is not lost.

2This is similar in spirit to the “kill” signal described in [Kephart, 1994].

94

In conclusion, there are several key questions that will have to be answered to determine if this idea is
feasible. Firstly, do worms have characteristic signatures, in terms of packets contents? And, can a corrupted
detector signature be distinguished from a normal detector signature? And finally, will these signatures be
sufficiently compact that monitoring can be done in real-time? Real-time is critically important because
worms can spread in real-time. Assuming the answers to these questions are yes, does this mean that other
kinds of undesirable or intrusive behaviour can be detected (and stopped) in the same way?

6.2 Other Applications
The model of distributed detection presented and analyzed in chapter 3 is abstract and general, and so could
be applied to many different domains. This section describes two other domains in which the model has the
potential to be useful: mobile agent frameworks, and a certain form of distributed database.

6.2.1 Mobile Agents
Mobile agents can be defined as worms that have legitimate channels of access across networks. So a mo-
bile agent is a piece of software or code that copies itself to networked computers, and then runs on those
computers. The code can also be modified, or evolve, as a consequence of interactions with other agents and
software on computers. Already there are several examples of commercial mobile agent frameworks; see
[CACM, 1999] for examples of mobile agent uses.

There are no major applications using mobile agents, as yet. However, it is possible that they will
become more important in the future because they offer increased flexibility for computing. For example,
mobile agents could be used for performing expensive distributed computations, by buying “cycles” or pro-
cessing power on under-utilized computers on other networks. However, flexibility comes at the price of
increased vulnerability, both to malicious users exploiting the system, and to poorly programmed or acciden-
tally corrupted agents that could spread and cause damage like a cancer.

Conventional models of computer security are not suitable for a mobile agent framework; application
of such models could limit the flexibility to such a degree that the mobile-agent frameworks become mere
curiosities. An example of this is the “sand-box” concept for Java applets. Java applets are mobile agents
that run within a sand-box on a computer, where the sand-box is an interpreter that prevents the applets from
harming the host computer. However, there are two problems with using a sand-box: firstly, the applets are
limited in what they can do because they are constrained to the sand-box, and secondly, if what users care
about is interactions between applets within the sand-box, then this form of security is useless. Essentially
the sand-box is the same concept as the old fortress model of security, and although it is useful to a limited
extent, it is generally too static to allow the kind of flexibility that makes mobile agents so promising.

It is suggested that mobile agent security can be implemented using a system similar to that described
in the previous section for combating worms. A set of detector agents could be used, which would move
around the network, from computer to computer, and monitor other agents to determine if any of them were
anomalous. The detector agents could also have the ability to kill or otherwise incapacitate agents that
were considered harmful. These detector agents are analogous to circulating IS cells, and other agents are
analogous to cells in the body and pathogens.

It is not clear what should be used as the characteristic peptide for an agent. One possibility is
something analogous to system calls. Every agent must use the equivalent of system calls when running on a
host computer, for example, calls to the Java interpreter may be suitable for the peptide. Another possibility is
to monitor the communications between agents. Presumably all agents will use a standard protocol to interact,
and perhaps there are characteristics of messages in these protocols that will distinguish between acceptable

95

and unacceptable behaviour. This may be a suitable peptide if the agents run in a sand-box, and it is the
interaction between agents (which happens via communication using the protocol) that is of importance.

These proposed peptides are based on the notion of characterizing agents by their behaviour. An
alternative is to arbitrarily assign a unique signature to each agent, and then learn to associate those signatures
with behaviour, in other words, to use message digests such as MD5 hashes [Rivest, 1995] as peptides. This
solution would be an easier option, because it is clear that agents can be distinguished on the basis of unique
message digests. However, what is not clear is how these digests could be propagated when agents make
copies of themselves, especially if the copies are modified or mutated. Having new digests is undesirable.
Consider the case where the parent agent is a malicious worm, spreading across the network. As soon as the
detection system has associated the characteristic digest of the parent agent with the harmful behaviour, all
offspring of the worm can be traced and eliminated. However, if the digest of the worm changes completely
each time it is copied, this is no longer possible. It is essential to pass on digests to offspring if memory
detectors are to be useful.

An alternative idea is the notion of digital epitopes [Kaplan, 1998]. Each agent is signed with a
unique digital signature, using public key cryptography [Diffie & Hellman, 1976]. The peptide would not be
unique to a particular agent, but unique to a particular originator of agents (this could be a particular user or
a particular computer, network, etc.). If an agent was identified as malicious then it is assumed that all agents
signed by that originator are malicious. In other words, an originator is responsible for all its agents. This
approach has the advantage that even if the code of an agent changes, the originator signature can remain the
same. This approach is used by Microsoft for agent security; the digital signatures are called authenticode
[Microsoft, 1999].

If there are imposed boundaries between agents, limiting interactions, then security will be easier,
but interactions will be harder and the system less flexible. It is not exactly clear why we would want
“maximum” interaction, but if we assume that this is the case, then we want minimal imposed boundaries,
which means that we cannot stop agents from doing localized damage to other agents. However, using the
distributed detection model, it will be possible to detect malicious agents and eliminate those responsible for
damage, especially because agents operate in a localized sphere (a single computer). Damage signals could
be implemented in this framework as follows. If an agent is terminated by another non-detector agent, then it
could emit a signal indicating an unnatural death, whereas if it terminates itself, or is terminated legitimately
by the sand-box controller or a detector, then it would not emit any signal.

The mobile agent framework is more suitable to the immunological model of distributed detection
than network ID. Firstly, replication is an intrinsic part of the framework, and replicating detectors are essen-
tial to combat replicating agents. Secondly, clear damage signals can be derived. Thirdly, each “location”
in the model is really a single agent, which means that each location has little memory compared to the set
of self signatures, and so it becomes critical that detectors are generalizations of the self set, generalizations
which have a low enough Kolmogorov complexity to be encapsulated within a mobile agent.

6.2.2 Distributed Databases
Another domain which is suitable to the model of distributed detection is one of a particular kind of distributed
database. Consider a database that is distributed across many locations in a network. These locations can
consist of computers connected in LANs or individual computers; these will be termed systems for the sake
of simplicity. The network is not fully connected, so communication between systems at different locations
may have to pass through multiple intermediate local systems, which will function as routers. Each part

of the database can be modified only at a particular location, , in other words, the only system with
authority to modify is at location . The system at is called the local authority for . Each
system on the network is a local authority for a different part of the database.

96

Any system at any location may require information from another local authority. For this it will
have to query other local systems on the network. Ideally, it should query the local authority for the relevant
part of the database, but to know who is the local authority for any arbitrary part of the database will require
storing information about the mappings between all local authorities and parts of the database. If the number
of locations is large enough, this will be impractical. However, it would be possible to have a single dedicated
location, , that has sufficient capacity to store all of this information. Then a local system, , would only
have to know the address of so that it could query for the desired information. This query from would
propagate through the network until it reached , then would know which local authority to query, so
could obtain the answer and send it back to . If the query passed through the relevant local authority, ,
then could curtail the search and return the authorative answer.

Unfortunately, this scheme is not scalable and is not practical for large networks. is a bottleneck:
all queries have to go to , and all replies have to be dispatched by . This bottleneck is made worse by the
fact that the locations are not fully connected, so multiple queries and replies will have to go through multiple
locations, creating additional bottlenecks.

The bottleneck problem can be ameliorated through the use of local caches. Each local system has
a cache which can store an amount of information that is small relative to the amount of information stored
on . Whenever a reply passes through a location, the local system will store the information in its cache. If
the cache is full, it will delete the oldest information to make room for the new information. Now queries can
be answered using information in local caches. As queries are chained back towards , or towards a local
authority, if any local system along the path has the answer, it can terminate the chain by sending the reply.
This will relieve the bottleneck if sufficient queries can be answered from information in local caches.

This scheme works in practise. It is in use by the Domain Name System (DNS)
[Mockapetris, 1987]3. DNS is a distributed database that stores information about the mappings from IP
addresses to domain names that are used throughout the internet. The database is distributed across the whole
internet, and each local domain is the authority for its own mappings. The Network Information Centre (NIC)
is the central location which stores information on which locations are local authorities for which part of the
database. Queries which are made across the internet can be answered by local systems which have cached
the relevant answers, or may have to chain all the way back to the NIC, which can then get the answers from
the relevant local authority. Generally, DNS works well: answers to queries are usually prompt, considering
the size of the internet.

The scheme described here is based on the assumption that local systems are honest, that is, they will
not deliberately return corrupted information. In reality, some local systems may be malicious and corrupt
data passing via that location across the network. The problem is exacerbated by the fact that corrupted
information can spread. If a malicious system, , returns corrupted information, then that information will
be unwittingly stored in all local caches of honest systems along the path, which means that in future those
local systems will also return corrupted information. In a well-connected network, corrupted information
from a single malicious source could spread exponentially.

The problem of corrupted data can be solved using the immunological model of distributed detection.
All replies to queries can be represented by message digests, such as MD5 hashes [Rivest, 1995]. These
digests are compact so replies can be represented in a few bytes (typically from 16 to 64). The central
location, , retains a database of all valid digests for all local systems. This is presumably feasible because
of the extreme compression of the digests. Every time a local systemmakes a change in the informationwithin
its authority, it notifies . Public key cryptography [Diffie & Hellman, 1976] is used to verify the changes:
each local system signs the changes with its private key, and has public keys for all local authorities and
so can verify that changes are legitimate. Of course, if the local information is changing frequently, this

3For more details on DNS, see [Albitz & Liu, 1992].

97

approach will not be practical. The assumption here is that changes to local information are less frequent
than queries for information (this is the case with DNS).

The set of digests stored at forms the set of self strings. produces negative detectors which are
tolerized against the set of digests. The negative detectors consist of randomly generated digests, together
with a string matching rule to implement generalized detection. continually dispatches detectors which
spread randomly across the network from one location to the next. signs all detectors using its private
key, and every local system has a copy of ’s public key, so every local system can verify detectors. When a
detector reaches a location, it checks all the digests computed for information in the local cache, and whenever
it matches, it informs the local system so that the corrupted information can be removed from the cache.

Detectors cannot be forged because they are signed by , and each local system has ’s key. A
detector can only be autoreactive if it is outdated, that is, if information has subsequently changed and now
the detector is deleting valid information. This kind of damage is different from the malicious spread of
corrupted information, because all the detector is doing is removing information from local caches and so
somewhat reducing the efficiency of queries and replies. The problem of autoreactivity can be reduced by
giving detectors shorter lifetimes, so they are never too far out of date.

Replicating detectors can be used to stop the spread of replicating corrupted information, that is,
replication can be used to “play the numbers game”. When a detector is activated by matching corrupted
data, it replicates itself and sends the copies to neighbouring locations. If the copies are exact replications of
the original detector, then they can also be verified by ’s public key and so will be recognized as legitimate
detectors by local systems. The diffusion of the detector copies will follow network links, spreading down
the same paths taken by corrupted information. The spread of detectors should catch up to the spread of
corrupted information and halt it, because corrupted information only spreads in response to queries, whereas
detectors can spread more rapidly under their own volition.

A problem here is that an autoreactive detector could also be activated and replicate, preventing
the spread of legitimate information. Detectors may have short lifetimes, but the constant reactivation by
legitimate information will cause replication and so could result in the indefinite retention of autoreactive
detectors. This problem can be addressed by a form of costimulation. Each detector requires costimulation
(or verification) from other detectors: whenever a detector encounters another detector, it checks to see if it
matches that detector (which is possible if a symmetric match rule is used and detectors are represented by
strings). If a detector does not match at least one other detector within a given period of time, it will die.
This form of costimulation also allows for the implementation of memory detectors with indefinite lifetimes.
Indefinite lifetimes are useful to detect when the same corrupted information starts to spread again, but the
problem with indefinite lifetimes is that memory detectors could become autoreactive after some change in
the database, and would need to be eliminated. This is where costimulation would be useful to eliminate even
autoreactive memory detectors.

There are several key questions that would have to be addressed for this application. How many de-
tectors would be needed to ensure that corrupted information could never spread enough to do much damage,
and how much computational load would the detectors place on the system? Is costimulation really feasible?
How many more detectors would be needed to ensure that costimulation works? Would it be possible and
practical for to store all digests, and for local systems to inform of every change? Would it be better
to have several locations at which detectors are produced, instead of one? Could some form of distributed
tolerization be used so that there is no need for a single location, ?

98

6.3 Implications of the Analogy
This research leads to insights into aspects of both computer science and immunology. These insights are
described here so of necessity this section will be vague, but it is appropriate at this stage to speculate. No
concrete claims are made; rather this material is included to stimulate thought.

6.3.1 Understanding Immunology
The various mechanisms used in this research have specific effects and are essential for various aspects of
the detection system. Do these mechanisms play a similar role in the IS, and are they equally indispensable?
Consider the following:

Central Tolerization (CT) generates detectors more rapidly than Distributed Tolerization (DT). DT
works for tolerizing detectors, but it takes at least a day, if not several to tolerize the detectors, during
which immature detectors are using resources and contributing nothing to detection. Furthermore,
more rapid generation of detectors is particularly important when detectors are dynamic, because the
more rapidly detectors can be generated, the more dynamic they can be. Is this equally important in
the IS? If so, this would imply that the thymus is indeed an important organ, one which improves the
efficiency of the system.

If the self set is changing and/or cannot be sampled completely for the training set, then false positives
will result because there will be autoreactive detectors. For this reason, frequency-based DT is essen-
tial. In the IS not all self peptides are expressed in the thymus, and the set of self peptides can change
when the organism undergoes puberty and other life changes. This would imply that some form of
frequency-based DT is necessary; this could be the costimulation of Th-cells by damage signals.

In the network ID system, any form of autonomous response can cause denial of service if new, anoma-
lous strings are not correctly classified . It was suggested that this problem could be solved using
damage signals, so that anomalous strings are only classified as nonself if the detectors receive cos-
timulation by damage signals. If the IS faces a similar problem of discriminating between infrequent,
but valid self, and actual nonself, then damage signals could be crucial for eliminating autoreactive
detectors. However, it is clear that having to rely on this feature alone would be limiting; the more
detectors that can be effectively tolerized using CT without requiring damage signals, the better. The
implication here for immunology, is that CT is necessary because of efficiency considerations, but
frequency-based DT that is predicated on damage signals is also necessary to eliminate autoreactive
detectors that cannot be tolerized in the thymus.

Frequency-based DT is slow compared to CT, and will not work for B-cells adapting rapidly to patho-
gens during affinity maturation. The response must be as fast as possible; the longer it takes newly
mutated detectors to mature, the more vulnerable the body. So it could be that the DT that is imple-
mented by Th-cells providing signal II to B-cells is essential. Note that this mechanism of DT has not
been used in the network ID system because there is no equivalent of affinity maturation.

The closer the nonself test set is to the self set, the more multiple representations improve detection.
In the domain of network intrusion it may not always be true that nonself is close to self, but in the
body, pathogens will always be evolving so that they are more difficult to detect (they evolve towards
becoming holes in the detection coverage). Those pathogens that are harder to detect will be the ones
that survive better and hence get naturally selected. So it could be that in the IS, even more than in
network ID, multiple representations are useful. How are these representations implemented in the IS

99

? One possibility is to view MHC as a representation. All MHC must bind to pathogens, but different
types of MHC will bind to different pathogens. Therefore, the more more types of MHC there are,
the better the protection. However, as the number of MHC types increases the number of immature
lymphocytes eliminated in the thymus also increases, so there is a limit on the maximum number of
MHC types. This trade-off is analogous to the trade-off between detection rates and retries that was
used to evaluate matching rules and secondary representations. Increasing MHC types increases the
detection rate, but increases the number of retries needed to generate detectors.

If MHC types are implementing different representations, then the best MHC type would be one which
spreads nonself and clumps self. Is there pressure on the IS to evolve these types of MHC ? Howwould
one go about determining if this is actually the case ? In the experiments reported in this dissertation
it was found that one randomly chosen representation was not much better than others, and that all
contributed to the detection. Is this the case with MHC ? Perhaps so, if we imagine that MHC is
evolving to clump self and spread nonself, but pathogens are evolving to be close to self, effectively
cancelling the bias of the MHC.

6.3.2 Insights for Computer Science
This section explores some consequences implied by the effectiveness of multiple representations. Repre-
sentation plays a role in multiple different domains, for example, search, planning, machine learning, etc.
Representation is often essential and can influence the behaviour or performance of a system. Different rep-
resentations exist for any given problem, but there is no theory that indicates in general whether we have
chosen the correct or “best” representation. Indeed, there is no theory that indicates that there is such a thing
as a “best” representation for any problem domain. The results of this dissertation suggest that choosing
multiple representations (at random) and using them simultaneously is better than using any single represen-
tation. In some cases this could be problematic, for example, if we had to make a real-time decision between
different options presented by different representations.

This discussion will be focused on the issues of representation in search; in particular, optimization
over a cost function. Consider the problem of finding an algorithm for search that is general in the sense that
it works better than other algorithms for a variety of functions, without needing prior knowledge of those
functions. Such algorithms do not exist; it has been shown that the performance of any two algorithms is
the same when averaged over all cost functions [Wolpert & Macready, 1995]. This result is known as the No
Free Lunch (NFL) theorem. Effectively, it means that if algorithm outperforms algorithm on some class
of functions, , then will outperform on the remaining functions, , where is the (finite) set of all
cost functions. So we cannot say that performs better than on average. The consequence of this is that
one search algorithm can only be justified as better than another in the context of a given problem; we cannot
consider the algorithms independently of the problem domain.

It is suggested here that using multiple representations simultaneously can overcome the limitations
imposed by the NFL theorem. Any search algorithm requires some form of representation. This represen-
tation modifies or biases the cost function. So, searching simultaneously with multiple representations is
equivalent to simultaneously searching multiple cost functions; the algorithm is applied to a subset of all cost
functions, rather than a single function. On average, the NFL theorem still holds: we expect the performance
of algorithms to be identical when averaged over all subsets of cost functions. However, if we are simul-
taneously searching through a subset of cost functions, then we can choose the one on which the algorithm
performs the best (i.e. choose the best representation).

The performance of algorithms must now be evaluated not in terms of their average behaviour, but in
terms of their minimax behaviour [Wolpert & Macready, 1995], which is defined by the distribution of algo-

100

rithm performance over all cost functions. What we are interested in is the distribution of performance over
the subset of cost functions that are formed by the multiple representations. If algorithm has a distribution
with strong variance (in other words, there are a few cost functions for which it performs well, and a few
for which it performs badly), and algorithm has a distribution with low variance (i.e. it performs more
or less uniformly on all cost functions), then with multiple representations will be better than , because
the performance of is measured in terms of its best performance, which is better than ’s best perfor-
mance. It is hypothesised that when using multiple representations, there are better algorithms for general,
no-prior knowledge search; these algorithms are ones which show the greatest variance in the distribution of
performance on cost functions.

To illustrate this idea, consider two forms of search: a random walk, in which the search moves to a
new point chosen randomly from the neighbourhood of the current point; and deterministic hill-climbing, in
which the search moves to the best point in the neighbourhood of the current point. According to NFL, these
two algorithms will perform equally when averaged over all cost functions. However, it is likely that random
walk will perform similarly on all functions, that is, it will have a low performance variance over all cost
functions. Deterministic hill-climbing, by contrast, is likely to perform well on some functions, and poorly
on others; it has a high performance variance. When using multiple representations, if enough different
random representations are used, there should be some representations for which hill-climbing will perform
well for any problem. This is not the case for the random-walk; hence, hill-climbing is a better general,
no-prior knowledge search algorithm than the random-walk.

Actually, high performance variance may not be sufficient. What is needed is that an algorithm ex-
hibits high performance variance within a small sample of randomly-chosen cost functions, and in particular,
the algorithm must exhibit instances of better than random performance within that sample of cost functions.
Its not clear what the implications of this are for the distribution of performance over all cost functions. How-
ever, these ideas do fit in with the commonly-held intuitive notion that some algorithms are in general better
than others, particularly if those algorithms are more successful than random on some problems.

101

Chapter 7

Conclusions

The goal of this dissertation was to describe and analyse an immunological model of distributed detection,
and show how it could be applied to network ID. Towards this end a prototype network ID system was
implemented, based on the immunological model. Several mechanisms of the IS were used, in an attempt
to achieve the desirable immunological principles listed in chapter 1. The next section (7.1) revisits these
principles and discusses how close the ID system has come to achieving them. The section following that
(7.2) sums up the contributions of this dissertation, and section 7.3 discusses the limitations of this research.
Several directions of future research are detailed in section 7.4, and the chapter is concluded with a final word
in section 7.5.

7.1 Principles Attained
In section 1.3, nine principles were listed that guided this dissertation research. All of the principles have
been attained, except distribution and flexibility in the strictest sense.

Distributed protection: No; a distributed system was not implemented, but rather simulated. Within the
simulation this principle was achieved: detection was distributed across all simulated computers in
the LAN, in the form of inexpensive (100 detectors per location) local detection systems, and almost
all local detection systems contributed (roughly similar amounts) to global protection. This detection
system has subsequently been implemented on-line, but not in a distributed manner.

Diversity: Yes; there are two forms of diversity: as a consequence of multiple random representations, and
as a consequence of having different sets of randomly-generated, dynamic detectors on different com-
puters. Both forms of diversity are useful: multiple representations ameliorate the problem of holes,
and dynamic detectors ensure that gaps in protection change over time and so cannot be repeatedly
exploited.

Robustness: Yes; loss or compromise of a single computer or a few computers will not cause a complete
failure in detection, because all local detection systems contribute similarly to global protection. Fur-
thermore, because there is communication (shared memory) is not necessary, compromise of a few
computers will not cause an increase in false positive errors.

Adaptability: Yes, to a limited degree. The definition of adaptability used in section 1.3 was that the system
should extract signatures from anomalies and refine those signatures to improve detection of the same
anomalies in future. The system does extract signatures, but it only refines them to the extent that the

102

memory detectors which implement signature-based detection have lower activation thresholds than
normal. In another sense, different from the original one, the system is adaptable because it can adapt
to changing self sets. This is an important point, one that was not made in section 1.3, because it is not
clear that the IS does adapt to changing self. Generally, the body is static in that the set of expressed
self peptides changes little over the life of the organism. This illustrates that we should not slavishly
adhere to metaphors, but diverge from them whenever the particular application requires it.

Memory (signature-based detection): Yes; memory detectors implement signature-based detection, result-
ing in improved detection of previously encountered nonself strings.

Implicit policy specification: Yes; policy is defined through the normal behaviour of the network. Explicit
policy is only incorporated to the extent that a human operator is required for costimulation. Mecha-
nisms were proposed for removing dependence on the human operator all together, but in the absence of
such mechanisms, the goal is to reduce dependence on the human operator, which the implementation
of costimulation achieves.

Flexibility: No; in the definition of flexibility given in section 1.3, a system is defined as being flexible if
it automatically adjusts resource usage to the current demands of its environment. The more com-
puters are used, the more the system should curb its resource usage, and as they are used less, the
system should increase its resource usage. This form of automatic adjustment was not implemented.
Automated flexibility can be implemented for the prototype described here by varying the number
of detectors, because both resource usage and detection rates are related to the number of detectors
used. This is discussed in the future work section (7.4). Furthermore, the system is flexible in that
performance is tunable in different ways.

Scalability: Yes; in so far as the system has no false positives. The system does have false positives, and it
was shown that it is (and cannot be) scalable in terms of these errors. The definition of scalable used
was applied directly to the concept of a distributed system: running the system across more computers
does not increase computational costs or error rates. There are other definitions of scalable that this
should not be confused with, in particular, whether a system is scalable with the problem size, which is
reflected by the size of the self set. This all depends on if and how the number of computers increases
with the size of the problem. For some problems the number of computers will be independent of the
size of the self set; for the network ID problem, the size of the self set is directly related to the number
of computers. In this sense, the system is still scalable provided false positives are minimized.

Anomaly detection: Yes; the ID systemwas able to detect all intrusions that were not included in the training
set.

7.2 Contributions of this Dissertation
There are three primary contributions made by this dissertation.

1. Formalization and new analyses of the immunological model of distributed detection, originally devel-
oped in [Forrest, et al., 1994]. There are several contributions here. Firstly, a framework for explicitly
incorporating distribution was developed, and was used to to demonstrate that negative detection is
both scalable and robust. Furthermore, it was shown that any scalable distributed detection system
that requires communication (shared memory) is always less robust than a system that does not require
communication (such as negative detection). Secondly, algorithms were developed for determining

103

whether a nonself instance is an undetectable hole, and for accurately predicting performance when the
system is trained on non-random data sets. Finally, theory was derived for predicting false positives in
the case when the training set does not include all of self.

2. Description and empirical testing of several extensions to the basic model of distributed detection.
These extensions include: multiple representations to overcome holes; activation thresholds and sensi-
tivity levels to reduce false positive rates; false-positive default costimulation with signal II provided
by a human operator, for the purpose of eliminating autoreactive detectors; distributed tolerization to
adapt to changing self sets and allow for the use of on-line, distributed detector generation without
communication; dynamic detectors to avoid consistent gaps in detection coverage; and memory, to
implement signature-based detection.

3. Application of the model of distributed detection to network ID. This includes implementations, analy-
ses and experimental testing, demonstrating how useful the model is for network ID. Empirical results
showed that the ID system detects all seven real intrusions tested, with false positive rates of one per
three days, using no more than 100 detectors (binary strings) per computer. The system used both
anomaly detection and signature-based detection; the latter improved performance over anomaly de-
tection, when combined with dynamic detectors to nonself strings that had been encountered before.

7.3 Limitations of this Dissertation
There are several limitations to this work. Only limitations of the network ID application are discussed here.

Broadcast assumption: With switched Ethernet, switches are employed so that each computer only sees the
packets destined for it. If each computer only sees the packets destined for it, then the distributed de-
tection is useless (assumption 4 in section 3.1.3 is violated). There are alternatives; these are discussed
in section 7.4.

Dependence on a human operator: This is a limitation although all current ID systems are limited in a
similar way. In this dissertation an attempt has been made to reduce dependence on the human operator.
Furthermore, ways of overcoming this limitation have been discussed in chapter 6, in the section on
automated response (section 6.1).

Limited signature-based detection: The form of signature-based detection used in this ID system is limited
in that signatures are only defined in terms of the origins of attacks, the targets of attacks and the
service over which the attacks happen. If exactly the same form of attack (for example, exploiting a
vulnerability in sendmail) comes from different locations, then this signature-based detection would
only be useful if the memory detectors had generalized over a set of foreign addresses connecting over
sendmail that included the different attacking locations.

Use of only TCP SYN packets: Intrusions can involve network traffic at different protocol layers, for exam-
ple UDP. These would not be detected by a system that only monitors TCP traffic. Furthermore, some
forms of attacks may be related to parts of the TCP stream other than the SYN packets, for example,
stealth scanning that involves probing a network using FIN packets (these are packets which terminate
a connection) because FIN packets usually do not show up in system logs. Stealth scanning with FIN
packets would not be detected by this system.

Stealthy attacks: If activation thresholds greater than one are used to reduce false positives, then an attacker
can evade detection in two ways. Firstly, by making anomalous connections occur infrequently enough

104

so that they will never accumulate to the point where they could trigger a detector, or secondly, by
ensuring that during any given attack the number of connections made is fewer than that required to
activate a detector. As the frequency of connections decreases, so the skill and patience of the attacker
must increase. This limitation does not apply if an organization has the resources to cope with the
higher false positive rates that are a consequence of minimal activation thresholds.

Exploitation of normal paths: An attacker can evade detection if the intrusion follows only normal data-
paths through the network. To do this the attacker must first gather information on those paths, and
the only way to really do that is to break into a computer on the LAN. Secondly, the attacker must
wait for some period of time to determine what legitimate paths are. Thirdly, only a few paths will be
legitimate, restricting the opportunities for attack.

Varied server traffic: Traffic to and from servers such as WWW servers is excluded. Characterizing self
in terms of datapaths will not work for services which are expected to connect to any possible other
computer at any time. Hence any attack that exploits vulnerabilities in these services will go undetected.

Ambigious events: It was assumed that the problem domain can be divided into two sets of events: a set
of legitimate and acceptable (according to some policy) events, termed self, and a set of illegitimate
events, termed nonself. In reality, there can be events which are legitimate some times and illegitimate
at other times. Such ambiguous events violate the assumption and cannot always be correctly classified
by the ID system.

Assumptions underlying anomaly detection: The anomaly detection performed by the system was pred-
icated on the notion that policy (under which the self and nonself sets are defined) can be implicitly
inferred by observing the behaviour of the system, and assuming that either self occurs more frequently
than nonself, or that there is some period of time during which the self set can be collected separately
from nonself. This is not only a limitation of this research, but a limitation for anomaly detection
systems in general: some assumptions must be made about the relative frequency of occurrence and/or
distributions of the self and nonself sets.

There are multiple ways in which these limitations can be overcome. Some possible solutions are
described in the next section.

7.4 Future Work
There are multiple directions for future work. Only those that are immediate extensions of the work presented
in this dissertation are described here. This proposed future work is aimed at overcoming limitations of the
original research, and enhancing understanding of the system through additional analysis. There are other
directions for future work, including applications of the model to completely new problem domains. Some
of these were discussed before, in chapter 6.

Monitoring other protocols: The network ID system should be extended to monitor other protocols, par-
ticularly UDP, because network attacks have been launched via UDP. Other protocols that could also
be considered, such as the Network File System (NFS) . Another extension that could improve detec-
tion would be to extend the monitoring to include TCP FIN packets, so that stealth scanning could be
detected.

Monitoring traffic frequencies and packet contents: One of the simplifications used was to ignore the
contents of packets and the frequencies of packets traveling over a given connection. An avenue of

105

investigation is to determine if a stable self set could be defined in terms of packets contents or packet
frequency. Because the local detection systems are so lightweight and cheap (100 binary strings of
length 49 bits per computer), there is room for increasing the scope of monitoring to look at other
aspects of network traffic. Successful monitoring of these aspects of network traffic would be useful
from several perspectives. It would enable the system to detect intrusions that do not perturb normal
datapaths; in particular, it would enable the system to monitor services such as WWW servers and
detect attacks launched against those services. Furthermore, it would allow for signature-based detec-
tion where the signatures are independent of location. This may be a more effective way of extracting
signatures that generalize over intrusive behaviours.

Extending to non-broadcast networks: The research needs to be extended to address the issues raised by
non-broadcast networks such as switched Ethernet. There are several possible ways of dealing with
switched Ethernet. The first is to place the ID system at the gateways, routers and switching hubs. The
main problem with this solution is that we lose the advantages of distribution, unless traffic destined
for the same computer can pass through multiple gateways/routes/hubs. Even in this case, the system is
not as robust, because there are fewer gateways/routers/hubs than there are computers. An alternative
solution is to modify the routing and switching functions, so that all TCP SYN packets destined for a
subgroup of computers are broadcast to all computers within that subgroup. This should have negligible
impact on network performance, because SYN packets make up a small fraction of the traffic (less than
one percent for the system studied here). Finally, if another form of “peptide” is used, such as packet
contents or packet frequency, then different locations on a switched network may still see the same
behavioural patterns, and no modification to the switched Ethernet would be needed. This is more like
host-based ID.

Simple queues for matching: The effects of activation thresholds were analysed using queuing theory.
Queuing theory was applied, with the assumption that the only way in which matches leave a queue is
if they decay. This is not true in the network ID system: whenever the match count equals the activa-
tion threshold, the queue is reset to zero. Extensions are needed to cope with this variation on simple
queues. A possible avenue of investigation would be to change the implementation so that the match
count to did not go to zero, but behaviour was like a simple queue. The advantage of this is that no
extension to simple queuing theory would be needed to analyse and predict the behaviour.

Similarity-based activation: A constant value was used for the match decay. Another possibility is to make
the match decay period proportional to the strength of the match (in the contiguous bits rule, strength
would bemeasured as the length of the contiguous bits, which would be larger than). The effect of this
would be that the more closely a detector matches a string, the more likely it is to be activated by that
string, because it will retain those matches in the queue for longer. This is analogous to the IS, where
the duration of binding between receptor and epitope depends on the strength of the bond. Using this
mechanism, a form of adaptation can be implemented, where detectors are selected for the strength of
their match to nonself strings. If these detectors are more sensitive to particular nonself without being
any more sensitive to self then the distinction between self and nonself will be emphasized, making it
harder for attackers to execute stealth attacks.

Implementation of automatic flexibility: Automatic flexibility requires that the ID system adjust itself so
that it is always using the maximum resources available, without impairing the normal usage of the
LAN. This can be done by varying the number of detectors in each local detector set according to
the current system usage. Reducing the number of detectors is simple: randomly kill off the required
number. Increasing the number of detectors is not so simple. Whenever new detectors are generated

106

they will have to be tolerized. Such tolerization will take at least a day, which is pointless because the
resource usage on a computer can change from one minute to the next. One possibility is to store on
disk the maximum possible number of detectors that we may ever want to run, and load the detectors
as desired. The detectors can be tolerized beforehand. As resources become more scarce (the computer
becomes more heavily-used), detectors can be copied out of memory on to disk, and as resources
become more abundant, detectors can be loaded from disk into memory. Effectively each computer has
a virtual set of detectors, which can be paged in or out of memory as resources allow. There could also
be an option to allow the detectors to forcefully consume more resources when the system is perceived
to be under attack.

Analysing costimulation: It would be useful to have some theoretical understanding of costimulation.

Analysing the effects of sensitivity levels: No theory concerning the effects of sensitivity levels was devel-
oped in this dissertation. Furthermore, the experimentation with varied sensitivity levels was limited.
More experimentation is needed and it should also be possible to model sensitivity levels as queues.
The combined effects of activation thresholds and sensitivity levels could be analysed as the interaction
between two queues.

7.5 A Final Word
A network ID system was presented that is successful at detecting certain kinds of intrusions, while main-
taining false positive rates that are low by current standards (one every three days). The system could detect
other kinds of intrusions, but it cannot be assumed that it could detect all intrusions. This system is not a
panacea: it should be used as a compliment to, rather than a substitute for, other security measures such as
access controls, cryptography, and host-based ID.

Although this system cannot not detect all intrusions, and attackers with sufficient guile can evade
it, it is still useful. It makes it harder for attackers to abuse our computer networks, and it is flexible and
lightweight enough not to inconvenience legitimate users. This is an arms race, and every advance we make
is welcome; like the red queen in Alice in Wonderland [Carroll, 1871], we must keep running just to stand
still.

This dissertation is about more than network ID. The model of distributed detection is applicable to
several other domains; some of the possibilities were described. In addition, investigation of this model may
yield new insights into both computer science and immunology itself. In a sense, the true goal of this research
was to demonstrate how fecund the crossover between biology and computer science can be. This research
has demonstrated that these cross-cultural excursions are indeed worthwhile, for the more perspectives we
can gain on a problem, the better are our hopes of solving it.

107

References

[Albitz & Liu, 1992] Albitz, P. & Liu, C. (1992). DNS and BIND. O’Reilly and Associates: Sebastopol, CA.

[Anderson, et al., 1995] Anderson, D., Frivold, T., & Valdes, A. (1995). Next-generation Intrusion Detection
Expert System (NIDES): A Summary. Technical Report SRI–CSL–95–07, Computer Science Laboratory,
SRI International.

[Anderson, 1980] Anderson, J. (1980). Computer Security Threat Monitoring and Surveillance. Technical
report, James P. Anderson Company, Fort Washington, Pennsylvania.

[ASIM, 1996] ASIM (1996). Information security - computer attacks at deparment of defense pose increas-
ing risks. GAO Executive Report - B266140.

[Balasubramaniyan, et al., 1998] Balasubramaniyan, J. S., Garcia-Fernandez, J. O., Isacoff, D., Spafford,
E., & Zamboni, D. (1998). An Architeture for Intrusion Detection using Autonomous Agents. Technical
report, Department of Computer Science, Purdue University.

[Blakely, 1997] Blakely, B. (1997). The emperor’s old armour. In Proceedings New Security Paradigms
Workshop.

[CACM, 1999] CACM (1999). Special edition on agents.

[Carroll, 1871] Carroll, L. (1871). Through the looking glass and what Alice found there. Macmillan:
London.

[Chaitin, 1990] Chaitin, G. (1990). Information, Randomness, and Incompleteness, 2nd Edition. World
Scientific: Singapore.

[Chapman & Zwicky, 1995] Chapman, D. B. & Zwicky, E. D. (1995). Building Internet Firewalls. O’Reilly
& Associates: Sebastopol, CA.

[Comer, 1995] Comer, D. E. (1995). Internetworking with TCP/IP. Prentice Hall: Englewood Cliffs, NJ.

[Crosbie & Spafford, 1994] Crosbie, M. & Spafford, G. (1994). Defending a Computer System using Au-
tonomous Agents. Technical report, Department of Computer Sciences, Purdue University.

[Crosbie & Spafford, 1995a] Crosbie, M. & Spafford, G. (1995a). Active Defense of a Computer System us-
ing Autonomous Agents. Technical Report 95–008, Department of Computer Science, Purdue University.

[Crosbie & Spafford, 1995b] Crosbie, M. & Spafford, G. (1995b). Defending a computer system using au-
tonomous agents. In Proceedings of the 18th National Information Security Systems Conference.

109

[Denning, 1987] Denning, D. E. (1987). An intrusion detection model. In IEEE Transactions on Software
Engineering Los Alamos, CA: IEEE Computer Society Press.

[Denning, 1992] Denning, D. E. (1992). Cryptography and Data Security. Addison-Wesley Inc.

[D’haeseleer, 1995] D’haeseleer, P. (1995). Further Efficient Algorithms for Generating Antibody Strings.
Technical Report CS95-6, Dept. of Computer Science, University of New Mexico, Farris Engineering
Building, UNM, Albuquerque.

[D’haeseleer, 1996] D’haeseleer, P. (1996). An immunological approach to change detection: Theoretical
results. In Proceedings of the 9th IEEE Computer Security Foundations Workshop Los Alamitos, CA:
IEEE Computer Society Press.

[D’haeseleer, et al., 1996] D’haeseleer, P., Forrest, S., & Helman, P. (1996). An immunological approach to
change detection: Algorithms, analysis and implications. In Proceedings of the 1996 IEEE Symposium on
Research in Security and Privacy Los Alamitos, CA: IEEE Computer Society Press.

[Diffie & Hellman, 1976] Diffie, W. & Hellman, M. (1976). New directions in cryptography. IEEE Trans-
actions on Information Theory, 22.

[Forrest, et al., 1996] Forrest, S., Hofmeyr, S. A., & Somayaji, A. (1996). A sense of self for UNIX pro-
cesses. In Proceedings of the 1996 IEEE Symposium on Research in Security and Privacy Los Alamitos,
CA: IEEE Computer Society Press.

[Forrest, et al., 1997] Forrest, S., Hofmeyr, S. A., & Somayaji, A. (1997). Computer immunology. Commu-
nications of the ACM, 40(10), 88–96.

[Forrest, et al., 1994] Forrest, S., Perelson, A. S., Allen, L., & Cherukuri, R. (1994). Self-nonself discrimi-
nation in a computer. In Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy
Los Alamos, CA: IEEE Computer Society Press.

[Frank, 1994] Frank, J. (1994). Artificial intelligence and intrusion detection: Current and future directions.
In Proceedings of the 17th National Computer Security Conference.

[Garfinkel & Spafford, 1996] Garfinkel, S. & Spafford, G. (1996). Practical Unix and Internet Security, 2nd
Edition. O’Reilly and Associates, Inc.

[Gray, 1992] Gray, D. (1992). The dynamics of immunological memory. Semin. Immunology, 4, 29–34.

[Grimmet & Stirzaker, 1992] Grimmet, G. R. & Stirzaker, D. R. (1992). Probability and Random Processes.
Oxford University Press Inc.: New York, NY.

[Hamilton, et al., 1990] Hamilton, W. D., Axelrod, R., & Tanese, R. (1990). Sexual reproduction as an
adaptation to resist parasites. Proceedings of the National Academy of Sciences of the USA, 87, 3566–
3573.

[Heberlein, et al., 1991] Heberlein, L., Levitt, K., & Mukherjee, B. (1991). A method to detect intrusive
activity in a networked environment. In Proceedings of the 14th National Computer Security Conference
(pp. 362–371).

[Heberlein, et al., 1990] Heberlein, L. T., Dias, G. V., Levitt, K. N., Mukherjee, B., Wood, J., & Wolber, D.
(1990). A network security monitor. In Proceedings of the IEEE Symposium on Security and Privacy:
IEEE Press.

110

[Heberlein, 1998] Heberlein, T. (1998). NID overview. http://ciiac.llnl.gov/cstc/nid/niddes.html.

[Helman & Forrest, 1994] Helman, P. & Forrest, S. (1994). An Efficient Algorithm for Generating Random
Antibody Strings. Technical Report CS94-07, Dept. of Computer Science, University of New Mexico,
Farris Engineering Building, UNM, Albuquerque.

[Hochberg, et al., 1993] Hochberg, J., Jackson, K., Stallings, C., McClary, J. F., DuBois, D., & Ford, J.
(1993). NADIR: An automated system for detecting network intrusion and misuse. Computeres and
Security, 12(3), 235–248.

[Hofmeyr, 1998] Hofmeyr, S. A. (1998). A Computer Scientist’s Interpretation of the Immune System. Tech-
nical report, Dept. of Computer Science, University of New Mexico, Farris Engineering Building, UNM,
Albuquerque.

[Hofmeyr, et al., 1998] Hofmeyr, S. A., Forrest, S., & Somayaji, A. (1998). Intrusion detection using se-
quences of system calls. Journal of Computer Security, 6, 151–180.

[Hunt, 1992] Hunt, C. (1992). TCP/IP Network Administration. O’Reilly and Associates: Sebastopol, CA.

[Inman, 1978] Inman, J. K. (1978). The antibody combining region: Speculations on the hypothesis of
general multispecificity. Theoretical Immunology.

[Janeway & Travers, 1996] Janeway, C. A. & Travers, P. (1996). Immunobiology: The Immune System in
Health and Disease, 3rd Edition. Current Biology Ltd.: London.

[Kaplan, 1998] Kaplan, T. (1998). Personal communication.

[Kephart, 1994] Kephart, J. O. (1994). A biologically inspired immune system for computers. In Artificial
Life IV: MIT Press.

[Kim & Spafford, 1994] Kim, G. H. & Spafford, E. H. (1994). Experiences with Tripwire: Using Integrity
Checkers for Intrusion Detection. Technical Report CSD–TR–94–102, Dept. Computer Science, Purdue
University.

[Kolmogorov, 1965] Kolmogorov, A. (1965). Three approaches to the quantitive definition of information.
Problems in Information Transmission, 1, 3–11.

[Kumar & Spafford, 1994] Kumar, S. & Spafford, E. H. (1994). A pattern matching model for misuse in-
trusion detection. In Proceedings of the National Computer Security Conference (pp. 11–21). Baltimore,
MD.

[Lehmer, 1949] Lehmer, D. H. (1949). Mathematicalmethods in large-scale computing units. In Proceedings
of the 2nd Symposium on Large-Scale Digital Calculating Machinery (pp. 141–146). Cambridge, MA:
Havarvd University Press.

[Lippman, 1998] Lippman, R. (1998). Lincoln laboratory xbmiintrusion detection evaluation.
http://www.ll.mit.edu/IST/ideval/index.html.

[Lunt, 1993] Lunt, T. F. (1993). Detecting intruders in computer systems. In Conference on Auditing and
Computer Technology.

[MacKay, 1993] MacKay, C. R. (1993). Immunological memory. Advanced Immunology, 53, 217–265.

111

[Marrack & Kappler, 1993] Marrack, P. & Kappler, J. W. (1993). How the immune system recognizes the
body. Scientific American, 269(3), 48–54.

[Matzinger, 1994] Matzinger, P. (1994). Tolerance, danger and the extended family. Annual Review in
Immunology, 12, 991–1045.

[Matzinger, 1998] Matzinger, P. (1998). An innate sense of danger. Seminars in Immunology, 10, 399–415.

[Meade, 1985] Meade, G. (1985). Department of defense trusted computer system evaluation criteria. Na-
tional Computer Security Service Centre.

[Microsoft, 1999] Microsoft (1999). Authenticode white paper. http://msdn.microsoft.com/ workshop/ se-
curity/ authcode/ authwp.asp.

[Mitchison, 1993] Mitchison, A. (1993). Will we survive? Scientific American, 269(3), 102–108.

[Mockapetris, 1987] Mockapetris, P. (1987). RFC1034/1035.

[Moskophidis, et al., 1993] Moskophidis, D., Lechner, F., Pircher, H., & Zinkernagel, R. M. (1993). Virus
persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T-
cells. Nature, 362, 758–761.

[Mukherjee, et al., 1994] Mukherjee, B., Heberlein, L. T., & Levitt, K. N. (1994). Network intrusion detec-
tion. IEEE Network, (pp. 26–41).

[NetRanger, 1999] NetRanger (1999). Netranger web site. http://www.wheelgroup.com/netrangr/lnetrang.html.

[Oprea & Forrest, 1999] Oprea, M. & Forrest, S. (1999). How the immune system generates diversity:
Pathogen space coverage with random and evolved antibody libraries. In GECCO 99, Real-world Ap-
plications Track.

[Osmond, 1993] Osmond, D. G. (1993). The turn-over of B-cell populations. Immunology Today, 14(1),
34–37.

[Paul, 1989] Paul, W. E. (1989). Fundamental Immunology, 2nd Edition. Raven Press Ltd.

[Percus, et al., 1993] Percus, J. K., Percus, O. E., & Perelson, A. S. (1993). Predicting the size of the
antibody-combining region from consideration of efficient self/nonself discrimination. In Procedings of
the National Academy of Science 90 (pp. 1691–1695).

[Piel, 1993] Piel, J. (1993). Life, death and the immune system, special issue. Scientific American, 269(3),
20–102.

[Porras & Neumann, 1997] Porras, P. & Neumann, P. G. (1997). EMERALD: Event monitoring enabling
responses to anomalous live disturbances. In Proceedings National Information Systems Security Confer-
ence.

[Porras & Valdes, 1998] Porras, P. & Valdes, A. (1998). Live traffic analysis of TCP/IP gateways. In Net-
works and Distributed Systems Security Symposium.

[Potts, et al., 1991] Potts, W. K., Manning, C. J., & Wakeland, E. K. (1991). Mating patterns in semi-natural
populations of mice influenced by MHC genotype. Nature, 352, 619–621.

112

[Power, 1998] Power, R. (1998). 1998 CSI/FBI computer crime and security survey. Computer Security
Issues and Trends, 4(1).

[Ptacek & Newsham, 1998] Ptacek & Newsham (1998). Insertion, evasion and denial of service: Eluding
network intrusion detection. Secure Networks Inc., http;//www.secnet.com.

[Rivest, 1995] Rivest, R. (1995). RFC1321.

[Segel, 1997] Segel, L. A. (1997). The immune system as a prototype of autonomous decentralized systems.
In Proceedings of the IEEE Conference on Systems, Man and Cybernetics.

[Smith, et al., 1998] Smith, D., Forrest, S., & Perelson, A. S. (1998). Immunological memory is associative.
InWorkshop Notes, Workshop 4: Immunity Based Systems, Intnl. Conf. on Multiagent Systems (pp. 62–70).

[Snapp, et al., 1991] Snapp, S., Brentano, J., dias, G., Goan, T., Heberlein, L., Ho, C., Levitt, K., Mukherjee,
B., Smaha, S., Grance, T., Teal, D., &Mansur, D. (1991). DIDS (distributed intrusion detection system)—
motivation, architecture, and an early prototype. In Proceedings of the 14th National Computer Security
Conference (pp. 167–176).

[Somayaji, 1998] Somayaji, A. (1998). Personal communication.

[Somayaji, et al., 1997] Somayaji, A., Hofmeyr, S. A., & Forrest, S. (1997). Principles of a computer im-
mune system. In Proceedings of the Second New Security Paradigms Workshop.

[Staniford-Chen, et al., 1996] Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagland,
J., Levitt, K., Wee, C., Yip, R., & Zerkle, D. (1996). GriIDS - a graph based intrusion detection system
for large networks. In Proceedings 19th National Information Systems Security Conference.

[Steinman, 1993] Steinman, L. (1993). Autoimmune disease. Scientific American, 269(3), 75–83.

[Stevens, 1994] Stevens, R. W. (1994). TCP/IP Illustrated. Addison-Wesley: Reading, MA.

[Tonegawa, 1983] Tonegawa, S. (1983). Somatic generation of antibody diversity. Nature, 302, 575–581.

[Venema, 1992] Venema, W. (1992). TCP wrapper: Network monitoring, access control and booby traps. In
Proceedings of the 3rd UNIX Security Symposium.

[Vigna & Kemmerer, 1998] Vigna, G. & Kemmerer, R. (1998). NetSTAT: A network-based intrusion detec-
tion approach. In Proceedings of the 14th Annual Computer Security Applications Conference.

[Warrender & Forrest, 1999] Warrender, C. & Forrest, S. (1999). Comparison of data modeling methods for
sequences of system calls. In IEEE Symposium on Research in Security and Privacy Los Alamos, CA:
IEEE Computer Society Press.

[Williams, 1991] Williams, R. H. (1991). Electrical Engineering Probability. West Publishing Company: St
Paul, MN.

[Wolpert & Macready, 1995] Wolpert, D. H. & Macready, W. G. (1995). No Free Lunch Theorems for
Search. Technical Report SFI-TR-95-02-010, Santa Fe Institute.

113

