
Anomaly Detection in
Dynamic Execution Environments

by

Hajime Inoue

B.S., University of Michigan, 1997

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

December 2005

c�2005, Hajime Inoue

iii

Dedication

To the memory of my brother, Kenji.

iv

Anomaly Detection in
Dynamic Execution Environments

by

Hajime Inoue

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

December 2005

Anomaly Detection in
Dynamic Execution Environments

by

Hajime Inoue

B.S., University of Michigan, 1997

Ph.D., Computer Science, University of New Mexico, 2005

Abstract

In the past few years, languages which run on virtual machines, like Java and C#, have

become popular. These are platforms as well as languages, and they are characterized by

being verifiable and garbage collected, and include Just-In-Time compilers, large standard

libraries, and runtime profilers. I call platforms with these features dynamic execution

environments (DEEs).

The runtime infrastructure of DEEs allows access to features of execution that were

previously difficult to observe. My research consists of a series of case studies in which

I build systems to classify behavior of a particular feature into normal and abnormal and

then use that classification for either security or optimization purposes. These systems are

anomaly detectors.

I build anomaly detection systems for method invocations, permissions, and method

invocation sequences. I call them dynamic sandboxes, and they are they are used to detect

vi

intrusions or system faults. I also show that an anomaly detector can be used to predict

object lifetimes resulting in an improved garbage collector.

vii

Contents

List of Figures xiii

List of Tables xviii

1 Introduction 1

1.1 Program Behavior is Regular . 2

1.2 Dynamic Execution Environments . 4

1.3 Observable Features . 8

1.4 Overview . 11

2 Background 13

2.1 Related Work . 14

2.1.1 Fault Tolerance . 15

2.1.2 Intrusion Detection . 16

2.1.3 Anomaly Detection . 18

2.1.4 Sandboxing . 19

viii

Contents

2.1.5 Policy . 21

2.1.6 Java Security . 23

2.2 Data: JVMs, Benchmarks and Exploits 27

3 The Simplest Feature: Method Invocation 30

3.1 Motivating Application: an Anomaly IDS byMethod Invocation Observation 31

3.2 Dynamic Sandboxing . 34

3.3 Experimental Results . 38

3.3.1 Effectiveness . 39

3.3.2 Efficiency . 40

3.3.3 False Positives . 42

3.4 Discussion . 44

3.5 Summary . 46

4 Using Permissions to Infer Standard Security Policy 47

4.1 Motivating Application: Anomaly Intrusion Detection 48

4.2 The Java Security Infrastructure . 49

4.3 Policy Inference Implementation . 51

4.4 Experiments . 53

4.4.1 False Positives and Generalization 54

4.4.2 Performance . 57

ix

Contents

4.4.3 Comparison to the Chapter 3 Dynamic Sandbox 59

4.5 Future Extensions . 60

4.6 Summary . 61

5 Object Lifetime Prediction 62

5.1 Motivating Application: Better Garbage Collection 63

5.2 Object Lifetime Prediction . 64

5.3 Self Prediction . 73

5.3.1 Fully Precise Self Prediction . 73

5.3.2 Logarithmic Granularity . 75

5.3.3 Variations . 75

5.4 True Prediction . 76

5.5 Zero-Lifetime Objects . 77

5.6 Prediction and Object Types . 78

5.7 Exploiting Predictability: Towards an Ideal Collector 79

5.7.1 A Limit Study . 79

5.8 Related Work . 84

5.9 Discussion and Conclusions . 87

6 Methods, Method Sequences, and other Variants 92

6.1 Motivating Application: Fault Detection 93

x

Contents

6.2 Benchmark Behavior . 94

6.3 The Metron UAV simulation . 97

6.4 Scenarios . 98

6.5 Dynamic Sandboxing . 101

6.6 Implementation . 102

6.7 Experiments and Discussion . 104

6.7.1 Sandboxing with SSP=1 . 105

6.7.2 Sandboxing with SSP=2 . 109

6.7.3 Per-Thread Sandboxing . 113

6.8 Intrusion Detection . 115

6.9 Possible Extensions and Conclusions . 116

7 Other Features and a Complete System Design 118

7.1 Other Features . 118

7.1.1 Types . 119

7.1.2 Method Arguments . 121

7.1.3 Method Frequency . 122

7.1.4 Per-thread Custom Sandboxes 126

7.1.5 Feature Fusion . 127

7.2 The Complete System . 128

7.2.1 Stack Introspection . 128

xi

Contents

7.2.2 Windowing . 129

7.2.3 Response . 130

7.2.4 Memory Prediction . 132

7.3 Summary . 137

8 Conclusion 140

8.1 Contributions . 140

8.2 DEEs and Anomaly Detection . 143

Appendices 145

A Classification of Java Exploits from the CVE Dictionary 146

References 160

xii

List of Figures

1.1 Consider the large rectangle as the space of all possible behavior for a

program for some feature of execution. My thesis is that the empirical

behavior of the program is much less than the possible behavior and that

behavior is predictable. 3

1.2 Organization of a dynamic execution environment. 7

2.1 Intrusion detection systems and anomaly detection systems are specific

types of fault detection systems. 15

2.2 The execution stack of an applet as it tries to execute a privileged opera-

tion. Because the system domain includes all Permissions, the checkPermission

call will succeed if the applet’s domain includes the permission corre-

sponding to the privileged operation. 24

2.3 The Java standard libraries are growing with each release. Each resource

within the library must be properly protected or a malicious programmay

exploit it. 26

3.1 Method invocation frequency in HelloWorld and LimeWire. 32

xiii

List of Figures

3.2 Interface to the JIT compiler. The first if statement allows compilation of

the method or forces a profile check. The second if statement adds the

method to the profile. 37

4.1 A portion of the standard Java policy file. The file is actually 48 lines long

including comments. It grants Java extensions privilege to do anything.

It grants a smaller set of Permissions to all other code. The comments

(not shown) advise that allowing stopThread is inherently dangerous. 50

4.2 Pseudocode for the checkPermission()method of SecurityManager.

If the check call is initiated within this method, return. Otherwise, if

training is activated, then add the policy to each protection domain, rewrite

the policy file, and refresh the policy. Then check the Permission. 52

4.3 The performance of the SPEC JVM98 and DaCapo benchmarks under

no SecurityManager (No Security), while generating a policy (Training),

and running with that policy (Testing). 57

5.1 A single predictor entry: The SSP describes the execution path of the pro-

gram. Each integer encodes the method and position within the method

of the next method call. The entire string denotes the allocation site. All

byte arrays (JVM type [B) allocated with this stack string prefix had a

lifetime of 64 bytes. 68

5.2 The effect of stack prefix length on predictor size and coverage for the

example benchmark pseudojbb (including singletons). 69

5.3 The effect of stack prefix length on predictor size and coverage for the

example benchmark pseudojbb (excluding singletons). 70

xiv

List of Figures

5.4 The effect of stack prefix length on predictor size and coverage for the

Java Olden benchmark perimeter (excluding singletons). 70

5.5 Death-Ordered Collector: The graph shows the fractional object volume

of the different heaps in the simulated benchmarks. ZLS is the Zero-

Lifetime Space. SS is the Semispace heap. KLS is the Known-Lifetimes

Space. 81

6.1 A fault tolerant system relying on anomaly detection. The anomaly de-

tection system observes behavior and flags anomalies. Anomalous be-

havior is then analyzed and a signature for a specific fault is determined.

That signature is used to flag future anomalies as known faults which

incorporate specific responses. The system described here incorporates

only the shaded box: the anomaly detector. 93

6.2 How the SSP prefix works. Stack frames are pushed on the top when

a method is invoked. They are popped off when they exit. The stack

string prefix of length 2 is the signature of the top 2 frames concatenated

together: Method3-Method2. 95

6.3 A screenshot of the Metron UAV simulation with the graphical interface.

The surveillance sim is on the left and the search sim is on the right. . . 98

6.4 Reducing false positives. An anomaly is triggered only if two events are

correlated in time. In this example, an anomaly is defined as 2 events that

occur within a 3 method invocation span of time. 101

xv

List of Figures

6.5 Filtering method invocations. No method invocations are logged until a

method from the trigger list is invoked (Uav.calculateBestPath in this ex-

ample). Config.getConfig() is on this ignore list and is ignored. The other

methods are recorded because they were invoked within a method on the

trigger list and are not on the ignore list. Thus the stack visible to the

analysis engine is, from top to bottom: ValueMap.isValid(), Movement-

Decider.determineBestPath(), Uav.CalculateBestPath(). All methods in-

voked above SearchSim.newTimePeriod will continue to be recorded un-

til the stack falls below that level. This example is not taken from the

simulation code. 103

6.6 Growth in profile size over repeated training. The profiles grow very

slowly. Sandbox size, however, is only loosely related to the number of

events produced during a simulation using the sandbox. 111

7.1 Dynamic sandboxing using types. The sandbox interposes itself between

the mutator (the application) and the allocator. In normal operation, the

allocator is given a type and returns a reference to a region of memory to

place an instance of that type. A sandbox, implemented as an allocator

proxy, would allow only allocation of types allowed by its profile. 119

7.2 Unified dynamic sandbox. A central repository analyzes behavior from

interface proxies. Anomalous behavior is analyzed and then the proper

response is initiated through the appropriate proxy. 130

7.3 The 3 SSPs that need to be considered for an allocation at execution point

10 with their associated predictions. Although the SSP length is 6, the

allocator need consider at most 2 positions for linear comparisons, and

only 1 for random access. 133

xvi

List of Figures

7.4 Linear allocator generated for the execution point 10 shown in Figure 7.3.

The allocator needs to consider only two positions of the SSP to uniquely

distinguish them. 135

7.5 A visual representation of the death-ordered collector. The ovals within

the top and bottom rectangles represent objects within the normal heap

and the known lifetime space (KLS), respectively. Objects in the KLS

are arranged in order of predicted death. Arrows indicate references from

one object to another. Arrows that overlap the remembered sets rectangle

must be considered as roots when a collection occurs (though the sets

do not have to be unified in any particular implementation). The dotted

line indicates the current time. A DOC starts a collection with objects at

the far left, the ones with the earliest predicted time-of-death, up to the

current time. Remembered sets are necessary because objects not con-

sidered for collection, those in the normal heap and those not predicted

to be dead, are assumed to be alive and thus any objects pointed to by

them must also be considered alive. 138

7.6 Differences between threads in the Metron UAV simulation. Each row

corresponds to a thread and each column corresponds to a method. Pixel

(i, j) is white if method i is invoked at least once during the run of thread

j. There are approximately 250 threads and 2600 methods shown. 139

xvii

List of Tables

2.1 Description of the programs I used in my research. They consist of three

sets: the Java Olden benchmarks, used primarily in garbage collection re-

search, the SPEC JVM98 and JBB benchmarks, and the DaCapo bench-

marks. I developed the HelloWorlds and HttpTrojan myself. LimeWire

[72] was acquired from LimeWire LLC and the UAV simulation was ac-

quired from the Metron Corporation. 29

3.1 The total number of classes and methods within the standard and associ-

ated helper libraries bundled with various versions of Sun’s standard Java

Runtime Environment. 33

3.2 The number of different application and library methods invoked dur-

ing standard runs of the Jolden benchmark on JDK version 1.4.2. The

benchmarks each consist of 2 to 10 classes. 34

3.3 Efficiency of sandbox generation and protection on the Olden benchmarks. 41

3.4 Efficiency of sandbox generation and protection on the synthetic bench-

mark. 41

xviii

List of Tables

5.1 Trace statistics. For each trace, the number of objects allocated (Column

3) and the total size of all allocated objects (Column 4) are given. Col-

umn 5 shows the number of allocation contexts; each site is counted only

once, even if executed more than once, and sites that are not executed in

these particular runs are not counted. The top section of the table lists the

traces used for the self prediction study (Section 5.3). The bottom part

of the table lists the training traces used in the true prediction study (Sec-

tion 5.4); traces from the top section are reused for testing true prediction. 72

5.2 True prediction. Coverage and accuracy using predictors generated from

a benchmark run using a smaller set of input for both fully-precise and

logarithmic granularities against a separate, larger benchmark run. Cov-

erage is the percentage of objects for which the system makes predic-

tions, and accuracy is percentage of those objects for which my predicted

lifetime was correct. 77

5.3 Fully precise zero lifetime self prediction: Column one lists the bench-

mark program; column 2 shows the fraction of zero-lifetime objects out

of all dynamically allocated objects for that benchmark; column 3 shows

the percentage of zero-lifetime objects predicted (coverage); and column

4 shows the prediction accuracy. SSP lengths are as described in Table 5.6. 78

5.4 The ratio of bytes copied in the DOC system to the bytes copied in the

semispace collector for heap sizes of 1.1, 2, and 4 times the minimum

semispace heap size required by the DOC system. Smaller numbers are

preferable. 83

5.5 The mark/cons ratios for various heap sizes of the DOC and semispace

collector. 83

xix

List of Tables

5.6 Self prediction results. The first two columns of fully precise and loga-

rithmic granularity give results using predictors including singletons us-

ing an SSP of length 20, with two exceptions: jess and javac, for which I

used the larger SSP value reported in the 5th column. 89

5.7 Self prediction for three categories of objects according to object type.

For each of the three categories of types (virtual machine, library, appli-

cation), the percentage of total allocated objects that fall in the category

is given, together with the percentage of objects in the category that are

predicted. The rightmost column is the overall percentage of objects pre-

dicted (corresponding to the first column of Table 5.6). 90

5.8 The bytes allocated to the different heaps and their maximum sizes, and

with µ , ε , and factor of improvement based on a 50MB heap. 91

6.1 The number of unique stack string prefixes (SSPs) for various prefix

lengths for the SPEC JVM98 benchmarks. An SSP length of 1 denotes

methods without context, as in Chapter 3. 96

6.2 Data from SSP=1 (non-stack) based detection of anomalies using a win-

dow and threshold of 1. 106

6.3 Data from SSP=1 (non-stack) based detection of anomalies using a win-

dow and threshold of 2. 107

6.4 Data from SSP=2 detection of anomalies using a window and threshold

of 1. 108

6.5 Data from SSP=2 based detection of anomalies using a window and

threshold of 2. 109

xx

List of Tables

6.6 Sensitivity of variants using combined training data. A checkmark indi-

cates that the system reliably identified the scenario as anomalous. . . . 110

6.7 Per-thread sandboxing for a window and threshold of 1. Events reflect

the average number of events in the maximum thread of each scenario. . 114

6.8 Per-thread sandboxing for a window and threshold of 2. Events reflect

the average number of events in the maximum thread of each scenario. . 115

7.1 Number of application and library classes used during a run of the SPEC

JVM98 benchmarks. 120

7.2 Average frequencies for α (method invocations that do not appear in the

sandbox profile) and their ratio over nop. 123

7.3 Average frequencies for β (methods that do appear in the sandbox profile

but not in the trace) and their ratio over nop. 124

7.4 Presents the ratio of each scenario with nop and the specified spread (1,

2, 4, 8 , 16) with a γ of 1. 125

7.5 The average number of hash table queries that are required to identify an

allocation context for a given ssp and benchmark. The two sets of data

shown are for the SSP lengths used in Table 5.6. For each set, I calculate

the average depth using hash tables constructed using the SSP with linear

access and with random access. 136

xxi

Chapter 1

Introduction

The last decade has seen a dramatic shift from natively compiled languages to those hosted

on virtual machines. The popularity of Java and C# is testament to such a shift. The

growing use of so called “scripting” languages like PERL, Ruby, and Python is further

evidence. All of these languages run or will run on virtual machines [56, 77, 104].

Virtual machines (VMs) are simulators for abstract computer architectures. They pro-

vide different characteristics and capabilities than the real machine that they run upon. The

runtime infrastructure required for VM-hosted applications is much greater than that for

applications running natively. A VM can examine and manipulate the behavior of applica-

tions in ways that operating systems cannot. The differences in architecture that lead to the

greater ease of observation are why I call these new VMs dynamic execution environments.

In previous research, members of my group have examined the behavior of the network

or operating system with respect to anomalous behavior [37, 111, 50]. Developers working

with DEEs have a much greater ability to examine behavior, but until now have used it only

for a limited amount of performance optimization. This dissertation expands that research

by examining the behavior of several features of DEEs with the goal of exploiting them in

novel applications.

1

Chapter 1. Introduction

1.1 Program Behavior is Regular

The behavior of applications in DEEs is regular, and that regularity can be

exploited.

Regarded generally, this thesis is not controversial. Indeed, it has been observed that

applications behave predictably time and again. Modern hardware is designed with many

assumptions about the regularity of program behavior. Modern architectures rely on cache

and branch prediction to optimize performance. Caches exploit the fact that accesses to

memory are often local in terms of time and space. Likewise, branch prediction takes ad-

vantage of the fact that programs follow the same execution paths again and again. The

field of software engineering is less interested in examining the regularities of program ex-

ecution, although there are some examples. There is a rule of thumb that 90% of execution

is spent in 10% of code [65]. Caches are also used by the operating system to great effect.

However, most potential regularities within software have not been exploited for two

reasons: the features have no standard representation, and they are unobservable without

performance penalties. Frequently, the only method of observing program behavior has

been through the use of debuggers, and even then, gaining significant knowledge of pro-

gram internals is often impossible in a mechanical way. The knowledge of the developer

is usually required.1

My hypothesis is that for the many features of execution that are observable (and stan-

darized) within DEEs, regularities in behavior can be discerned, mapped, and used to

predict and improve future behavior. Figure 1.1 graphically depicts this. Although the

possible behavior of most features is vast, the observed behavior is much smaller and that

behavior is predictable. If that is true, it could be used in several applications. The sys-

tems implementing the applications, described in following chapters, are called anomaly
1The one exception is the automatic exploitation of the 90-10 rule by compilers. Compilers can

examine execution profiles to determine better optimization strategies.

2

Chapter 1. Introduction

Possible Behavior

Observed Behavior

Figure 1.1: Consider the large rectangle as the space of all possible behavior for a program
for some feature of execution. My thesis is that the empirical behavior of the program is
much less than the possible behavior and that behavior is predictable.

detection systems (described in more detail in Chapter 2), although not all are security

related.

I concentrate on both security and optimization. Using profiling information is an

old idea, and it is the reason that features are observable within DEEs. My optimization

scheme is a novel one, however, and the idea of leveraging optimization information for

security is also new. Security demands that detection and response be realtime and online.

Likewise, optimization must balance the effort to analyze the behavior with the gain in

performance. The representations and calculations I use to analyze the behavior of these

features must therefore be efficient.

Where the systems add to the standard security features of DEEs, I call them dynamic

sandboxes. Unlike standard sandboxes which rely on static descriptions of policy, these

3

Chapter 1. Introduction

anomaly detection systems learn policy through observation.

Obviously a motivation for my work is to build better systems. There is another one,

however. Most studies of program behavior are driven with specific applications in mind. I

believe that program behavior is interesting even when it does not directly lead to improve-

ments. Computer systems have become so complex that we do not understand them. This

complexity results in erratic, unpredictable behavior. Dynamic execution environments

add to this complexity. Instead of an application running on top of an operating system,

an application interacts with a complex simulator which itself interacts with the OS.

Program behavior must be studied empirically. The vast possible space of behavior

coupled with theoretical barriers like the halting problem make most static inference of

behavior futile. DEEs increase complexity, but they also allow us to observe and study

program behavior. This characteristic, coupled with my belief in the eventual dominance

of these systems, motivates my research.

In the next section, I describe the characteristics of dynamic execution environments.

Then, I list the features of execution that a system might monitor and describe my reasons

for choosing or excluding them. Finally, I present an overview of the remaining chapters

of this dissertation.

1.2 Dynamic Execution Environments

Beyond the popularity of Java and C#, the convergence of several trends is resulting in

the ubiquity of dynamic execution envrionments: security, dynamicism, and portability.

Security is now grudgingly recognized as an important feature of systems. The sandbox-

ing technology built into Java and C# is a primary reason for their popularity. Another

example supporting the growing importance of security is the rise of virtual machines like

Microsoft’s Virtual PC [52] or those made by VMWare [107]. They sandbox applications

4

Chapter 1. Introduction

by simulating multiple VMs on each true machine. Each application is convinced it is the

only one running. The dynamic character of these systems is also a feature. Applications

written for Java’s Enterprise Edition platform can be configured without shutting down the

VM, and can often be upgraded as well [75]. Portability is another factor. Java, C#, and the

scripting languages will run identically on any native platform that supplies a VM. Simi-

larly, VMWare “images” of machines can be moved or duplicated between them. These

features are so compelling that it is clear that DEEs will continue in their popularity.2

All virtual machines are not DEEs. Although Virtual PC and VMWare’s VMs provide

many of the benefits of DEEs, they do not provide all of them.3 Those VMs emulate

traditional architectures, and therefore do not include many of the advantages provided by

true DEEs. Those advantages are conveyed by five characteristics of dynamic execution

environments:

Typed Instruction Set The reasons these environments use typed instruction sets are de-

scribed in the Section on Java security 2.1.6. These are not specific to Java. In other con-

texts typed instruction sets are referred to as “typed assembly languages”, or TALs [78].

The same group has noted that typed instruction sets are a type of proof carrying code. In

short, typed instructions leads to a straightforward verification mechanism, ensuring that

instructions execute with fidelity to the standard.

Just-in-time (JIT) Compilation Typed instruction sets are rarely the native instruction

sets of the new platform. These platforms could be implemented as interpreters, but are

now usually compiled to native code. The reason for this is performance—interpreters ef-

fectively translate DEE instructions to native instructions every time a given piece of code

is executed. With compilation, code is translated once, and then runs at native speed on

every subsequent execution. Additionally, applications are not compiled in their entirety

2Language popularity is often difficult to gauge. Studies of google searches [112] and book
sales [81] show the obvious strength of Java, C#, and PERL.

3Virtual PC and VMWare are different in that VMWare simulates devices but not the processor
while Virtual PC emulates everything. For my purposes this distinction does not matter.

5

Chapter 1. Introduction

when the application is loaded. Rather, code is compiled as needed; that is, “just-in-time”.

This has two benefits. First, initial responsiveness is good, since usually only a small por-

tion of the application is needed to start. Second, many applications execute only a small

portion of the entirety of their codebase during typical execution. JIT compilation can thus

reduce pause times and the total amount of required computation.

Garbage Collection (GC) Like the use of typed-instruction-sets, garbage collection is

used to eliminate many of the programming errors and security vulnerabilities found in

code written for non-DEE platforms. These include familiar errors like memory leaks or

segmentation faults that are indicative of vulnerabilities.

Garbage collection is a technique that allows for the implicit deallocation of memory.

These algorithms do not compute when allocated memory is no longer going to be used.

That is, in general, an uncomputable problem. Instead, they try to determine when memory

becomes unreachable from a set of roots. These roots are typically the execution stack and

a set of global variables. Because DEE platforms do not allow pointer manipulation, a

portion of memory that is unreachable cannot be used again and is thus safe to be reused.

Jones’s Garbage Collection textbook is a complete reference on the subject [60].

Standard Library DEEs also have large standard libraries. Large libraries are almost a

prerequisite to popularity in execution platforms, so their presence is not unique to DEEs.

DEEs are slighty different from other environments in that the library is not an add-on.

The library is a required part of the platform standard. These libraries always increase in

size as the standard matures; this is clear in Java’s case, as Figure 2.3 demonstrates. Much

of an application’s behavior derives from the content of these libraries, including security

vulnerabilties and performance characteristics.

Runtime Profiling Finally, DEEs monitor the execution of their applications. This is not

unique to DEEs, most compilers allow feedback-directed optimizations when combined

6

Chapter 1. Introduction

Figure 1.2: Organization of a dynamic execution environment.

with profilers [94].4 Unlike traditional profilers, which slow applications while running,

DEEs profile so that the JIT compiler and garbage collector can improve performance

while the application is running.

These characteristics standardize and make observable many aspects of program exe-

cution. Object allocation and layout, function calling conventions, and access to resources

are identical throughout every application that runs on the DEE, and that data is available

in the DEE’s internal structures as it runs.

Figure 1.2 shows DEE organization. The application interacts with standard libraries.

Its code is compiled by the JIT compiler, and memory is allocated and freed by the alloca-

tor and garbage collector. If it is multithreaded, another manager switches and schedules

those. Ordinarily, an application never interacts directly with the OS. The DEE provides

4The GNU Compiler Collection (GCC) is the notable exception.

7

Chapter 1. Introduction

those services.

Java’s popularity makes it the best example of a DEE, but it is not the only one. Older

languages like Lisp or Smalltalk qualify. Newer platforms like Microsoft’s .NET and Perl6

with its Parrot VM are also dynamic execution environments. Microsoft is using .NET for

major systems, such as the file system and the graphical user interface in the next iteration

of Windows (Longhorn).

I used Java for every system described herein. For most of time during which I con-

ducted my research, Java was the only popular DEE. Sun released a standard version which

allowed me to conduct experiments. There have also been several open source versions

available, allowing me to investigate and modify their internal structure.

These JVMs allowed access to several features during execution. In the next section I

list several potential features to study and explain for each the reasons I chose to examine

or ignore them.

1.3 Observable Features

Applications that run directly on top of the operating system are mostly opaque to the OS.

Without a debugger, a process is a collection of memory and some data about the devices

it is using. One can organize the memory into code and data, but it is difficult to determine

any greater structure. Applications control their own internal environment. There are only

two standards: the instruction set and the system call interface.5 System calls are the

mechanism that allows applications to interact with the OS.

DEEs, because they provide more services to applications, have standardized many

more features than operating systems. The various features that can be observed in a

5It is primarily for this reason that host-based intrusion detection systems like Somayaji’s pH
analyze system calls.[97].

8

Chapter 1. Introduction

DEE can be divided into two main types: execution and memory. Desirable features have

two characteristics: they can be observed and analyzed in realtime, and they should give

meaningful information about the state of the application. Thus, although regularities are

desirable, uniform regularity in different programs is not.

The following list describes several of the features I considered. Features that I devel-

oped into anomaly detection systems are listed in bold.

Execution

Instructions: instructions are the fundamental unit of execution. In Java, however, instruc-

tions are difficult to monitor individually. Furthermore, it is not clear that they can be

analyzed to provide meaningful regularities.

Basic Blocks: Basic blocks are lists of instructions that have one entrance and one exit. If

one thinks of instructions as words, basic blocks are sentences. Like instructions, though,

basic blocks are not a convenient unit to study. The interface to the JIT compiler and the

rest of the JVM is built to manipulate methods, not basic blocks.

Methods: Methods are perhaps the most analogous unit to system calls in DEEs. Be-

cause the number of callable methods is much larger than the number of system calls, the

first system I describe observes methods rather than method sequences. Methods are ob-

servable through a debugging interface, through code instrumentation, or through the JIT

interface.

Method Arguments: The large number of possible arguments to methods increases the

possible space to an extraordinary degree. I did not discover a generalization that would

enable me to accomodate such a space, nor did I find an efficient algorithm to analyze it. I

speculate briefly about a possible approach in Section 7.1.2.

Method Frequencies: Method frequencies are used extensively for optimization in DEEs

9

Chapter 1. Introduction

and are observed in the same way as individual methods. I therefore tried to build a system

that could leverage this information for security purposes. However, this system was not

stable enough to work reliably, as I recount in Section 7.1.3.

Method Sequences: Given the success of pH, building an analogous system using method

sequences was inevitable. I explore various permutations of a system observing method

sequences.

Permissions: Permissions are used to protect resources in Java. I was successful in build-

ing a tool to automatically learn the permissions required to run an application and specify

it as a standard security policy.

Program Paths: Larus showed that programs spend most of their times in what he called

“hot paths” [69]. Traces of execution through a series of methods, hot paths can reveal

a large amount about the global behavior of an application. Hot paths are useful for op-

timization, but given their similarity to method frequencies, seemed difficult to build an

anomaly system around.

Memory

Types—Observing the types allocated during an application’s run seems analogous to ob-

serving which methods are run, and indeed they are. Types are so analogous to methods

that such a system was redundant. I briefly describe the tradeoffs between methods and

types in Section 7.1.1.

MemoryManagement—The standard statistic of garbage collection, object lifetime, gen-

erates more irregularity than regularity. The system I designed, more a regularity than

anomaly detection system, explores an optimization for those objects that do have pre-

dictable lifetimes.

Memory Structure—Objects are connected through references, forming a graph structure

10

Chapter 1. Introduction

of memory. This graph is available through the garbage collection system. I did not

investigate this feature because I did not intuit an algorithm for discovering regularities,

nor did I discover an efficient representation of normality.

A thorough and systematic investigation of each observable feature would require a

team of researchers. Instead, I explored the behavior of the selected features of execution

through a series of case studies. In each case study I build a system to analyze the reg-

ularities of the selected feature and identify anomalous from regular behavior. I am able

to demonstrate the truth of my thesis statement for each selected feature, and then make a

prediction as to how the behavior could be exploited in a practical system.

The different systems are motivated by two applications: security and memory opti-

mization. I call the security systems dynamic sandboxes.

1.4 Overview

The chapters are arranged as follows:

• Chapter 2 describes the tools and related research that are common to multiple chap-

ters. Where related work is specific to a single case study, it is included in that

chapter.

• Chapter 3 examines the regularities in method invocation behavior and describes

the behavior and performance of the simple dynamic sandboxing system to prevent

unwanted intrusions of computer systems. This chapter is an expansion of a paper

presented at the New Security Paradigms Workshop 2002 [53].

• Chapter 4 moves away from methods and examines Permissions. Permissions are

used to protect resources under the standard Java security infrastructure. This chap-

11

Chapter 1. Introduction

ter includes work presented at the International Conference on Programming Lan-

guages and Compilers 2005 [54].

• Chapter 5 examines the predictability of object lifetimes. I present results of a pre-

diction technique for several benchmarks and then analyze the performance of a

possible implementation. The chapter is adapted from a paper submitted to IEEE’s

Transactions on Computers [55].

• Chapter 6 expands on Chapter 3 by introducing variants on the simple dynamic

sandbox. These variants include correlating anomalies in time, as well as observing

sequences of method invocations. This chapter is an expansion of a demonstration

for the DARPA Taskable Agents Software Kits (TASK) project.

• Chapter 7 briefly recounts explorations of several features that did not evolve into

systems, and then describes how a complete system. It integrates the systems used

to explore the various features of the case studies, could be built.

• Chapter 8 summarizes the results and contributions of my work.

12

Chapter 2

Background

The applications of my research fall into two areas: security and garbage collection. The

unifying concept is the goal of classifying regularity in program behavior by creating

anomaly (or regularity) detectors. The design is therefore dependent on specific appli-

cations and its interaction with several subsystems of the platform on which is resides: the

security infrastructure, compilers, memory manager, runtimes, and program behavior. For

the most part, I only leverage the already existing behavior of those subsystems. They are

described in Section 1.2.

Only one of the systems has improved performance as its goal. Its related work is

included in that chapter. The rest have security applications and are called dynamic sand-

boxes. Their related work is described in the first section of this chapter. Although my

work is meant to target all dynamic execution environments, my research is implemented

using Java, and therefore I present an overview of security work with respect to Java.

All the systems must be tested by running applications on top of the modified or simu-

lated DEE. A description of the tools, benchmarks, and exploits, forms the second section

of this chapter.

13

Chapter 2. Background

2.1 Related Work

In the large, computer security aims to protect the resources of computing systems from

unauthorized access. More specifically, according to Anderson’s seminal work on com-

puter security, secure systems prevent unauthorized information release, unauthorized

modification of information, and unauthorized denial of services [4].

Somayaji divides the operation of these systems into three categories [97]:

• Preventative—Systems whose resources cannot be used without proper authoriza-

tion. These are systems that simply “work” and are obviously the ideal. The sand-

boxing infrastructure of DEEs is an example.

• Detection—Systems which detect attempts at unauthorized use and prevent them.

These two halves, detection and response, are often implemented separately. Re-

search in this area concentrates on detection, since preventing unauthorized use is

often an easy operation such as returning an error message in lieu of completing the

operation.

• Recovery—These systems are similar to the second category except for their timing.

The goal is to identify unauthorized use of resources after it has occured, and to

recover from it.

Dynamic sandboxing is primarily an exploration of technologies of the second type.

In conventional terms, dynamic sandboxing incorporates aspects of conventional sand-

boxing, fault detection, anomaly and intrusion detection. It is built on top of the standard

sandboxing tools of the underlying DEE.

14

Chapter 2. Background

Figure 2.1: Intrusion detection systems and anomaly detection systems are specific types
of fault detection systems.

2.1.1 Fault Tolerance

Fault tolerance is a feature of systems that use many of the mechanisms developed for

anomaly and intrusion detection. Fault tolerant systems detect faults and then respond

to correct them. Fault tolerant systems behave correctly, even when they are composed

of imperfect hardware and software. Most of this field is concerned with fault tolerance

in hardware, which is largely irrelevant to my work. Software fault tolerance, however,

can be seen as a superset of much of my own work, as well as that of other intrusion

and anomaly detection systems. Figure 2.1 depicts the relationships between the various

detection systems.

Software fault tolerant systems can be divided into two categories: design diversity

and fault detection and recovery. Systems based on design diversity replicate function

15

Chapter 2. Background

among several different implementations of the software. In n-version programming, n

different implementations run concurrently, with the system executing whatever actions

constitute a majority among the n systems [7]. Faults are observed when actions differ

among implementations. No special recovery is needed as the systems continue to take

the actions of the others.

Most fault tolerant systems, however, rely on special code to detect and respond to

errors. Exceptions are a standard method of response for fault detection integrated into

many high level languages and DEE runtimes. Exceptions are tests of program state.

When that state corresponds to a specific error, an exception corresponding to that state is

thrown. The runtime then searches for a block of code (the recovery block) corresponding

to the specific exception. When that code is executed, the exception is said to have been

caught. Exception handling is the standard recovery idiom for non-diversity fault tolerant

systems. Furthermore, it is my proposed mechanism for recovery in dynamic sandboxing

(see Section 7.2.3.)

2.1.2 Intrusion Detection

Much of my work seeks to detect intrusions, known as intrusion detection systems (IDSs).

James Anderson introduced the notion of monitoring systems for intrusions in 1980 with

his paper, “Computer Security Threat Modeling and Surveillance” [5]. Dorothy Denning

described requirements for the implementation of intrusion detection systems in 1987 [30].

Since then, a large number of these systems have been introduced. These systems either

look at individual systems (host-based), or network traffic. Axelsson [8] presents a more

complete description. From a computer security viewpoint, dynamic sandboxing can be

viewed as a host-based anomaly intrusion detection system.

Most host-based systems do not rely on anomaly detection. Instead, they are provided

with databases of signatures that denote unacceptable behavior. These are similar to virus

16

Chapter 2. Background

detection monitors with the difference that they examine other execution features rather

than binary files. Logins, program execution requests, and system calls are some of the

features that they monitor. Examples are the commercial ISS RealSecure OS Sensor [57],

and IEQ’s SystemAnalyzer [80], and free tools like LogSentry [95].

A few intrusion detection systems build up behavior models based on static analysis.

This is not anomaly detection, because the resulting model incorporates all possible behav-

ior based on the application’s code. Wagner and Dean’s system is a good example [108].

Their system builds a model of all possible system call orderings and then insures that only

those sequences are allowed, preventing naı̈ve code injection attacks. However, many at-

tacks, such as trojan horses, do not change possible behavior, merely exploit unknown

possible ones.

There are few intrusion detection systems for Java. Virus scanners examine Java byte-

code for known exploits. Perhaps the best example is the STAT IDSmodified to instrument

Java [96]. Java does not work well with these systems because they rely on observing

distinct event streams from the applications they monitor. Java confuses these systems

because most Java VMs rely on user threads instead of system threads. System threads

are scheduled by the OS and therefore OS-based systems can easily distinguish between

events from each thread. User-threaded systems schedule several internal threads on a

smaller set of system threads. Thus the event order in each user-thread can confuse sys-

tems observing only system threads.

Systems that rely on databases of known behavior are known as signature-based. They

have the advantage that they can monitor behavior as soon as they are deployed. Their

disadvantage is that they cannot recognize unknown attacks—the signature database must

be updated with every new attack. Furthermore, signatures developed within one particular

laboratory can exhibit false positives when deployed in production environments. Because

of these disadvantages, others have developed systems that learn normal behavior and

detect intrusions and other anomalous behavior by measuring deviations from that normal.

17

Chapter 2. Background

These are anomaly detection systems.

2.1.3 Anomaly Detection

In anomaly detection, intrusions are simply anomalous behavior. Because dynamic sand-

boxes are anomaly detection systems, they are both fault detectors and intrusion detectors.

Anomaly detectors build a profile of normal behavior by first observing the application (the

training phase). Once a profile of normal behavior has been constructed, novel behavior is

flagged as anomalous (the testing phase).

Dynamic sandboxing is not intrusion detection, however. It is anomaly detection, in

which intrusions are simply anomalous behavior. Dynamic sandboxing is a logical step

from the previous anomaly detection systems developed within my research group. These

systems were developed using biological systems as an ideal: advanced vertebrates’ im-

mune systems solve many problems analogous to those found in computer systems: dis-

tinguishing intrusions from normal operations, remembering old instrusions, identifying

new intrusions, and preventing and stopping intrusions.

There are a variety of host-based anomaly detection systems. An early system, Haystack,

combined signatures with anomaly detection [93]. Recent commercial systems are mod-

elled closely on the pH approach. Sana Security’s Primary Response and Attack Shield

use system call sequences to detect intrusions [51]. CylantSecure’s method also involves

in-kernel monitoring, but Cylant has not published their feature set.

Other anomaly detection systems look at more than just OS-based features. Several

examine aspects of execution behavior not visible to the kernel. Almost all of these are

signature-based, but their instrumentation techniques are mostly independent of the detec-

tion apparatus. There are two ways to accomplish this: modifiying source and automated

instrumentation. SRI released an API to couple an application to a detection engine [2].

Kuperman’s library interposition system automatically generates detectors by inserting its

18

Chapter 2. Background

own proxy for library calls that update the IDS state [66].

DIDUCE is a similar example for Java [43]. A debugging tool, DIDUCE tries to learn

variable invariants during execution and then informs the developer when those invariants

are violated. Beyond DIDUCE, there have been very few intrusion or anomaly detection

systems aimed at Java applications. Java was designed to eliminate most of the common

vulnerabilities and there have been relatively few Java exploits. Java does not have perfect

security, however, as I discuss in Section 2.1.6.

Some applications of anomaly detection look beyond features of execution. Dawson

Engler’s Stanford group works on improving program robustness. His work on anomaly

detection in source code has also spawned a company named Coverity. These systems

learn conventions by studying the source code of large applications. For example, Engler’s

system can learn when locks are required to manipulate objects or the order in which locks

must be acquired [35]. When a portion of source code varies from these conventions, it is

flagged as a potential bug.

Previous systems developed by others in my group have endeavored to solve these

problems. Somayaji’s pH has particularly influenced my work [97]. pH builds an internal

model of normal behavior for each process using system call sequences. Although pH is

conceptually similar to my own research, it differs in the level at which it monitors behav-

ior, and in its response. pH is implemented at the kernel level. It cannot monitor features

available within applications. My own research is an exploration of features available at

this higher level of execution. My own research does not focus on sophisticated response,

although I discuss some approaches in Section 7.2.3.

2.1.4 Sandboxing

Sandboxing is a preventative technology. The concept of sandboxing was introduced by

Wahbe and colleagues in the application of software fault isolation [110]. Wahbe described

19

Chapter 2. Background

a technique in which an application is modified so that it cannot execute or access portions

of its address space. That is, it is confined to a “sandbox”. The Java platform is currently

the best example of this kind of sandboxing.

In a more general sense, however, many techniques implement sandboxing. Traditional

Unix permissions are a form of sandboxing. The kernel monitors and restricts resources

like files, the network, and devices. The PERL tainting system is another example. It

restricts code from accessing data (resources) that are untrusted by the interpreter.

Another sandboxing technique uses virtual machines. Instead of restricting the behav-

ior of individual applications, VMs create separate platforms within a physical machine.

The IBM mainframe OS is an early but good example. Their VM/370 allowed one main-

frame to appear as tens or hundreds of separate machines [42]. Resources, such as execu-

tion time or disk, can be assigned separately to specific virtual machines. This is becoming

more common on a smaller scale with commercial products for commodity machines like

those from Microsoft, and VMWare.

Recently there has been an increase in VM-based sandboxing systems, possibly due

to Java’s popularity. Systems such as RISE [9], program shepherding [63], and Valgrind

[90] all combine VMs and sandboxing technology. Each of the systems sandboxes indi-

vidual processes, unlike the previous examples. RISE and program shepherding aim at

preventing code injection. In RISE, code residing on the host’s disk can be executed. All

other code becomes randomized, making successful code injection unlikely. In program

shepherding, all branches are examined and monitored as the application runs. Branches

are only allowed if they conform to a given policy; for example, jumps into the stack may

be disallowed.

Valgrind is different than the previous two examples. It is a debugging and perfor-

mance monitoring tool. It monitors execution similarly to Wahbe’s description, but does

not restrict behavior by default. It can easily be modified, however, to provide that behav-

20

Chapter 2. Background

ior through the use of plugins.

These three systems take a similar approach to dynamic sandboxing. They use a virtual

machine environment to monitor and alter the behavior of applications. There are twomain

differences. First, my approach determines legal behavior by training—DEEs are already

sandboxed so dynamic sandboxing is used to implement the second (Detection) behavior

on Somayaji’s list. Second, the semantics of execution are much easier to discern in DEEs

like Java then in the native code examined by systems like RISE and Valgrind.

2.1.5 Policy

Sandboxes cannot operate without policy. The sandbox’s security policy is its shape (see

Figure 1.1)—the resources that are “in” and “out” of the sandbox. Sometimes this policy

is implicit in the design of the sandbox. Often, however, the sandbox can be configured.

One of the central ideas of software engineering is the separation of mechanisms from

policy. In security systems, protection mechanisms implement a set of tools that can be

used to specify a range of security policies, providing greater flexibility. Anomaly intru-

sion detection systems provide ways to monitor, if not restrict, access to system resources,

and can therefore be viewed as policy inference algorithms. The security policy is the set

of all non-anomalous actions.

The Principle of Least Privilege (or Least Authority) was first described by Saltzer and

Schroeder in “The Protection of Information in Computer Systems” [85] and continues

to be a prominent principle of computer security. It states that “programs should operate

using the least set of privileges necessary to complete the job.” This is useful because

it limits the amount of damage that can occur due to malicious subversion or through

simple bugs. The goal of training in anomaly detection systems is to automatically infer

the policy of least privilege. In the analogy of Figure 1.1 again, one wants to define the

smallest possible area.

21

Chapter 2. Background

There are other tools that learn policies. Configuring firewalls is in many ways anal-

ogous to configuring Java security policy and there are several tools available. A good

example is a system by Burns [17]. There is at least one other tool, SPECTRE, for dynam-

ically inferring security policies and specifying that policy in a standard language [87].

Its inference policies are specific to web services, however. Lam and Chiueh describe a

system called Paid which limits application behavior to statically calculated system call

sequences [24]. They refer to this as “Automatic Extraction” of sandboxing policy. Its

approach is more similar to other host-based anomaly detection systems than to our ap-

proach. Their system protects a new resource, system call-order, and then infers a policy.

It is very similar to pH with the difference that pH learns policy dynamically.

Although it doesn’t learn policy, Naumovich’s work on consistency in J2EE secu-

rity policies [79] relates to my own research. His system statically analyzes the methods

invoked by different roles (groups of users) to suggest inconsistencies in policy. J2EE

policies are in a different policy language (XML) and are converted to Java policies au-

tomatically. His approach addresses a different level of security and is based on source

analysis rather than on observed behavior.

Most policies, adhering to common engineering principles, are explicit. They can be

written down and understood apart from the mechanism. Until recently, most research

in computer security has been about mechanisms, about how to guarantee control of re-

sources, rather than what resources should be protected. This makes sense, of course,

because the policy is almost always application dependent. The necessary flexibility in

design policies is why separation of policies and mechanisms is such a well known design

pattern.

Recently, research in policy languages has come to the fore. There are several general

policy languages that have been proposed and several that are in use. Some examples are

KAoS [15], Ponder [29], Rei [62], and Condell’s SPSL [26]. In a paper comparing some

of these languages, Tonti and his coauthors describe five features of policy languages:

22

Chapter 2. Background

expressiveness, simplicity, enforceability, scalability, and analyzability [103]. I do not

examine these languages in detail for two reasons. First, these languages are meant to be

general and are expressive enough that one can reason about policies based on the policy

alone. For example, KAoS can detect and resolve conflicts in policies automatically.

The policy’s representations in dynamic sandboxing are not meant, with one exception,

to be meaningful to users. The one exception, described in Chapter 4 deals with writing

standard Java policies. The Java policy language is not a general language, and thus suc-

ceeds in expressiveness, simplicity, enforceability, and scalability, as the policy language

is tailored directly to the Java platform. I describe the mechanisms that the Java policy

language configures next.

2.1.6 Java Security

Java is a unusual language in that its security infrastructure was designed along with the

language, instead of bolted on later, or omitted completely. It is designed to prevent the

range of security faults commonly found in code written in C: buffer overflows and type

subversion. Or, as the virtual machine specification points out, ”...it omits many of the

features that make C and C++ complex, confusing, and unsafe” [71].

At its base, Java’s security rests on its instruction set: a typed assembly language [71]

that eliminates pointer manipulation. This ability to reason about types allows the JVM to

verify that all instructions operate on properly typed data. Not allowing pointer manipu-

lation eradicates many common errors as well. Combined with runtime bounds checking

for arrays and type checking during casts, the JVM prevents common security faults. This

approach is similar to that used previously by ML and other functional languages that rely

on strong, static type checking to prevent runtime errors.

Relying on the integrity of the JVM, the Java platform implements a flexible sandbox-

23

Chapter 2. Background

AccessController.checkPermission()

SomeApplet.init()

sun.applet.AppletPanel.run()

Thread.run()

System Domain

System Domain

System Domain

Applet Domain

Figure 2.2: The execution stack of an applet as it tries to execute a privileged operation.
Because the system domain includes all Permissions, the checkPermission call will
succeed if the applet’s domain includes the permission corresponding to the privileged
operation.

ing mechanism on top of it.1 Each Java sandbox is referred to as a Protection Domain.2 A

domain consists of a set of code and a set of permissions attributed to that code.

A JVM can include a large number of Protection Domains. A simple application con-

sists of two domains: all standard library code is one domain and the application another.

The standard library has all permissions. An application can execute a privileged opera-

tion if all protection domains on its execution stack have that permission. Thus, the set of

permissions a method can execute is the intersection of the permissions of all protection

domains it is executing in. Figure 2.2 depicts the execution stack of a Java Applet as it
1My research was conducted using several versions of the Java platform, but is applicable to

all versions later than 1.2 (1.5 is the latest released version at the time of this research. I do not
describe much of the early work in Java security (prior to 1.2), such as Wallach’s work in stack
introspection, because it has been incorporated into the Java platform.

2I ignore the security infrastructure for Java Enterprise Edition (J2EE). J2EE security give au-
thority to actors (authorized people or programs), instead of blocks of code. J2EE policies are
specified in XML documents that are then translated into standard Java policies.

24

Chapter 2. Background

executes a privileged operation.

Two classes control Permission checks, the SecurityManager and the AccessCon-

troller. The existence of the two is a historical accident. The SecurityManager came

first, and it was initially intended that policy configuration would be handled by reimple-

menting it. In Java 1.2, the AccessController was introduced to allow policy configuration

files written in a human readable language.

Permissions and privileged operations are inherent to the language, not the JVM. New

permissions, and consequently, new privileged operations, can be created by developers.

This robust and flexible security infrastructure has given the Java platform a deserved

reputation of security. Like most large systems, however, Java does have security vulner-

abilities.

Java Vulnerabilities

There have been a number of security vulnerabilities reported for the different implemen-

tations of Java over the past several years. Those vulnerabilities can be categorized into

three types:

• VM Bugs—Early Java VMs had several verifier errors, which allowed bad casts,

leading to potential subversion of the VM. This class of bugs has declined in recent

VMs because Java bytecode verification is now well understood and the implemen-

tations are mature.

• Errors in the Standard Libraries—Sensitive operations need to be protected by

checking Permissions. If these checks are omitted, then applications can potentially

access resources that are denied by their policy. These are a growing problem be-

cause the size of the Java libraries is increasing quickly (See Figure 2.3).

25

Chapter 2. Background

0

10

20

30

40

50

60

1.0.2 1.1.1 1.2.2 1.3.1 1.4.2 1.5.0

Java Version

S
iz

e
 i

n
 M

B

Figure 2.3: The Java standard libraries are growing with each release. Each resource
within the library must be properly protected or a malicious program may exploit it.

• Policy Misconfiguration—Reports of incorrect policies are infrequent due to their

site specific nature. Security policies are necessarily tailored to the individual appli-

cation and host. However, there have been some reports of sandbox misconfigura-

tion for applets [74]. Policy misconfiguration is likely to be a continuing problem

as long as they are configured manually. Like configuring network firewalls, Java

security policy specification requires the ability to integrate knowledge of the host,

network, and application.

Appendix A shows all public Java platform vulnerabilities reported since 1999 to the

Common Vulnerabilities and Exposures dictionary maintained by the MITRE corporation.

I have classified them in terms of the three types. Of the 51 exploits listed, 6 are VM, 2 are

26

Chapter 2. Background

policy, and 43 are library vulnerabilities. It should be noted that two out of the first three

exploits reported are VM bugs, and the first policy bug was not reported until 2002.

2.2 Data: JVMs, Benchmarks and Exploits

Practical applications of this research are derived from examining the execution behavior

of programs running within Java virtual machines. The experiments described in this work

were conducted using three different JVMs: Intel’s Open Runtime Platform [67], IBM’s

JikesRVM [83], and Sun’s reference implemention of Java. Different versions were used

throughout the course of research and are listed for each experiment.

JVMs are just the platform, however. The behavior of applications on these platforms

is the focus of my research. I have used benchmarks recognized within the field as the best

available. Over the course of research, experiments have used three sets of benchmarks:

the Java Olden benchmarks [84], the SPEC JVM98 [98] and JBB benchmarks [99], the

DaCapo benchmarks [12], as well as some others that were useful for this research but

are not recognized as benchmarks.3 Table 2.1 provides descriptions of the programs that

comprise the benchmark sets.

These are the best benchmark suites available. Most Java programs are not widely dis-

tributed, however. They are used as “middleware”: applications that serve as intermedi-

aries between other applications such as web servers and system software like databases.4

Their security is critical because they interact with computers connected to the internet.

Because they are specific to individual companies, they are not distributed and any security

vulnerabilities go unreported.

There are relatively few publicly known exploits for any given JVM. There are even
3The version of the DaCapo benchmarks used for this research was dacapo040924.jar.
4There are many companies producing middleware applications and few producing commercial

end user ones.

27

Chapter 2. Background

fewer for those VMs that are open source. Publicly reported vulnerabilities are reported

and classified in Appendix A. Very few of these were discovered through wild exploits,

and unfortunately, most are tied to specific JVMs, OSs, and web browsers. Additionally,

I was only able to acquire one of them. I was forced to test the security applications of

dynamic sandboxing against a set of synthetic exploits. These are the exploits I used:

• StrangeBrew is the only exploit used in its wild state [58]. StrangeBrew was the

first Java virus found in the wild. When an infected file is run, it examines the current

directory for Java .class files, and infects the constructors of those files if they

are not already infected. It determines whether a class is infected by examining file

length: a class is infected if the length of its .class file is a multiple of 101.

Unfortunately, the StrangeBrew wildtype does not work in JVMs later than Java 1.0.

I developed an exploit which manipulates class files using the same rules as the wild

type to simulate infection using more recent Java versions.

• BeanHive was the second virus found that targeted Java. It is an interesting virus

in that most of its code is not stored in the infected .class files. Instead, only

enough code is added to download the helper classes that enable the virus to search

through the current directory and infect any class files currently uninfected. It adds

the infection stub to the end of all constructors. Symantec could never get BeanHive

to function as intended [101]. I wrote a reliable version using the Apache BCEL

libraries [6].

• HttpTrojan is an exploit I developed. It is a simple webserver with a backdoor

which allows the user to execute arbitrary commands on the remote machine.

• Port25 is a short class file that tests whether it can connect to an outside server

[106]. In effect, it probes the current policy to determine if it is constrained by the

applet sandbox. Its most likely incarnation is as part of a trojan because it performs

no function other than the probe.

28

Chapter 2. Background

Olden
bh N-body problem solved using hierarchical methods
bisort Bitonic sort both forwards and backwards
em3d Simulates electromagnetic waves propagation in 3d
health Simulates the Colombian health care system
mst Computes minimum spanning tree of a graph
perimeter Computes perimeter of quad-tree encoded image
power Solves the Power-System-Optimization problem
treeadd Sums a tree by recursively walking it
tsp The traveling salesman problem
voronoi Voronoi triangle decomposition

SPEC JVM98/JBB
201 compress Uses Lempel-Ziv to compress and decompress some strings
202 jess Expert systems shell based on NASA’s CLIPS system
209 db Emulates database operations on a memory resident database
213 javac The Java compiler from JDK 1.0.2
222 mpegaudio Decodes MPEG layer3 (mp3) files
227 mtrt Multi-threaded raytracer draws a scene with a dinosaur
228 jack Java parser generator is a lex and yacc equivalent
pseudojbb Java Business Benchmark altered for GC research

DaCapo
antlr Produces a parser and lexer for a set of grammar files
batik Renders several SVG files
bloat Analyzes and optimizes bytecode in several Java class files
chart Constructs several charts using JFreeChart
fop Translates a XSL-FO file into PDF
hsqldb Simulates a typical JDBC application
jython Interprets several python applications
pmd A lint style program for Java
ps Interprets a set of postscript files
xalan Compiles XML files to HTML

Miscellaneous
HelloWorld A simple program that prints “Hello World”
HelloWorld 2 Like HelloWorld, but also calls its constructor
LimeWire A peer-to-peer filesharing program
HttpTrojan Simple web server which includes a backdoor
Metron UAV Sim Multi-threaded simulation of unmanned aeronautical vehicles (UAVs)

Table 2.1: Description of the programs I used in my research. They consist of three
sets: the Java Olden benchmarks, used primarily in garbage collection research, the SPEC
JVM98 and JBB benchmarks, and the DaCapo benchmarks. I developed the HelloWorlds
and HttpTrojan myself. LimeWire [72] was acquired from LimeWire LLC and the UAV
simulation was acquired from the Metron Corporation.

29

Chapter 3

The Simplest Feature: Method

Invocation

This chapter begins a series of case studies, with one per chapter. In this chapter, I show

how patterns of method invocations can be used for anomaly intrusion detection. Method

invocation is first because in many ways it is the simplest feature of execution in the Java

Virtual Machine. It is also the feature most analogous to the system call. Although many

would consider instructions or basic blocks the fundamental feature of execution, this

is an inconvenient unit in Java Virtual Machines. JVMs are built to manipulate methods.

Types or classes might also be considered a fundamental unit, but in this chapter I consider

execution rather than memory. For a short analysis of classes, see Section 7.1.1. I chose

anomaly intrusion detection as the application because most intrusions should be easy

to detect by examining the method invocation behavior of the application. I start with

a review of anomaly intrusion detection, followed by a description of characteristics of

method invocations within the Java Virtual machine. I then describe the implementation

and efficacy of an anomaly intrusion detection system that uses method invocations as its

feature set. I finish with a discussion of the results.

30

Chapter 3. The Simplest Feature: Method Invocation

3.1 Motivating Application: an Anomaly IDS by Method

Invocation Observation

Anomaly intrusion detection is the use of anomaly detection to detect violations of security

policy. I discussed a body of related work in Section 2.1. To summarize, anomaly detection

assumes the future is like the past—I observe normal behavior by observing it for a period

of time, and afterwards flag all behavior that deviates from the original observations. In

anomaly intrusion detection behavior, I assume that these anomalies are intrusions and

then respond accordingly. Unlike most intrusion detection systems, the dynamic sandbox

focuses on behavior, not structure. Intrusion code injected into the system, if it does not

run, is not detected.

Method invocation is the atomic unit of execution in Java. Methods are functions

attached to classes. All applications begin by invoking the method main and end by

returning normally or by exiting through an exception. During execution, an application’s

main computes progress by invoking (or calling) other methods. Those methods invoke

other methods, and so on. Methods are bundled into classes. All execution occurs within

methods attached to classes.

It is well known that there are predictable characteristics of program execution. A fa-

miliar example is the 90/10 rule, the rule of thumb that 90% of a program’s execution is

spent in 10% of the code. This relates directly to methods. In fact, one finds extremely

regular behavior when examining method invocation frequency. Consider the canonical

HelloWorld program, written in Java, shown in Figure 3.1a. In Java, HelloWorld con-

sists of a one-line main routine which calls System.out.println().The graphs plot

methods against their frequency and are sorted by frequency. Plotted using log-log scales,

they exhibit power-law behavior (in languages this is known as Zipf’s law). This behavior

confirms the 90/10 rule and suggests that most application behavior is easily observed. The

heavy tail of a power-law, however, implies that some behavior is unlikely to be observed

31

Chapter 3. The Simplest Feature: Method Invocation

1e+00 1e+01 1e+02
Methods (sorted by call frequency)

1e+00

1e+01

1e+02

1e+03

N
um

be
r

of
 in

vo
ca

tio
ns

1e+00 1e+01 1e+02 1e+03
Methods (sorted by call frequency)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

N
um

be
r

of
 in

vo
ca

tio
ns

30 seconds
1 minute
2 minutes
4 minutes
8 minutes
16 minutes
32 minutes

HelloWorld LimeWire
(a) (b)

Figure 3.1: Method invocation frequency in HelloWorld and LimeWire.

during training, leading to false positives. LimeWire’s behavior, shown in Figure 3.1b,

is more complicated. The LimeWire graph shows the evolution of method invocation

frequency behavior over time. It starts off somewhat linearly but then decays into more

complicated multiple power-law domains.

This strengthens confidence in an anomaly IDS because the overall decay is faster than

power-law. HelloWorld primarily shows the bootstrapping behavior of the VM. LimeWire

is a real, commercial application. The faster than power-law decay shown in the longer

runs of the program indicates that the rate of novel behavior drops over time, allowing

proportionally shorter training times.

A Java application running without an explicit security policy (the default mode), may

execute any method belonging to its own classes as well as all methods within the standard

Java library. The number of library methods is usually much larger than those of the

application. Library methods are important because they provide the interface through

which an application can omanipulate the system—it communicates with other processes,

the network, or reads and writes files by invoking them. An application that cannot access

32

Chapter 3. The Simplest Feature: Method Invocation

Java Version: Total Classes Total Methods
1.0.2 642 5562
1.1.1 1559 12626
1.2.4 4818 38079
1.4.2 10240 85969

Table 3.1: The total number of classes and methods within the standard and associated
helper libraries bundled with various versions of Sun’s standard Java Runtime Environ-
ment.

the standard library is a brain without a body—it is powerless. The library classes and

methods available to applications are dependent on the Java platform on which they are

running.

An anomaly IDS relies on differences between the profiles of anomalies and normal

behavior. If applications exercise the entirety of the space of possible behavior during

normal execution, the anomaly IDS will not be able to identify intrusions. Table 3.1 shows

the total classes and methods available to applications on several versions of Sun’s Java

platform. Table 3.2 shows the number of different library and application methods invoked

by the Java Olden and SPEC JVM98 benchmarks. The tables show that these benchmarks

exercise only a tiny proportion of the standard library, and thus intrusions might show

different behavior.

Although anomaly IDSs assume that instrusions will exhibit different behavior than

normal execution, it is not clear that they must. A common exercise in misuse detection

systems is to try to identify runs of different applications [68]. An examination of the

intersection of a pairwise comparison of the set of benchmarks (Table 3.2 shows a geo-

metric average difference of about 68 (data not shown). The comparison of bisort and

treeadd generated the minimum score of 17. They executed different application methods

but used the same set of 204 library methods. Thus, behavior “profiles” differ by about a

third in the average case and by a minimum of 8%, providing a basis for implementing an

33

Chapter 3. The Simplest Feature: Method Invocation

anomaly IDS based on method invocation. In the rest of this chapter, I describe the first of

the dynamic sandboxes.

The Olden benchmarks are small applications that are similar in many ways. Larger,

more realistic applications are likely to generate more idiosyncratic behavior because they

include more application specific code and they invoke a larger and different set of library

methods. Because of this, and to keep the initial exploration simple, my initial implemen-

tation monitors only method invocations.

Benchmark Application Methods Library Methods Total
bh 54 215 269
bisort 12 204 216
em3d 18 201 219
health 26 211 237
mst 23 212 235
perimeter 42 196 238
power 29 147 176
treeadd 5 204 209
tsp 13 210 223
voronoi 44 209 253

Table 3.2: The number of different application and library methods invoked during stan-
dard runs of the Jolden benchmark on JDK version 1.4.2. The benchmarks each consist of
2 to 10 classes.

3.2 Dynamic Sandboxing

Dynamic sandboxing for a given program consists of two activities: sandbox generation

and sandbox execution. In the first, a sandbox profile is constructed by running the pro-

gram with an instrumented JVM. During this training session, profiling information is

recorded to the sandbox profile. The sandbox is initially empty and grows during the

training run by accumulating records for each unique behavior. Because nothing is added

34

Chapter 3. The Simplest Feature: Method Invocation

that is not observed, each sandbox is customized to a given program and context in which

it is executed. During sandbox execution, behavior that is not in the profile is considered

anomalous.

Dynamic sandboxing is meant to complement, not replace, the standard sandbox.

Java’s standard security model creates fixed boundaries within which a program must

execute while dynamic sandboxing detects execution anomalies. Although I have not

addressed the question of response in the current implementation, a dynamic sandbox

response is potentially very flexible, and I discuss possible responses in Section 7.2.3. Ac-

tions could range from logging the anomaly to terminating the application, as I do here.

In the standard Java security model, there is only one response, which is to disallow the

attempted behavior by the throwing of an exception.

Dynamic sandboxing’s efficacy is directly related to the stability of the instrumented

program’s behavior. If the underlying program continually executes large amounts of

novel code, it will generate a high number of false positives. As I have argued in the

previous section, however, the overall faster than power-law decay of applications over

time suggests that the system can derive a profile that avoids most false positives.

During the training session, each time a new method is invoked, its signature is written

to a log. This log constitutes the sandbox profile. The profile for the HelloWorld program,

for example, contains 268 methods. Every method, including those in libraries and natives

(methods written in C rather than Java), was included in the profile. During execution, the

log is checked for the method signature before the method is compiled.

I modified Intel’s Open Runtime Platform (ORP) to perform dynamic sandboxing [67].

From a user’s perspective, I made two changes to the ORP interface. First, I added two

flags -profile <filename> and -sandbox<filename>, which write a profile to

a file and read in the profile to be used as a sandbox, respectively. The two flags may be

used simultaneously.

35

Chapter 3. The Simplest Feature: Method Invocation

The mechanisms of generating and using the sandbox profile rely on ORP’s Just-in-

time (JIT) compiler implementation. When ORP loads a class it does not compile the Java

byte code to native code. Rather, it follows a lazy strategy, delaying native compilation of

each method until it is invoked. In the place of the native code, ORP inserts small stubs

called trampolines, which operate as follows:

• Call the JIT compiler for the specified method.

• Patch the jump table, the list of pointers to native code, to call the newly compiled

native code.

• Jump to the newly compiled code.

Dynamic sandboxing requires a slight modification of this strategy. I modified ORP

to append the class and signature to the end of the sandbox profile. This takes place in

the profiling phase and before the JIT compiler is called. When in sandboxing mode, the

modified ORP checks the method against the sandbox profile. Only if the profile contains

the method does ORP continue with JIT compilation. If the method does not appear in the

profile, ORP informs the user of a security violation and exits.

The lookup of methods in the sandbox profile is currently implemented as a linear

search through the file. The sandbox profile file format is simply a list of class and method

signature pairs prefixed by their combined string length.

A summary of the algorithm is presented in pseudocode in Figure 3.2. This code is

executed only if the method has not been previously invoked. If the JIT is enabled, then

the system is in the training stage. If the JIT is not enabled, then it calls

profile method load with the current sandbox. After that, if it is in profiling mode,

the method is added to the profile. Note that there are two profiles active here, the profile

the system is constructing, called profile, and the sandbox profile, called sandbox. The

system profile method load checks to see if the method signature is in the profile

36

Chapter 3. The Simplest Feature: Method Invocation

int result;
if (jit_status == ON)
{

compile_method(method);
}
else
{

profile_method_load(sandbox, method);
}

if (profiling == ON)
add_method_to_profile(profile, method);

Figure 3.2: Interface to the JIT compiler. The first if statement allows compilation of the
method or forces a profile check. The second if statement adds the method to the profile.

and then loads and compiles the method. Ideally, profile method load would load

the native code directly from the profile. To accomplish this, however, I would have had

to write the equivalent of a linker. This is future work and is discussed in the context of a

complete system in Section 7.2.

This implementation of dynamic sandboxing was designed to be efficient. First, I am

able to use a JIT compiler, so programs execute efficiently. Second, instead of performing

a check on every method invocation, I only perform the check the first time a method

is invoked. There is one remaining implementation inefficiency—the linear search of the

sandbox profile. Although its worst case is linear in the number of unique methods invoked

(corresponding to a linear search through the file), in practice it is much closer to constant

because the order of methods in the profile reflects the execution path from a previous

run. The execution paths of later runs are usually similar, so that the profile file pointer is

usually pointing to the method description queried by ORP.

Dynamic sandboxing in ORP is only one of several implementations I have developed.

37

Chapter 3. The Simplest Feature: Method Invocation

An earlier implementation relied on Kaffe’s interpreter [102], which ran very slowly. I

have also developed implementations by instrumenting libraries and adding a wrapper

around the Sun JIT compiler interface. This allows programs to run with the standard

Sun libraries. However, there is a large performance cost to this last approach, because

there is overhead on every method invocation instead of only on the first.1 The benefit,

however, is that I can examine the behavior of all applications instead of the subset that

run under the free software classpath implementation [39]. Also, simulation has allowed

me to investigate other features without the complexity of modifying the virtual machine

itself. I describe those results in subsequent chapters.

3.3 Experimental Results

In order to be useful, the implementation should have the following properties: It should be

effective at stopping attacks, be efficient, and experience few false positives. As I discussed

above, there is a paucity of documented attacks in the wild on production Java programs,

which makes it difficult to perform large-scale systematic testing. I tested the system

against two exploits, StrangeBrew, the first Java virus found in the wild, and HttpTrojan,

which I developed myself. I also discuss the system’s theoretical performance against the

other exploits described in Section 2.2. To assess the performance of the system, I tested

against a synthetic benchmark and the Olden benchmarks.

1 There is a small difference in behavior between these systems. In the Sun-based system I
prevent methods with the same implementation from running if they are associated with different
types. In ORP, once a method is compiled it can be invoked even if the specific instance’s type is
not in the profile.

38

Chapter 3. The Simplest Feature: Method Invocation

3.3.1 Effectiveness

I tested dynamic sandboxing against a Java virus and a simple HTTP server with a back-

door. The Java virus, named StrangeBrew, is the first reported virus targeting Java pro-

grams [58]. When invoked, the virus searches the current directory for uninfected class

files. For each uninfected class, it adds a copy of itself to the class and modifies the con-

structor to call itself. It then pads the file to a multiple of 101 so it can determine a class’s

infection status without opening it. I was able to use the wild version for this research.

The StrangeBrew virus readily infects any application, including the canonical simple

program HelloWorld. When the infected program is run with a profile gathered against

the uninfected class, no security violations are found. That is because main() never calls

the infected constructor—no HelloWorld instance is created. It is not until the anomalous

code attempts to execute that the sandbox can detect a problem. Depending on one’s point

of view, this is either a “feature” or a “bug.” In my view, the foreign code is not dangerous

until it executes, and in this way intrusion detection can devote its resources to code that

is about to cause damage. Thus, dynamic sandboxing focuses on behavior, not structure.

With this in mind, a second line was added to HelloWorld which calls the constructor.

The new class proved infectious. With sandboxing enabled, however, the first call into

the virus violated the profile, causing ORP to exit, and the attack was prevented. This

result would be seen for any program, not just HelloWorld. Because it is the foreign virus

code that is identified, the dynamic sandbox is able to prevent the virus from infecting any

dynamically sandboxed program.

The second exploit I tested is a backdoor in a simple HTTP server (HttpTrojan). The

backdoor was implemented as a special command which allows a remote client to execute

arbitrary commands on server. A sandbox profile was constructed by running the HTTP

server and exercising it by downloading pages. I then activated sandboxing with the cus-

tom profile. When I attempted to the backdoor, the sandbox trapped the first call in the

39

Chapter 3. The Simplest Feature: Method Invocation

a call to System.exec, without disrupting other legal uses the server. Again, dynamic

sandboxing is effective here because sandbox is a reflection of behavior, not structure.

The exploit does not insert foreign code into the application, although I believe sandbox-

ing would protect against that as well (based on the example described earlier). In this

case, the malicious code is in the application itself. Because the backdoor consists of

“dead application code” (code that is never executed), the sandbox effectively eliminates

it.

This work was completed before BeanHive and Port25 were reported, and neither ex-

ploit would run under the implementation’s incomplete Java libraries. Although I can-

not directly test these exploits, assuming they would run with proper library support, the

system would likely detect both. The system would easily detect BeanHive due to the

extensive library support necessary to copy itself. Port25-based trojans would also be de-

tected if the hosted program did not initiate network connections. This is a weaker result,

because many applications that benefit from intrusion detection are network based.2 To

summarize, the system detects the two exploits tested, and would likely detect the two I

was unable to test on ORP.

3.3.2 Efficiency

Dynamic sandboxing should be efficient as well as effective if it is going to be useful. The

implementation should perform efficiently for applications in which methods are executed

repeatedly. For many interesting programs, notably server applications such as LimeWire,

this is true. Indeed, this is almost universally true, because the number of total invocations

is much larger than the number of methods available in most applications.

To confirm that the implementation is efficient on realistic programs, I tested dynamic

2 Method sequences or the arguments to the network methods may be more effective for these
trojans. I investigate these features in Chapters 4 and 6.

40

Chapter 3. The Simplest Feature: Method Invocation

sandboxing against the Olden benchmarks. I ran the benchmarks 15 times each with no

flags, then the -profile flag, and finally the-sandbox flag, for a total of 45 runs.3

ORP Parameters Mean user + system time in seconds (Std. Dev.)
Default (no sandboxing) 304.59 (0.26)
Logging the sandbox profile (-profile) 308.93 (0.35)
Dynamic sandboxing enabled (-sandbox) 308.03 (0.19)

Table 3.3: Efficiency of sandbox generation and protection on the Olden benchmarks.

The results appear in Table 3.3. Profiling and sandboxing each were about 4 seconds

slower than the unobserved benchmark (an overhead of less than 2%), confirming the

expectation that the implementation would be efficient.

Thus, the Olden benchmarks show that the average case is efficient. How efficient is

the worst case? I wrote a synthetic benchmark to test the efficiency of the implementation

under conditions in which the overhead of lookup cannot be amortized over multiple invo-

cations. Because overhead is isolated to the first invocation of each method, the benchmark

consists of a class with 1000 empty static methods, each invoked once. After gathering

the sandbox profile, I modified the benchmark to invoke the methods in the exact reverse

order of the profile—the pathological case. The benchmark was run 100 times under with

no arguments, -profile, and -sandbox. Two sets of sandbox runs were made: once

with a generated profile and once with a profile modified to produce worst-case behavior.

See Table 3.4 for the resulting data.

ORP parameters Mean user + system time in seconds (Std. Dev.)
Default (no sandboxing) 0.26 (0.01)
Logging the sandbox profile (-profile) 0.28 (0.01)
Dynamic sandboxing enabled (-sandbox) 0.28 (0.01)
Dynamic sandboxing on pathological benchmark 5.83 (.21)

Table 3.4: Efficiency of sandbox generation and protection on the synthetic benchmark.

3I used the standard benchmark parameters with three exceptions: 2048 instead of 4096 on
Barnes-Hut, 512 instead of 1024 on Minimum Spanning Tree, and 10 instead of 20 on the TreeAdd
(tree traversal) benchmarks. The original parameters exceeded the unconfigurable ORP heap size.

41

Chapter 3. The Simplest Feature: Method Invocation

Sandbox generation and the synthetic benchmark had modest performance decreases

of 6%. The pathological case had an enormous slowdown of 2216%. The slowdowns

shown for profiling and dynamic sandboxing exaggerate the true effect they have on appli-

cations and are included to only show worst case behavior. First, overhead is only incurred

on the first invocation of a method. It is small when amortized even over a modest number

of invocations, as seen in the Olden benchmarks. Second, the performance results do not

reflect the cost of invoking a JIT for non-empty methods. In real applications, any over-

head in profiling or sandboxing is quickly overwhelmed by the cost of JIT compilation.

Finally, the pathological case shows that the lookup scheme is not efficient in all cases. It is

optimized for method invocations to occur in the same order they were encountered during

profile generation—the pathological case is ordered exactly opposite. This is unlikely in

most programs, so moving to a scheme like hashing would make the system slower in the

normal case. The typical case would be much more expensive, although including hashing

in addition to the current scheme might improve performance at the expense of space. It

is also possible the benchmarks’ “typical” behavior is too varied to be captured optimally

in one data structure—a slowdown in the search speed might be indicative of anomalous

behavior.

3.3.3 False Positives

The exploits and efficiency tests give evidence that dynamic sandboxing can be effective

and efficient at stopping exploits. The last requirement for an IDS is a low false positive

rate. For the experiments described above, I found zero false positives. This is certainly

encouraging, but not conclusive given the limited nature of the tests. For real applications,

I would expect to see at least some false positives.

The false-positive rate is related to the problem of “perpetual novelty” in interesting

applications. An anomaly-detection system can never be sure that it has observed the entire

42

Chapter 3. The Simplest Feature: Method Invocation

range of normal behavior. One approach to this is that of generalizing over the space of

observed patterns, with the hope that the generalization will include most new legitimate

behavior as in [70, 49, 73].

A second approach is to look at the distribution of novel patterns in the data and use that

to make predictions about the distribution of novel patterns in the data. A rank/frequency

plot is often used to study such distributions, such as the plots shown in Figure 3.1. When

plotted on a log-log scale, the slope of the rank/frequency curve reveals the proportion of

frequently seen behavior to potential false positives.

For example, consider the LimeWire trace recorded for 32 minutes discussed in Section

3.1. We can see that the distribution falls off more quickly than a power-law. This tells

us that the frequency of rare events decreases faster than a polynomial and slower than

exponential. Only 162 methods are required to obtain 0.01 false positive rate per method

invocation and 444, 35% of total number of methods executed during the trace, to push

that rate to 0.0001.4 As the program is run longer, the relative frequency of these rare

events will decrease (this can be seen by examining the different trajectories plotted in

Figure 3.1.

Finally, the size of the entire profile is small enough that we can record the long tail of

the power-law in the profile. I emphasize again that I am not looking at paths or sequences,

which increase the size of the space combinatorially. LimeWire, a widely used commer-

cial application, invokes fewer than 1300 methods. In fact, the entire possible space is

only on the order of tens of thousands of methods, depending on the specific Java distribu-

tion used. As Somayaji noted, smaller spaces have advantages in the space requirements,

generalization, and profile generation time [97].

4I would have liked to have used LimeWire to test performance, but it currently does not run
under ORP. I instrumented the LimeWire bytecode in order to get method data, but as a result the
program was too sluggish for human interaction.

43

Chapter 3. The Simplest Feature: Method Invocation

3.4 Discussion

Dynamic sandboxing, like other anomaly IDS, infers policy from behavior. This is pred-

icated on the idea that normal execution can reveal and document complex policies more

reliably and efficiently than users or developers can. As we know from familiar environ-

ments like UNIX, user devised policies are often flawed. As with any empirically derived

model of normal behavior, dynamic sandboxing comes with the risk of imperfect detec-

tion, that is, false positives and false negatives. In practice, the number of false positives is

expected to be low, but due to the lack of exploits in the wild, there is limited experimental

evidence to justify this prediction.

This differs from specification based approaches, like that of Wagner and Dean [108],

that do not allow the possibility of false positives. Although they looked at system call

sequences, an analogous system could be devised for Java. Although they prefer static

linking, a realistic Java IDS would build the specification from the bytecode class files at

load time. The IDS would then limit execution to a larger sandbox, the entire possible

call-graph of Java methods determined from the bytecode. This provides little protection

over the traditional sandbox, and is simply a more complex verification mechanism. Once

an attack has circumvented the traditional security mechanisms, it can execute anything,

because those code paths would have been examined statically at class load time. Con-

sidering my experiments, both the viruses, trojan HTTP server, and Port25 exploit would

run successfully. This is because the code, which is the basis for the specification in the

hypothesized Wagner and Dean type IDS, carries the exploit with it. The ORP implemen-

tation of dynamic sandboxing prevents the security fault because it focuses on behavior,

not structure.

Specification-based approaches often have significant performance penalties. TheWag-

ner and Dean system experienced slowdowns on the order of seconds per transaction [108].

I believe, however, that IDSs will not be used unless they impose minimal performance

44

Chapter 3. The Simplest Feature: Method Invocation

penalties. Also, I believe IDSs should prevent intrusions from gaining control. Our sys-

tems must therefore be computationally efficient and online. Dynamic sandboxing meets

these goals. The system incurs a small amount of overhead on the compilation of each

method, but no penalty thereafter. For real applications, this is a very small difference.

Given that I studied only two attack classes, it is interesting to consider how dynamic

sandboxing would fare against a wider range of attack types. Because dynamic sandboxing

stops novel code from executing, the sandbox would prevent it from using any methods

outside the traditional Java sandbox. A successful exploit would need both to disable

the traditional security mechanisms and use only previously invoked methods (perhaps

with different arguments). Against all three classes of exploits (verification bugs, security

manager bugs, and policy bugs) dynamic sandboxing would likely perform well against

naı̈ve attackers. In each case, the initial intrusion might succeed, but new code could not

execute if it used any methods not already in the profile. One possibility is that the exploit

could jump to native code, which dynamic sandboxing could not stop, because it acts only

within the Java domain. An intelligent adversary would need to embed the payload within

methods already in the profile, in what is essentially a mimicry attack.

For the most part, I have declined to investigate or implement response mechanisms.

Collectively, this research is an investigation of regularities of program behavior. Even

though each chapter is targetted toward a specific application, the aim is to describe how

these regularities may be exploited in a future system, not to produce one. Response is

important, however, and I discuss possible reactions to anomalies here and their collective

implementation in Chapter 7.

45

Chapter 3. The Simplest Feature: Method Invocation

3.5 Summary

I described a strategy, called dynamic sandboxing, which is an anomaly intrusion-detection

system for applications running in Java-like environments. To show its efficacy, I imple-

mented a prototype system using a limited amount of profiling information and tested it

against two exploits. I presented additional arguments that the system satisfies three cri-

teria of a successful IDS: high true-positive rate, low false-positive rate (zero for the tests

reported here), and low performance penalties.

46

Chapter 4

Using Permissions to Infer Standard

Security Policy

In the previous chapter I experimented with a system that examined method invocation,

a very general feature of execution in dynamic execution environments. In this chapter I

examine a feature tied directly to the Java language standard and libraries—permissions.

Permissions are used in Java very similarly to how they are used in real life. In Java,

a portion of code “checks” permission to use a resource. The code continues execution

with that resource without restraint if it is allowed. If permission is not granted, the code

requesting the resource stops abruptly and must do without it.

If permissions are viewed as just another feature of execution, as we viewed method in-

vocation, the set of permissions required to execute a program can yield a profile of normal

behavior. Furthermore, this profile should reflect the security policy of the application—

indeed, it should be the security policy. Therefore, we would expect this profile to be

stable, as a security policy should be.

A security policy in Java is the set of permissions given to each module of code. Tra-

47

Chapter 4. Using Permissions to Infer Standard Security Policy

ditionally, a security conscious developer writes this policy explicitly. In many ways it is

part of the application itself. As I argued in Section 2.1.6, this leaves applications open to

vulnerabilties, both from bugs in the standard library, which the previous chapter focused

on, but also on policy bugs, which are less likely to be reported because they are specific to

applications’ configurations. A system to infer the security policy that confers the fewest

permissions, in accordance with the principle of least privilege (see Section 2.1.5), would

be desirable.

4.1 Motivating Application: Anomaly Intrusion Detection

Like the previous chapter, the goal of this chapter is to present the design and test the

performance of a prototype system to detect anomalies. The profile used to determine

whether a permission request is anomalous or not is the standard security policy. The

profiles used in the previous chapter were also security policies, but the profile used here

is different. First, it is explicitly recognized as such by the standard. Second, the policy is

constructed to be edited by hand. This is possible in the earlier system, but the profiles are

larger and less likely to be understood without significant knowledge of the Java runtime

and specific application.1

Automatically generating security policies is not useful unless generating the security

policy is difficult. If our permissions are very general, such as allowing to access the

network or permission to access the disk, this task is easy enough that no automation is

required. If we wish to restrict an application to the minimum system resources required,

however, we want fine granularity; we want to restrict an application to specific network

hosts and to individual files on the disk. There is a tradeoff, however, between the ease of

stating a policy and its granularity. A binary policy (all-or-nothing access) is easy to state,
1In the Java Enterprise Edition the underlying security policy is automatically generated from

a different security language that assigns Permissions to roles, usually users, instead of code mod-
ules. Like the regular Java security policy, however, the JEE policy is generated by hand.

48

Chapter 4. Using Permissions to Infer Standard Security Policy

but it is not a good representation of the security requirements of most applications.

The trend in systems is to increase the degree of granularity in specifying access to

resources and Java is no exception. A short introduction to Java security was presented in

Section 2.1.6. Here, a review of Java security and a more complete description of Java’s

policy infrastructure will be useful to understand the specifics of the prototype.

4.2 The Java Security Infrastructure

Java’s original security model divided programs into applets and applications. Applets had

a highly restrictive policy, while applications had no restrictions at all. Later versions of

Java introduced finer grained security models to allow a closer fit between requirements

and privileges. Predictably, the expressiveness of the current policy language makes it

difficult to understand the exact privileges an application requires.

Indeed, Java’s current security mechanism supports highly precise policies [40]. The

sandbox supports almost any imaginable policy if one reimplements the security classes,

while the policy language is very expressive in terms of the granularity of resources it

can represent, although it does not support arbitrary algorithms. The policy language is

essentially a mapping of resources to code. A sandbox is configured by granting specific

Permissions to code. The ability to execute a protected operation depends on the set of

granted Permissions and other details such as the origin of the code and the identity, if

any, of its digital signers.2 A collection of classes, signed or not, constitutes a protection

domain, the basic unit of Java security.

The protection domain itself can be viewed as a sandbox since each domain has an

attached set of Permissions, which constitutes its policy. Domains can interact, but pro-

2“Permission” is capitalized when I refer to subclasses of the Java class
java.security.Permission.

49

Chapter 4. Using Permissions to Infer Standard Security Policy

grant codebase "file:${java.home}/lib/ext/*" {
permission java.security.AllPermission;

};

grant {
permission java.lang.RuntimePermission "stopThread";
permission java.net.SocketPermission "localhost:1024-", "listen";
permission java.util.PropertyPermission "java.version", "read";
...

};

Figure 4.1: A portion of the standard Java policy file. The file is actually 48 lines long
including comments. It grants Java extensions privilege to do anything. It grants a smaller
set of Permissions to all other code. The comments (not shown) advise that allowing
stopThread is inherently dangerous.

tected actions are allowed if all domains include the relevant Permission. A common case

of this was presented in Figure 2.2. It occurs when application code calls standard library

code, for example, when manipulating files. In this case, there are two domains: the sys-

tem domain, which includes all the standard libraries, and the application domain. The

application domain can open a file if it is given that permission—the system domain is

given all permissions. Thus Java platform security can be viewed as a set of interacting

sandboxes.

Two classes control security: the AccessController and the SecurityManager. In the

early days of Java, the SecurityManager was responsible for implementing the applet

sandbox. The SecurityManager is the class that determines whether permission is granted.

The AccessController was added to allow for fined grained access control and a human

readable policy. Previously, security policy was embodied in the SecurityManager. The

SecurityManager determined the result of a Permission check. Now, the SecurityManager

usually delegates to the AccessController.

There are several different subclasses of Permission. Each can be constructed with a

number of names denoting a specific operation. For some the name indicates the permis-

50

Chapter 4. Using Permissions to Infer Standard Security Policy

sion, others are annotated with a set of allowed actions. For example. The permission

specified by

permission java.io.FilePermission "/etc/passwd", "read";

denotes the ability to read the password file. Clearly, a protection domain’s policy can be

fine-grained. The default Java security policy file is 48 lines long including comments. An

excerpt of the policy file is displayed in Figure 4.1.

Specifying a policy in accordance with the principle of least privilege is difficult for

even moderately complicated Java programs and will become more difficult as additional

Permissions types are added. Today, even specifying a reasonably common policy seems

too complicated. For example, Sun’s VMs by default do not initialize the SecurityManager

[40].

In the remainder of the chapter I describe a method for learning minimal policies and

evaluate its efficacy and performance. I then discuss the results, comparing them with the

method invocation-based sandbox presented earlier.

4.3 Policy Inference Implementation

The goal is to automatically infer (learn) the minimum required permissions for each re-

quired domain in a given application program. I do this empirically during a training phase

in which I run the program and record all Permissions that are not implied by the current

policy. I start with a policy that grants no permissions. I then add those Permissions to the

current policy in the policy language provided by Java.3 The policy file at the end of the

run is the record of all Permissions required for that run. In subsequent runs, the policy

file is used to enforce the inferred sandbox.
3I ignore the differences between signed and unsigned code for these experiments. For signed

code, my dynamic sandbox could simply recognize the signatories and output them with the policy.

51

Chapter 4. Using Permissions to Infer Standard Security Policy

public void checkPermission(Permission p)
{

if (recursive()) return;
if (training)

foreach(ProtectionDomain d)
if (!Policy.getPolicy().implies(d, p))
{

writePolicy(d, p);
Policy.getPolicy.refresh();

}
super.checkPermission(perm);

}

Figure 4.2: Pseudocode for the checkPermission() method of
SecurityManager. If the check call is initiated within this method, return.
Otherwise, if training is activated, then add the policy to each protection domain, rewrite
the policy file, and refresh the policy. Then check the Permission.

I implemented the dynamic sandbox using a custom SecurityManager to log all calls to

checkPermission(). Within checkPermission(), a private method determines

if the required Permission is implied by the current policy. The individual check meth-

ods that do not take Permission arguments construct Permissions internally with the ap-

propriate arguments and then call checkPermission() directly. One performance de-

creasing detail is that methods, called from the custom SecurityManager to check whether

Permissions need to be added, themselves call checkPermission(). These are rec-

ognized by walking the execution stack and and suppressed since these checks are not

needed during regular execution. Calls to checkPermission() are added to a spe-

cific execution context if it is provided. If it is not provided, I add the Permission to each

Protection Domain in the current execution context, rewrite the policy file, and refresh the

policy. Figure 4.2 presents the pseudocode for checkPermission().

The implementation required two new classes for training: the custom SecurityMan-

ager and an application launcher to install the SecurityManager. Subsequent runs require

52

Chapter 4. Using Permissions to Infer Standard Security Policy

no special code. Training runs are initiated with the command:

java -Djava.security.policy=<application>.policy DSLauncher

<application>

and runs with the inferred policy are invoked the usual way:

java -Djava.security.manager

-Djava.security.policy=<application>.policy <application>

where <application> is the name of the class to be executed. Arguments to the class

are appended to the end in the usual way. The policy file need not exist because all neces-

sary Permissions are inferred automatically and added to the policy file. If the policy file

exists, the system policy is initialized with that policy. This is helpful in tuning existing

policies.

4.4 Experiments

To be practical, the implementation needs to be effective at stopping attacks, experience

few false positives, and be efficient to run. First, I explore its effectiveness at stopping

attacks, describing experiments against four exploits. Next I discuss false positives, and

finally report timing runs against the SPEC Java benchmark suite to assess efficiency.

I tested the dynamic sandbox against the four familiar exploits: StrangeBrew [58,

100], BeanHive [101], Port25 [106], and HttpTrojan. Section 2.2 provides an overview

of the exploits.

The first three exploits were tested with a small host program that either reads or writes

to a specified file. A sample workload was generated that reads and writes several files

53

Chapter 4. Using Permissions to Infer Standard Security Policy

in the current directory, reads /etc/passwd, and reads and writes some files to /tmp. I

generated a policy file for the workload and confirmed that no policy violations occur

when running identical workloads. Then an infected version of the host program was run.

This tested the sandbox’s ability to catch true positives, not false ones. All experiments

used Sun’s Java 1.4.2.

The dynamic sandbox detected and stopped policy violations of three out of the four

exploits. StrangeBrew was the only failure, and it failed because StrangeBrew’s behavior

is so unambitious—it runs and modifies code only in the current directory. If the virus

were more comprehensive (e.g., by ensuring that its code is called in other functions or

by recursively searching the directory structure for Java code) then the dynamic sandbox

would detect a policy violation.

In BeanHive, the dynamic sandbox identified the creation of the URLClassLoader as

a policy violation. Because it could not download its infection code, BeanHive failed.

Similarly, Port25 failed because the inferred policy does not include the permission to

resolve the www.netscape.com address.

HttpTrojan is perhaps the most interesting of the exploits, because it is a fully func-

tional server application that includes a large amount of network and file manipulation. I

trained it by browsing a series of pages from the author’s web sites, making sure that it

hit all usual error states (pages not found, etc.). When tested, the backdoor code failed to

execute because the inferred policy denied all files permission to execute.

4.4.1 False Positives and Generalization

As we will see in the Chapter 6, insufficent training and unstable behavior can result in

large numbers of false positives. A false positive in this context would correspond to a

legitimate behavior of the program that violates the minimal security policy. In particular,

I was concerned about false positives that arise from insufficient training examples or from

54

www.netscape.com

Chapter 4. Using Permissions to Infer Standard Security Policy

configuration changes that necessitate revising the policy. The host application used for the

first three test exploits required no tuning (zero false positives) because it only manipulated

files in a small number of directories.

The more realistic exploit, HttpTrojan, did require tuning for false positives. In its

current implementation, the dynamic sandbox grants file permissions by file name and

action. Thus, the training runs must browse all files that will be available during testing.

For web sites containing many files this could become cumbersome, so the policy file was

manually edited to permit access to any file or directory within a specified base directory.

Because the sandbox is expressed in the Java policy language, it is straightforward to

make these changes. Similarly, the sandbox assigns network permissions by IP address

and port. Permissions were relaxed to include all ports above 1024 and all IP addresses

within our university. I foresee that similar tuning would likely be required for many large

applications.

Tuning the policy to remove false positives is often a matter of generalization. In the

HttpTrojan, Permissions to most of the files used the same base directory so I generalized

the permission to allow reads to all files in that directory. Similarly ports and IP addresses

were also generalized. Although I did this manually for the experiments, it was easy to

automate the process.

I added simple heuristics were added to generalize network and file system permissions

as a response to the false positives found while training HTTP Trojan. File Permissions

state the name of the file and the action the permission allows: read, write, execute, or

delete. A very simple heuristic was chosen. If greater than some arbitrary number of files

in a directory are allowed an action, I enable that action for all files in the directory.

I added a generalization heuristic for the Socket class as well. If more than a given

threshold number of permissions allows a specific IP address with different ports the same

action (accept, resolve, listen, or connect), the heuristic allows all port numbers between

55

Chapter 4. Using Permissions to Infer Standard Security Policy

the minimum and maximum in the ungeneralized set of permissions.

The addition of these heuristics allowed HttpTrojan to execute without most false pos-

itives. The few that remained involved IP addresses. IP addresses are more sensitive than

ports, and I decided a heuristic involving IP addresses might create vulnerabilities.

Beyond generalization of just two Permissions types, simple heuristics for each type

could be defined to determine if sets of Permissions should be coalesced into more general

ones. In addition to reducing false positives, generalization is used to minimize the size

of policy files. A network application that explicitly listed every port and incoming IP

address would incur significant performance penalties. Thus, generalization can be used

to prevent the size of the policy file from exploding during training.

Unfortunately, it is difficult to generalize the generalization. Heuristics must be tai-

lored for each Permission type and even then there is no guarantee that the heuristic is

sound. The policy languages discussed in Section 2.1.5 were designed so that the pol-

icy could be mechanically analyzed, but Java’s policy language does not allow that. The

advantage of writing a human-readable policy comes from the necessity of occasionally

manually editing policy code.

False positives arise in part from the Principle of Least Privilege and are not specific to

our system (overly restrictive firewalls are a common example). Anytime a policy creates

restrictions, especially one that is learned empirically, there is a risk of false positives.

They will be rare when the policy is much less restrictive than the needs of the application.

The convenience and protection of this dynamic sandbox is a reasonable tradeoff for false

positives that can be repaired through generalization or other heuristics.

56

Chapter 4. Using Permissions to Infer Standard Security Policy

Security Monitoring of Spec JVM98 and DaCapo Benchmarks

0

10

20

30

40

50

60

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
09

_d
b

_2
13

_j
av

ac

_2
22

_m
pe

ga
ud

io

_2
27

_m
tr
t

_2
28

_j
ac

k
an

tlr

bl
oa

t
fo
p

hs
ql
db

jy
th

on
pm

d ps

xa
la
n

Benchmark

T
im

e
 (

s
e
c
s
)

No Security

Testing

Training

Figure 4.3: The performance of the SPEC JVM98 and DaCapo benchmarks under no
SecurityManager (No Security), while generating a policy (Training), and running with
that policy (Testing).

4.4.2 Performance

I ran experiments using the SPEC JVM98 and the DaCapo benchmark suites [98], [12]

and report three sets of numbers for reach benchmark in the suite: no security, training,

and testing. No security times the application running without a SecurityManager (the

Java default). Trainingmeasures the total application time when runs are inferring a policy

(without generalization heuristics). Testingmeasures the total application time during runs

in which the policy is enforced.4

4Experiments were conducted on a PC running Linux 2.4.21 with a 1.7Ghz Xeon processor and
1 GB of memory in single user mode. The time reported for each benchmark is an average of ten

57

Chapter 4. Using Permissions to Infer Standard Security Policy

Figure 4.3 shows the running times of each benchmark under the thee different condi-

tions. The performance penalty for running with the sandbox in place is modest, averaging

about 2%. This is notable because inferred policies are typically much longer than the

standard Java policy.5

Although this is a one-time cost, the penalty for training is greater and differs signifi-

cantly between the SPEC and DaCapo benchmarks. For SPEC, it ranges from 4% for db

to 267% for javac and averages 34% (this shrinks to 24% if javac is excluded.) Five of

the eight DaCapo benchmarks show performance degradations for training of greater than

50%: antlr, bloat, fop, hsqldb, pmd. In particular, antlr and bloat run more than 16 and

170 times slower than without security.

The training time arises from the computation required to keep the profile parsimo-

nious and by writing and then reading the file whenever a Permission is added. More

efficient training regimes may be possible, although writing out the policy as it changes

may benefit the administrator; he or she could decide what tuning or generalization is

necessary as the application is running.

The performance on the benchmarks shows that performance deficiencies are common

to a particular type of program: compilers. The worst performers all parse or modify code.

All the rest run within twice of their normal running times. Compilers are a worst case

because they interact so heavily with the file system. They serially open many different

files, and consequently need permissions for all of them. Once analyzed, they do not use

those Permissions again.

Compilers are not usually run in a sandboxed environment. They are not a security con-

cern because they are not long running nor do they communicate with external resources.

Thus, their poor performance is less of a concern.

runs. Generalization was not used during training.
5The sizes range from tens to thousands of lines.

58

Chapter 4. Using Permissions to Infer Standard Security Policy

Performance is not problem for programs that are not compilers. Training security

policies for applications can be viewed as part of the installation and configuration pro-

cess. Running with security enabled produces few performance penalties at runtime. The

training cost, while significant, would likely be reasonable for most of the applications I

envision, which are often I/O bound.

4.4.3 Comparison to the Chapter 3 Dynamic Sandbox

In testing the systems against the exploits, I found the Permissions sandbox does not pre-

vent StrangeBrew from running while the method invocation sandbox does. The difference

can be attributed to virus behavior—modification and insertion of code directly intersects

with the feature of method invocation. The Permissions sandbox must look at file modifi-

cation behavior to prevent virus activity. This works at preventing infection in other code,

but is not as effective when write permissions are required by the bytecode itself, as the

StrangeBrew case demonstrates.

There are more fundamental differences. First, the previous system only sandboxed

one resource, methods, while this system includes all the resources that are explicitly Per-

mission checked. Second, the previous system required VM modifications; it could not be

implemented in pure Java without significant performance penalties. Those modifications

provided benefits, however. This system is vulnerable to VM bugs and some library bugs.

Dynamic sandboxing by methods is orthogonal to the standard security apparatus and pre-

vents many of those faults.6 Finally, the current system produces short, human readable

profiles of normal behavior. The older system used large files of method signatures, loca-

tion in the profile had a large impact on performance.

The two systems are complementary. Each is able to prevent security faults the other
6Dynamic sandboxing by methods ensures that methods not listed in the normal profile are

never compiled and thus can never be executed. This is “policy as mechanism” [9]. A set of
mechanisms that allows a flexible policy, like Java provides, is more likely to be subverted.

59

Chapter 4. Using Permissions to Infer Standard Security Policy

would tolerate. Together, they address the entire space of security faults: VM bugs, library

bugs, and policy bugs.

4.5 Future Extensions

The system described in this chapter is a prototype. It is not meant to have the performance

or features of a production system. The performance of the custom SecurityManager could

be improved signficantly at the cost of portability. The SecurityManager would still be im-

plemented in Java, but it would rely on library implementation details that are idiosyncratic

to the library itself and not specified by the library standard. Generalizations could be ex-

tended as a plugin system instead of being tightly integrated into the SecurityManager

core.

Beyond these incremental improvements, I see two interesting additions. First, I am

interested in adding the ability to explicitly state Permissions that cannot be granted. This

could be stated in an anti-policy that uses the usual policy syntax. The SecurityManager

would refuse to add these Permissions during training and inform the operator of a fault.

Sun has contemplated adding such a mechanism but has thus far refused due to its greater

complexity [40]. Second, I would like to extend this work beyond Java. Microsoft’s .NET

virtual machine includes a security infrastructure similar to Java’s. Should .NET become

ubiquitous, as is likely with the release of Longhorn, a similar system to the one developed

here would be useful.

I discuss how an integrated production system including sandboxing of several fea-

tures, including Permissions, could be implemented in Chapter 8.

60

Chapter 4. Using Permissions to Infer Standard Security Policy

4.6 Summary

In this chapter I described the first practical system to infer minimum security policies for

Java applications. I showed that it is both effective and efficient at deriving and enforcing

policies. These policies, while not optimal, form a useful basis for hand-tuning. Editing

policies is familar to administrators because the policy format is the Java standard. The

implementation of dynamic sandboxing uses Permissions as the feature from which to

construct the sandbox.

61

Chapter 5

Object Lifetime Prediction

The system described in this chapter is very different than those presented in Chapters 3

and 4. The goal of those case studies was to build systems that could identify unusual

behavior in different features of execution. Although the methodology of this chapter is

similar—I build a system to predict regularities of another feature—the objective is quite

different. Instead of identifying irregularities for special treatment, I treat the regularities

as special.

This chapter examines the behavior of the memory management system in the Jikes

RVM, a Java virtual machine produced by IBM [3].1 Because the purpose of this case

study is so dissimilar to the previous ones, this chapter is more self-contained. I had origi-

nally aimed to build an anomaly detection system similar to those in previous chapters that

observed features from the memory management system, but the behavior of the memory

system was not conducive to such a system. I discuss some of that work in Section 7.1.1.

Instead, I expound upon the regularities I discovered in the behavior of one aspect of the

memory management system and present a potential system to exploit them. In Chapter 1

I briefly described garbage collection, the automatic memory management system used in

1This JVM was previously named Jalapeño.

62

Chapter 5. Object Lifetime Prediction

DEEs. Before I present the results of my own work, I motivate it by making the case for

improved garbage collection systems.

5.1 Motivating Application: Better Garbage Collection

Two popular languages today, C# and Java, are almost synonymous with the DEEs that

they run upon. Both are garbage collected. Garbage collection (GC) improves developers’

productivity by removing the need for explicit memory reclamation, thereby eliminating

a significant source of programming error. However, garbage-collected languages incur

increased overhead, and consequently, improvement in their performance is essential to

the continuing success of these languages. Many algorithms have been proposed over the

several decades since GC was invented, but their performance has been heavily application

dependent. For example, Fitzgerald and Tarditi showed that a garbage collector must be

tuned to fit a program [36]. Another approach relies on larger heap sizes and simply runs

the collection algorithms less frequently. However, this does not always result in better

performance [16]. GC algorithms typically make certain assumptions about the lifetimes

of the application’s objects and tailor the collection algorithm to these assumptions. If

the assumptions are not borne out, poor performance is the outcome. What is needed is

the ability to make accurate and precise predictions about object lifetimes and to incor-

porate these predictions into a general GC algorithm that works well for a wide range of

applications.

The overhead of GC, compared to explicit deallocation, arises from the cost of identi-

fying which objects are still active (live) and which are no longer needed (dead). GC al-

gorithms, therefore, go to some lengths to collect regions of memory that are mostly dead.

The ideal garbage collector would collect regions where all the objects died recently, so

that heap space is not wasted by dead objects, and living objects are not processed unnec-

essarily. To do this, the allocator would need to know the exact death time of an object

63

Chapter 5. Object Lifetime Prediction

at the time it was allocated, and then it could allocate it to a region occupied by objects

with the same death time. To date, this has been accomplished only in a limited way by

a process called “pretenuring.” Pretenuring algorithms make coarse predictions of object

lifetimes, predicting which allocations will result in long-lived objects and then allocating

them to regions that are not frequently collected. For example, in Blackburn’s pretenuring

scheme [14], objects are allocated into short-lived, long-lived, and eternal regions. As this

chapter will show, the inability to predict lifetimes precisely is an obstacle to the ideal

garbage collector. I also show how allocation-site information available to the VM can be

leveraged to improve object lifetime prediction and how that ability might be exploited by

the JIT compiler and collection system.

The organization of this chapter is as follows. First I demonstrate that there is a sig-

nificant correlation between the state of the stack at an allocation point and the allocated

object’s lifetime. Next, I describe how this information can be used to predict object

lifetimes at the time they are allocated. I then show that a significant proportion of ob-

jects have zero lifetime. Next, I analyze the behavior of a hypothetical hybrid GC (the

death-ordered collector) that uses my prediction method, examining its implementation

overheads and describing its best-case behavior. Finally, I compare my results with related

work and discuss other potential applications.

5.2 Object Lifetime Prediction

My approach is inspired by Barrett and Zorn’s work on object lifetime prediction in C

applications [11]. In particular, both methods use similar information, the predictors are

constructed similarly using run-time profiling, and I have adopted their “self prediction”

test. In addition, I have made several extensions. First, I am using a garbage collected

language, Java, in which deallocation is implicit. Second, I have introduced fully precise

prediction; Barrett and Zorn used only two bins—short and long-lived. Finally, I have

64

Chapter 5. Object Lifetime Prediction

conducted a more detailed analysis, the contents of which form the bulk of this chapter.

As mentioned earlier, one goal of object lifetime prediction is to improve performance

by providing run-time advice to the memory allocation subsystem about an object’s likely

lifetime at the time it is allocated. Similar to Barrett and Zorn, I accomplish this by con-

structing an object lifetime predictor, which bases its predictions on information available

at allocation time. This includes the context of the allocation request, namely the dynamic

sequence of method calls that led to the request, and the actual type of the object being

allocated. I refer to this information as the allocation context; if the observed lifetimes of

all objects with the same allocation context are identical, then the predictor should predict

that value at run-time for all objects allocated at the site.

The system described here, like most of the other systems described in my research,

relies on a small system implemented within the VM to retrieve the data, and external

simulations which analyze the data. Because I have not yet integrated my predictor into

the memory allocation subsystem, my testing is trace-driven and not performed at run-

time. If fully implemented, my system would operate similarly to other profile-driven

optimization systems. First, a small training run would be used to generate the predictor,

instead of logging the trace. Subsequent runs would then use the predictor for the various

optimizations discussed below. A description of the implmentation of this type of system,

integrated into the VM with the other systems described in my research, can be found in

Chapter 8.

I consider two circumstances for prediction: self prediction and true prediction. Self

prediction [11] uses the same program trace for training (predictor construction) as for test-

ing (predictor use). Self prediction provides an initial test of the hypothesis that allocation

contexts are good predictors of object lifetimes. Although self prediction is not predicting

anything new, it allows us to study the extent to which the state of the stack is correlated

with the lifetime of the object allocated at that point. This provides evidence that true pre-

diction is possible. True prediction is the more realistic case, in which one small training

65

Chapter 5. Object Lifetime Prediction

trace is used to construct the predictor, and a different larger trace (generated from the

same program but using different inputs) is used for testing. If self prediction performance

is poor, then true prediction is unlikely to succeed. But, accurate self prediction does not

necessarily imply successful true prediction. Although I have not analyzed it in detail, I

expect that this latter case is most likely to occur in heavily data-driven programs.

The load on the memory-management subsystem is determined by heap allocation

and death events, and it is independent of other computational effects of the program.

Therefore, the lifetime of an object in GC studies is determined by the number of bytes of

new memory that are allocated between its birth and its death. More specifically, object

lifetime is defined as the sum of the sizes of other objects allocated between the given

object’s allocation and death, and it is expressed in bytes or words.

Predictor performance is evaluated using four quantitative measures: precision, cover-

age, accuracy, and size:

• Precision is the granularity of the prediction in bytes. A fully precise predictor has

precision of one byte; e.g., it might predict that a certain allocation site always yields

objects with a lifetime of 10304 bytes. A less precise predictor might predict from

a set of geometrically proportioned bins, such as 8192–16383 (I refer to these as

granulated predictors). Or, as I mentioned before, from a small set of bins such as

short-lived, long-lived, and eternal. My aim is to achieve high precision (narrow

ranges). In practice, the ideal precision will depend on how the memory allocation

subsystem exploits the predictions.

• Coverage is the percentage of objects for which the predictor makes a prediction.

I construct the predictors so that they make predictions only for allocation contexts

that can be predicted with high confidence. Thus, in some cases the predictor will

make no prediction, rather than one that is unlikely to be correct, and the memory al-

location subsystem will need a fallback allocation strategy for these cases. Although

66

Chapter 5. Object Lifetime Prediction

the decision to predict is made per allocation site, the natural measure of coverage is

the percentage of actual object allocation events that are predicted (a dynamic count)

rather than the percentage of sites at which a prediction can be made (a static count).

Ideally, coverage should be as high as possible.

• Accuracy is the percentage of predicted objects which are predicted correctly. That

is, among all the objects allocated at run time for which a prediction is made, some

will have a true lifetime that falls in the same range as the predicted lifetime; the

range is defined by the precision parameter. Accuracy should be as high as possible.

• Size is the number of entries in the predictor, where an entry consists of a descriptor

of an allocation site and the prediction for that site. Because the predictor incurs

space and time overhead at run-time, smaller sizes are better.

There are interesting tradeoffs among precision, coverage, accuracy, and size. For ex-

ample, a predictor must choose between coverage and precision. Increasing the predictor

size (adding more entries) allows either greater coverage (by specifying predictions for

objects not previously covered) or greater precision (by specifying different predictions

for those objects). There is also the obvious tradeoff between coverage and accuracy.

I construct predictors in two stages. First, I collect an execution trace for each program

and then construct the predictor itself. The trace includes accurate records of each object

allocation and death. For each allocation event, the system records the object identifier,

its type, and its execution context. The execution context represents the state of the entire

stack at the time of allocation, consisting of the identifiers of the methods and bytecode

offsets, stored as integers. I refer to this information as the stack string. In most cases

the amount of information is reduced by recording only the top few entries of the stack

(the stack string prefix (SSPs) that I also examine in Chapter 6, and study the effects of

varying the length of the prefix.2 Each death event is recorded to a precision of one byte.
2The stack string prefix is not to be confused with the supervisor stack pointer which has the

67

Chapter 5. Object Lifetime Prediction

This full precision is unique in object lifetime traces of garbage-collected languages. Ob-

ject lifetimes reported in the literature almost always have coarse granularity for garbage-

collected languages [14]. This is because object death events can only be detected at a

collection point, and collections are relatively infrequent. I used an implementation of

the Merlin generation trace algorithm [47] within the JikesRVM to collect fully precise

object-lifetime data. Merlin makes absolute precision practical by not enforcing frequent

garbage collections. Instead, it imprints a timestamp on objects at memory roots when

an allocation occurs.3 During a collection, an object’s death time can be computed by

determining the last time stamp in the transitive closure of a group of objects.

2724:1563:1858:1490:3984:3030 [B 64
Stack String Prefix Type Lifetime

Figure 5.1: A single predictor entry: The SSP describes the execution path of the program.
Each integer encodes the method and position within the method of the next method call.
The entire string denotes the allocation site. All byte arrays (JVM type [B) allocated with
this stack string prefix had a lifetime of 64 bytes.

A predictor consists of a set of predictor entries. A predictor entry is a three-tuple

<SSP, type, lifetime>, as shown in Figure 5.1. The trace is used to construct a predictor

for the corresponding program. An entry is added to the predictor if and only if all lifetimes

during training corresponding to the SSP and type are identical. This implies that if any

two objects allocated at the same allocation site have different lifetimes, or collide, the

predictor will not make a prediction for that allocation site.

This type of predictor is computationally efficient and tunable. For example, singletons

typically dominate the predictor and increase its size significantly. Singletons are entries

same acronym.
3Memory roots are the references to objects that a program can manipulate directly. Examples

are registers, and particularly in Java, the references in the program stack.

68

Chapter 5. Object Lifetime Prediction

for which only one object was allocated during training, so no collisions could have elim-

inated them. These entries might be removed to form a smaller predictor without greatly

reducing coverage (because each entry is used so infrequently), as shown in Figure 5.4.4

More sophisticated strategies could also be devised to optimally balance coverage and size.

I consider three aspects of lifetime prediction:

• Fully Precise Lifetime Prediction: Object lifetimes are predicted to the exact byte.

• Granulated Lifetime Prediction: A lower precision approach in which the predic-

tor bins lifetimes according to the scheme bin = log2(lifetime+ 1). Because most

objects die young, the effective precision of this method is still high.

0 5 10 15 20
Stack string prefix length

0

10

20

30

40

50

60

Pr
ed

ic
to

r
co

ve
ra

ge

10000

20000

30000

Predictor size (entries)

Figure 5.2: The effect of stack prefix length on predictor size and coverage for the example
benchmark pseudojbb (including singletons).

• Zero Lifetime Prediction: The predictor predicts only zero lifetime objects (those

that die before the next object allocation). I discovered that some benchmarks gen-
4The benchmark perimeter from the Java Olden suite [20, 84], is used here because it displays

the behavioral archetype.

69

Chapter 5. Object Lifetime Prediction

0 5 10 15 20
Stack string prefix length

0

10

20

30

40

50

60

Pr
ed

ic
to

r
co

ve
ra

ge

0

10000

20000

30000

Predictor size (entries)

Figure 5.3: The effect of stack prefix length on predictor size and coverage for the example
benchmark pseudojbb (excluding singletons).

0 5 10 15 20
Stack string prefix length

0.2

0.4

Pr
ed

ic
to

r
co

ve
ra

ge

100

200

300

Predictor size (entries)

Figure 5.4: The effect of stack prefix length on predictor size and coverage for the Java
Olden benchmark perimeter (excluding singletons).

70

Chapter 5. Object Lifetime Prediction

erate a large number of zero-lifetime objects. Predicting zero-lifetime objects is an

interesting subproblem of fully precise prediction.

I illustrate these concepts and tradeoffs on the example benchmark pseudojbb.5 Fig-

ure 5.2 shows how predictor coverage and size depend on the SSP length as it is varied

from 0 to 20; I used fully precise lifetime prediction, and singletons were retained in the

predictor. Figure 5.2 plots the SSP length along the horizontal axis. For each plotted SSP

value, I synthesized a predictor from the training trace. The predictor’s coverage, i.e., the

percentage of object allocations in the trace for which the predictor makes a prediction, is

plotted along the vertical axis. Predictor coverage improves with increasing SSP length,

as more information is available to disambiguate allocation contexts. However, this effect

plateaus at an SSP of about length 10, suggesting that 10 is a sufficient SSP length. Fig-

ure 5.2 also shows the growth of predictor size, i.e., the number of entries, with increasing

SSP length.

Figure 5.3 allows us to see the effect of removing singletons from the predictor. No-

tably, predictor coverage is almost unchanged, but predictor size is dramatically reduced.

Excluding singletons reveals interesting dependencies among SSP length, predictor size,

and coverage. There is a tradeoff between collisions and singletons—if the SSP is too

short, too many objects collide; if it is too long, the SSP converts the entries into single-

tons and bloats predictor size. This effect is illustrated by the perimeter benchmark, shown

in Figure 5.4, which has a maximum at around SSP length 8, and then decays to a plateau.

The maximum divides the regime of collisions, on the left, and the regime of singletons,

to the right.

I report results in object counts, rather than bytes, because I was interested in how well

the predictor performs. Object counts are the natural unit for this consideration. However,

bytes are often used in the garbage collector literature, and I collected these data as well

5Section 2.2 describes the benchmarks used in my study.

71

Chapter 5. Object Lifetime Prediction

with similar results. In other words, object size is not significantly correlated with the

ability to predict object lifetimes.

Testing and self prediction
Benchmark Command line Objects allocated Bytes allocated Static Allocation sites
compress -s100 24206 111807704 707
jess -s100 5971861 203732580 1162
db -s100 3234616 79433536 719
mpegaudio -s100 39763 3579980 1867
mtrt -s100 6538354 147199132 897
javac -s100 7287024 228438896 1816
raytrace -s100 6399963 142288572 992
jack -s100 7150752 288865804 1184
pseudojbb 70000 transactions 8729665 259005968 1634

Training
Benchmark Command line Objects allocated Bytes allocated Static sites
jess -s1 125955 6978524 1143
javac -s1 20457 2641064 1188
mtrt -s1 328758 11300528 989
jack -s1 512401 21911316 1183
pseudojbb 10000 transactions 2778857 103683020 1634

Table 5.1: Trace statistics. For each trace, the number of objects allocated (Column 3) and
the total size of all allocated objects (Column 4) are given. Column 5 shows the number
of allocation contexts; each site is counted only once, even if executed more than once,
and sites that are not executed in these particular runs are not counted. The top section of
the table lists the traces used for the self prediction study (Section 5.3). The bottom part
of the table lists the training traces used in the true prediction study (Section 5.4); traces
from the top section are reused for testing true prediction.

I report data on the SPECjvm98 and SPECjbb2000 benchmarks. I also collected data

on the Java Olden benchmarks [18] (data not shown), but their smaller, synthetic nature

produces outlier behavior. The SPEC benchmarks consist of useful “real world” programs

(with the exception of db, a synthetic benchmark constructed to simulate database queries)

and are intended to be representative of real applications run on Java virtual machines.

They are written in a variety of programming styles and exercise the heap differently.

For a detailed study of the individual benchmarks memory behavior, see Dieckmann and

Holzle [33]. Table 2.1 describes the individual benchmarks, and Table 5.1 gives some

72

Chapter 5. Object Lifetime Prediction

general run-time characteristics of the benchmarks.

I used the JikesRVM Java Virtual Machine version 2.0.3 from IBM. The specific con-

figuration was OptBaseSemispace with the Merlin extensions [47]. This means that the

optimizing compiler was used to compile the VM, and the baseline compiler compiled the

benchmarks. The GC was the default semispace collector (though note that the generated

trace is independent of the collector used).

5.3 Self Prediction

Self prediction tests the predictor using the same trace from which it was constructed.

Thus, prediction accuracy is not an issue—if the predictor makes a prediction at all, it will

be correct. Of interest are the tradeoffs among precision, coverage, and size. I report re-

sults for full-precision and logarithmic granularities, and consider the effects of including

or excluding singletons from the predictors. Table 5.6 shows the results. For each bench-

mark, a set of preliminary runs was conducted to determine the optimal SSP value (shown

in the columns labeled “SSP”). The optimal SSP value was determined separately for fully

precise and for logarithmic cases.

5.3.1 Fully Precise Self Prediction

The results for fully precise self prediction (exact granularity) are shown in the left half of

Table 5.6, for predictors with and without singletons.

Predictors including singletons

All of the benchmarks show some level of coverage, notably on the synthetic benchmark

db. Greater than 50% coverage is achieved on compress, mpegaudio, mtrt, pseudojbb, and

73

Chapter 5. Object Lifetime Prediction

jack, and more than 20% on the remaining two, jess and javac. The predictor achieved

greater than 90% coverage only on db. From my experience with db and a set of smaller

benchmarks not reported here, I believe that very high coverage numbers are not typical

of realistic applications. These results suggest that fully precise prediction can achieve

reasonable coverage on some but not all applications. As we will see, however, even

moderate coverage may be beneficial (Section 5.7).

Predictors excluding singletons

When singleton entries are removed from the predictors (Columns 4-5 in Table 5.6), I

expect coverage to drop, but I would like to know by how much.

Two benchmarks, compress, and mpegaudio, have predictors that include large num-

bers of singletons. The coverage for each drops roughly by half when singletons are ex-

cluded. For the rest, coverage drops by less than a percent, while the number of predictor

entries shrinks dramatically: the smallest decrease is a 30% drop by javac while db is less

than 1% its previous size. The average decrease in size is greater than 76%. Again, db

could be anomalous because it is synthetic.

Although other studies of lifetimes, such as Harris [44], based prediction only on cur-

rent method and type, I found no benchmarks for which type alone was sufficient to gen-

erate predictors with significant coverage. Benchmarks jess and mtrt needed at least the

method containing the allocation site (an SSP of length one) to have significant coverage,

and the rest needed more. Perhaps type is not required at all, but it disambiguates alloca-

tions in the rare case that different types are allocated at the same allocation point. Note

that using a flow-sensitive notion of the stack, recording both the method and bytecode

offset of each call.

In summary, the fully precise predictors cover a significant fraction of all benchmarks.

With singletons excluded, the predictors still have significant coverage while decreasing

74

Chapter 5. Object Lifetime Prediction

the number of entries by an average of 76%.

5.3.2 Logarithmic Granularity

As one might expect, the performance of the granulated predictors, also shown in Ta-

ble 5.6, is better than the fully precise predictors, because it is an easier problem. Im-

provement in coverage ranges from db’s less than 1% to javac’s greater than 60%. The

average is 7% improvement. The behavior of the granulated predictors when removing

singletons is similar to the fully precise case. The only dramatic change is in compress,

which behaves like the rest of the benchmarks; mpegaudio remains the outlier.

Because of their logarithmic bin size, the predictors are highly precise for the large

number of short-lived objects. Granulated prediction has more immediate application than

the exact case, because the training phase could in principle be performed more quickly

and without relying on the Merlin algorithm.6 I concentrate on the exact case, however,

because I expect that information about exact behaviors will reveal new avenues for opti-

mization.

5.3.3 Variations

I also studied a broader definition of predictor—one in which the predictor handled life-

times that varied over each allocation as an arithmetic progression. For example, consider

a loop that allocates an object of a particular type to a linked-list. When the loop exits,

some computation is performed on the list and it is then collected. Each object in the loop

has a lifetime that is less than its predecessor by a constant that is the size of the object.
6This could be accomplished using a generational collector in which collection for a generation

is forced at time multiples of its previous generation. During training, for example, the second
generation would be collected once for every two collections of the nursery for a logarithmic gran-
ularity with the base the size of the nursery. This allows for pretenuring type optimizations, but
falls short of the “ideal” garbage collector.

75

Chapter 5. Object Lifetime Prediction

To handle this, I need to predict using differences. More formally, the predictor entries be-

come four-tuples <SSP, type, lifetime, increment>. The lifetime is not set during training

unless the increment is found to be zero. It is updated every time an object is allocated

by adding the increment. In this example, a predictor entry would be created if each ob-

ject’s lifetime differed by a constant increment in the order in which it was allocated. The

predictor’s lifetime would be initialized by the first object allocated during testing. Subse-

quent predictions would be made by adding the increment (which would be negative), to

the lifetime. Note that absolute lifetime predictions cannot be made online until after the

first object matching an entry has died.

Interestingly, this new predictor does not perform well for any of the benchmarks. I

found only one benchmark for which it performs well, em3d from the Java Olden suite, in

which non-constant allocations account for 36.39% of all predictions. This is not a good

indicator of predictive strength, however, because almost all of these objects are singletons.

For the other benchmarks, the increase in predictive ability averaged 1.1%.

Another variation is to use the optimizing compiler both for run-time and the bench-

marks (the OptOptSemispace configuration). I tested this variation and the results are

qualitatively similar to the earlier experiments (data not shown).

5.4 True Prediction

Barrett and Zorn found that true prediction accuracy is high for those benchmarks that have

high coverage in self prediction and are not data-driven. I tested true prediction against a

subset of the benchmarks to see if this correlation holds with higher levels of precision. I

used jess, javac, mtrt, jack, and pseudojbb. I used the SSP lengths specified in Table 5.6

and included singletons. Although this was not an exhaustive study, it demonstrated that

true prediction performs well, with results comparable to the Barrett and Zorn study, even

76

Chapter 5. Object Lifetime Prediction

with the more stringent requirement of full precision.

Benchmark Full Precision Logarithmic
Coverage Accuracy Coverage Accuracy

jess 1.22 99.88 1.34 99.95
javac 0.48 81.79 0.54 85.95
mtrt 0.18 99.28 0.24 99.77
jack 61.45 99.87 67.17 99.69
pseudojbb 57.09 99.99 63.20 99.85

Table 5.2: True prediction. Coverage and accuracy using predictors generated from a
benchmark run using a smaller set of input for both fully-precise and logarithmic gran-
ularities against a separate, larger benchmark run. Coverage is the percentage of objects
for which the system makes predictions, and accuracy is percentage of those objects for
which my predicted lifetime was correct.

Results for the five examples are shown in Table 5.2. For both fully precise and loga-

rithmic granularity, all of the predictors are highly accurate. For three of the benchmarks,

however, the high accuracy comes at the price of coverage. Coverage is insignificant for

jess, javac, and mtrt. The other benchmark predictors show considerable coverage. The

difference in coverage is probably due to the degree the program is data-driven. For ex-

ample, the training run of jess is quite different from its test run. In pseudojbb, the only

difference is the length of the run. Although not exhaustive, these examples give evidence

that highly precise, true prediction is possible for some applications and that when precise

prediction is possible it is highly accurate.

5.5 Zero-Lifetime Objects

A zero-lifetime object is allocated and then dies before the next object is allocated. The

ability to study object lifetimes with full precision allows the study of the behavior of

zero-lifetime objects.

Table 5.3 shows the fraction of zero-lifetime objects generated by each benchmark and

77

Chapter 5. Object Lifetime Prediction

the fraction of those that were able to predict using self prediction. Interestingly, many of

the benchmarks allocate large numbers of zero-lifetime objects.

All of the SPEC benchmarks generate a large percentage of zero-lifetime objects, with

javac allocating the least at 13%. I explore the potential consequences of this result in

Section 5.7.

Benchmark % of all objects % predicted % predicted of possible
compress 21.72 20.86 96.03
jess 39.63 19.96 50.36
db 45.06 45.01 99.97
mpegaudio 25.98 25.29 97.34
mtrt 40.01 33.37 83.39
javac 12.95 10.48 80.93
raytrace 41.30 29.57 71.60
jack 43.44 0.22 0.49
pseudojbb 20.82 18.75 90.04

Table 5.3: Fully precise zero lifetime self prediction: Column one lists the benchmark
program; column 2 shows the fraction of zero-lifetime objects out of all dynamically allo-
cated objects for that benchmark; column 3 shows the percentage of zero-lifetime objects
predicted (coverage); and column 4 shows the prediction accuracy. SSP lengths are as
described in Table 5.6.

5.6 Prediction and Object Types

In order to study how prediction results are affected by an object’s type, I developed a

simple classification of allocated objects according to their type. I used the following

categories: application types, library types, and virtual machine types (since the virtual

machine I use is written in Java itself). Library types are those classes belonging to the

java hierarchy. VM classes are easily identified by their VM prefix. Application classes

are all others.

As Table 5.7 shows, global coverage (defined as greater than 90%) was usually associ-

78

Chapter 5. Object Lifetime Prediction

ated with high coverage of application types. This makes sense because application types

dominate for most benchmarks. The exception, db, allocates many library types, which

also have high coverage. A predictor’s coverage depends on its ability to predict types re-

sulting from application behavior, rather than the underlying mechanisms of the compiler

or VM.

5.7 Exploiting Predictability: Towards an Ideal Collector

In the previous sections I demonstrated that for some programs we can accurately, and

with full precision, predict the lifetimes of a large percentage of objects. In this section,

I discuss a possible application of this technique: an improved memory management sys-

tem.

I begin with an analysis of the maximum performance improvement that could be ex-

pected. To do this I make best-case assumptions; for example, assuming perfect accuracy.

I finish with an analysis relaxing this assumption, allowing the collector to handle mispre-

dicted lifetimes. Throughout, I ignore training times. Training is considered to be part of

the development or installation procedure rather than part of normal execution.

5.7.1 A Limit Study

In the Introduction to this chapter I discussed the ideal garbage collector. The core idea

behind my simulated allocator is to segment the heap into a nearly ideal collector for those

objects whose lifetimes are predictable, and to use the rest of the heap in the traditional

manner. The combined memory system is a hybrid of a standard collector and my nearly

ideal collector. I refer to the combined system as the death-ordered collector (DOC). The

nearly ideal heap is composed of two subspaces: the Known-Lifetimes Space (KLS) and

the Zero-Lifetimes Space (ZLS). I assume that the heaps are of fixed size and compare

79

Chapter 5. Object Lifetime Prediction

against a semispace collector to simplify the analysis.

The ZLS is simply a section of memory large enough to hold the largest object al-

located there during a program execution. No accounting overhead is necessary because

these objects have zero lifetime. They die before the next allocation, assuring that it is safe

to overwrite them. One might assume that these are stack-allocated.

The KLS is more complicated. It is logically arranged as a series of buckets. Each

bucket is stamped with its time-to-die, and sorted in order of the stamp, from earliest to

latest. It is for that reason I refer to this heap as the death-ordered collector. Upon alloca-

tion into this heap, the time-to-death is calculated from the predicted lifetime and current

time, a bucket is created for the allocation, inserted into the list, and then newly allocated

memory is returned to the application. Collections are easier: the collector simply scans

the list, returning buckets to the free-list, until it finds a bucket with a time-to-die greater

than the current time. The efficiency of the death-ordered-heap is very high under my

current assumptions—only allocation is slower due to the prediction during allocation.

Whether the hybrid arrangement is efficient depends on the sizes of the heaps and the

amount of allocation within each. The sizes of the two heaps depend on their maximum

occupancies, which we can measure. Likewise, we know the amount of allocation that

would occur in each of the heaps.

The performance of this arrangement thus depends on the allocation characteristics of

the application. To study how this would work in practice, I used self prediction to simulate

a best-case scenario for several benchmarks that showed a significant (>50%) degree of

self prediction. I set the sizes of the ZLS and KLS to the maximum values observed during

training. Table 5.8 provides the absolute numbers of bytes allocated to the three spaces

and Figure 5.5 shows the relative allocations.

Garbage collector performance can roughly be captured by two metrics: (1) the overall

time overhead and (2) the distribution of pause times for collections and time spent in the

80

Chapter 5. Object Lifetime Prediction

compress db mpegaudio mtrt jack pseudojbb
0.0

0.2

0.4

0.6

0.8

1.0

ZLS
KLS
SS

Figure 5.5: Death-Ordered Collector: The graph shows the fractional object volume of the
different heaps in the simulated benchmarks. ZLS is the Zero-Lifetime Space. SS is the
Semispace heap. KLS is the Known-Lifetimes Space.

application between collections. For my DOC system, the time between full collections

is the number of bytes allocated before the semispace heap requires collection, because

the traditional collector dominates ZLS and KLS maintenance. The time between full

collections of the SS collector is increased by allocation to the ZLS and KLS heaps but is

reduced due to its smaller size, as the total heap size, the combined size of ZLS, KLS, and

SS, remains fixed.

I now quantify the performance of the death-ordered collector. Assume h is the total

heap size, µ is the fraction of the total heap devoted to the KLS and ZLS, ε is the fraction

of bytes allocated into the known and zero lifetimes heaps, and o the heap occupancy after

a GC (the survival rate of the heap). The time between collections is simply the number

of bytes that are free in a semispace heap after a collection. This is restated as the number

81

Chapter 5. Object Lifetime Prediction

of bytes that can be allocated before another collection:

TDOC =
(1−µ)(h2 −

ho
2)

1− ε

The division by two comes from the implementation of the semispace collector—a

collection occurs when it is half full. The standard case of the single semispace heap

occurs when µ and ε are 0:

Tss =
h
2
− ho
2

The ratio of the DOC and the semispace equations is the factor of improvement over a

single heap:

TDOC
Tss

=
1−µ
1− ε

Therefore, the improvement in time between full collections is simply dependent on

ε , which can be calculated during the simulation, and µ , which depends upon the chosen

heap size. My results for a heap size of 50MB, Table 5.8, show improvement for all

benchmarks.7

I now consider the total time overhead. In copying collectors, like semispace, a good

first-order metric is the mark/cons ratio. This is the number of bytes copied by the collector

divided by the total number of bytes allocated.

Table 5.4 shows bytes copied by the DOC heap divided by bytes copied by the single

heap. I simulate the heap using sizes of 1.1, 2, and 4 times the minimum size neces-

sary for the hybrid’s semispace heap.8 Here too, I show improvement for all benchmarks
7 compress shows little improvement, but it is an outlier in terms of memory behavior. It tends

to allocate large chunks of memory on startup and only free them on exit.
8Because the semispace heap reserves half its space at any time, it actually requires twice this

amount of memory.

82

Chapter 5. Object Lifetime Prediction

Benchmark 1.1 2 4
compress 0.84 0.7 0.85
db 0.64 0.35 0.09
mpegaudio 0.51 0.47 0.94
mtrt 0.56 0.49 0.43
jack 0.59 0.43 0.43
pseudojbb 0.63 0.69 0.64

Table 5.4: The ratio of bytes copied in the DOC system to the bytes copied in the semispace
collector for heap sizes of 1.1, 2, and 4 times the minimum semispace heap size required
by the DOC system. Smaller numbers are preferable.

Benchmark 1.1 2 4
DOC SS DOC SS DOC SS

compress 0.49 0.59 0.41 0.59 0.09 0.1
db 2.49 3.92 0.25 0.71 0.02 0.25
mpegaudio 0.88 1.72 0.46 0.97 0.46 0.49
mtrt 1.8 3.24 0.29 0.6 0.11 0.25
jack 1.86 3.16 0.33 0.78 0.13 0.29
pseudojbb 3.84 6.1 0.56 0.81 0.18 0.29

Table 5.5: The mark/cons ratios for various heap sizes of the DOC and semispace collector.

(smaller is better), especially when heap sizes are small. Not only could the DOC achieve

a significant reduction in copying cost (40% or more), but it would do so across a wide

range of heap sizes, and for programs in which the baseline overhead of collection is high

(mark/cons ratios as high as six, as shown in the “SS” columns of Table 5.5).

In summary, the DOC heap would both increase the time between allocations and de-

crease the total pause time. If it could be implemented efficiently, an idea I discuss in

Section 7.2, the DOC heap has the potential to greatly increase garbage collection perfor-

mance.

83

Chapter 5. Object Lifetime Prediction

5.8 Related Work

Although most of the background and related work for my research was presented in

Chapter 2, much of the related research for this chapter is specific only to it. Now that I

have presented my experiments, results, and an analysis of the performance of a potential

system, I present that work in this section.

There has been little study of Java’s memory behavior outside the context of GC algo-

rithms. The focus has been on studying collectors rather than how Java applications use

memory. And, if we restrict ourselves to object lifetime prediction, there has been only a

small amount of work for any language.

In one of the few studies of Java’s allocation behavior, Dieckmann and Hölzle stud-

ied in detail the memory behavior of the SPECjvm98 benchmarks using a heap simula-

tor [32, 33]. They found that more than 50% of the heap was used by non-references

(primitives), and that alignment and extra header words expanded heap size significantly,

since objects tended to be small. They confirmed the weak generational hypothesis for

Java, though not as firmly as in other languages (up to 21% of all objects were still alive

after 1 MB of allocation). This is the most in-depth study of the benchmarks’ allocation

and lifetime behavior, although a study of access behavior was reported by Shuf [92].

Focusing on garbage collectors, Fitzgerald and Tarditi [36] demonstrated that memory al-

location behavior differs dramatically over a variety of Java benchmarks. They pointed out

that performance would have improved by at least 15% if they had chosen the appropriate

collector for the appropriate benchmark. They report that the most important choice is

whether or not to use a generational collector and pay the associated penalty for the write

barrier.

Lifetime prediction has almost always been studied in the context of pretenuring or

similar schemes. These schemes rely on a training or profiling stage to learn lifetimes

before they can be exploited. Static heuristics have not been used in published work to this

84

Chapter 5. Object Lifetime Prediction

point, although Jump and Hardekopf found that objects that escape their thread are usually

long-lived [61].

Cheng et al. [21] describe pretenuring in an ML compiler using a simple algorithm that

associates allocation contexts with lifetime during profiling—sites that produce objects

that survive one minor collection with 80% probability are pretenured.

As discussed earlier, my work has many similarities to Barrett and Zorn’s “Using Life-

time Predictors to Improve Memory Allocation Performance” [11], which used a similar

method to construct predictors. However, Barrett and Zorn used C applications so life-

times were explicit. Their predictor also was binary; it predicted that objects were either

short-lived or long-lived.

Cohn and Singh [25] revisited the results of Barrett and Zorn using decision trees

based on the top n words of the stack, which includes function arguments, to classify

short-lived and long-lived objects. They improved on Barrett and Zorn’s results, but at the

cost of computational expense because they used all the stack information. By contrast,

my algorithm uses only the method identifier and bytecode offset.

Blackburn et al. [14] used coarse-grained prediction with three categories in Java, using

the allocation site and lifetime as features to construct pretenuring advice for garbage

collectors. They found they were able to reduce garbage collection times for several types

of garbage collection algorithms.

Shuf et al. [91] decided that segregating objects by type rather than age, as in genera-

tional collection, was more promising. They found that object types that are allocated most

frequently have short lifetimes. They then used the type as a prediction of short lifetime,

dividing the heap into “prolific” (or short lifetime) and regular regions.

Seidl and Zorn [88, 89], sought to predict objects according to four categories: Highly

referenced, short-lived, low referenced, and other. Their goal was to improve virtual mem-

ory behavior rather than cache performance as in [11]. Their prediction scheme was again

85

Chapter 5. Object Lifetime Prediction

based on the stack; they emphasized that during profiling, it was important to choose the

right depth of the stack predictor: too shallow is not predictive enough and too deep results

in over-specialization.

Harris [44] studied pretenuring using only the current method signature and bytecode

offset. He considered using the SSP, but decided it provided little information unless

recursion is removed. He speculated that using the class hierarchy might be an easier and

less expensive way to predict lifetimes, as related types usually have the same lifetime

characteristics. His conclusion about the usefulness of SSP may have been a result of his

methodology (he considered a maximum SSP length of 5), and the large granularity (short

and long-lived objects).

Some studies used more information than just the stack and allocation site. These

typically do not do pretenuring, which concentrates on where to put an allocation, and

therefore needs a lifetime prediction at birth. Rather, these other methods focused on

finding an efficient time to collect, and thus made relative predictions about deaths.

Cannarozzi et al. [19] used a single-threaded program model and kept track of the

last stack frame that referenced an object. They observed that when the last reference is

popped, objects in that frame are likely to be garbage.

For example, Hayes [45, 46], using simulation, examined which objects were entry or

“key” objects into clusters of objects that die when the keyed object dies. For automatically

choosing what objects are keyed, he suggested random selection, monitoring the stack for

when pointers are popped, creating key objects, and doing processing during promotion

in generational garbage collection. In effect, the keyed objects are used to sample the

clusters.

Similarly, Hirzel, Diwan, and Hind [48] looked at connectivity in the heap to discover

correlations among object lifetimes. They found that objects accessible from the stack

have short lifetimes, objects accessible from globals are very long-lived, and objects con-

86

Chapter 5. Object Lifetime Prediction

nected via pointers usually die at about the same time.

My own work resembles much of the work described here in its use of the allocation

site and stack for constructing the predictor and in its reliance on a training (profiling)

phase. My work extends this earlier work by increasing the precision of lifetime predic-

tion, specifically the ability to make fully precise predictions. In addition, many of the

earlier methods do not make specific predictions; indeed, some do not make predictions at

all.

One most obvious application of my method is as a hinting system, which would iden-

tify objects that might be allocated on the stack instead of the heap. Stack allocation is

cheaper than heap allocation and has no garbage collector overhead. Currently, the prin-

ciple method of identifying such objects is through escape analysis. Determining which

objects escape the stack is in general a difficult, costly analysis.9 Although this can be

performed statically, in Java it occurs at run time because the class file format has no way

to encode this information. Therefore, it would be helpful to speed up the analysis by

identifying objects that are likely to not escape the stack.

5.9 Discussion and Conclusions

Most GC algorithms are effective when their assumptions about lifetimes match the actual

behavior of the applications, but beyond coarse-grained predictions such as pretenuring,

they do little to “tune” themselves to applications. The ideal garbage collector would know

the lifetime of every object at its birth. In this chapter, I have taken a step toward this goal

by showing that for some applications it is feasible to predict object lifetimes to the byte

(referred to as fully precise prediction). In addition, I showed how a memory system could

9A description of the performance costs of escape analysis can be found in Deutsch’s On the
Complexity of Escape Analysis [31] and a Java specific implementation in Choi’s Escape Analysis
for Java [22].

87

Chapter 5. Object Lifetime Prediction

exploit this information to improve its performance.

It is remarkable that fully precise prediction works at all. Previous attempts at predic-

tion used a much larger granularity, in the thousands of bytes. In particular, Barrett and

Zorn used a two-class predictor with a division at the age of 32KB. It is not surprising

that the predictor they described worked well, given that 75% of all objects lived to less

than that age. Cohn and Singh’s decision trees [25] worked very well at the cost of much

greater computational complexity. Blackburn’s pretenuring scheme [14], used a coarse

granularity. The method described here is the first to attempt both high precision and ef-

ficient lifetime prediction, and it does so using a surprisingly simple approach. An area

of future investigation is to consider other prediction heuristics and to test them on fully

precise prediction. Because my accuracy is already so high, the goal here would be to

increase coverage.

My results show that a significant percentage of all objects live for zero bytes, a result

that required the use of exact traces. Because my predictors are able to cover zero-lifetime

allocation contexts, the zero-lifetime results have clear applications in code optimization.

Zero-lifetime object prediction could be used to guide stack escape analysis so that some

objects are allocated on the stack instead of on the heap.

Object lifetime prediction could also be used as a hinting system, both for where an

allocator should place an object and when the garbage collector should try to collect it.

This would be a more general procedure than pretenuring, and it would support more

sophisticated garbage collection algorithms, such as multiple-generation collectors and

the Beltway collector [13].

88

Chapter 5. Object Lifetime Prediction

Be
nc
hm
ar
k

Fu
lly
Pr
ec
ise

Lo
ga
rit
hm
ic

in
cl
.s
in
gl
et
on
s

ex
cl
ud
in
g
sin
gl
et
on
s

in
cl
.s
in
gl
et
on
s

ex
cl
ud
in
g
sin
gl
et
on
s

siz
e
co
ve
ra
ge

siz
e
co
ve
ra
ge

SS
P

siz
e
co
ve
ra
ge

siz
e
co
ve
ra
ge

SS
P

co
m
pr
es
s

91
33

67
.7
8

79
2

33
.3
3

10
96
92

85
.6
6

13
81

84
.8
4

10

je
ss

24
99
9

23
.4
0

33
26

23
.0
3

24
25
87
3

34
.8
7

41
97

34
.5
1

26

db
88
47

90
.3
6

73
89
.9
1

3
94
74

90
.5
6

34
8

90
.0
9

4

ra
yt
ra
ce

14
76
1

41
.6
1

32
5

41
.2
7

4
15
50
9

42
.3
6

51
4

41
.9
7

4

ja
va
c

10
93
57

28
.6
3

75
57
1

28
.1
7

32
14
48
44

45
.7
2

11
10
58

45
.2
5

32

m
pe
ga
ud
io

17
55
0

78
.4
2

19
31

39
.6
7

8
18
26
0

89
.6
8

27
04

51
.1
2

9

m
trt

12
49
0

50
.1
1

15
66

49
.7
9

3
13
16
7

50
.9
2

30
6

50
.5
3

3

ja
ck

29
54
2

61
.2
5

14
12
6

61
.0
4

20
31
65
9

66
.3
0

14
60
0

65
.9
0

17

ps
eu
do
jb
b

32
04
4

57
.5
2

38
61

57
.2
0

14
33
15
8

63
.6
5

48
61

63
.2
3

14

Ta
bl
e
5.
6:
Se
lf
pr
ed
ic
tio
n
re
su
lts
.
Th
e
fir
st
tw
o
co
lu
m
ns
of
fu
lly
pr
ec
ise

an
d
lo
ga
rit
hm
ic
gr
an
ul
ar
ity
gi
ve
re
su
lts
us
in
g

pr
ed
ic
to
rs
in
cl
ud
in
g
sin
gl
et
on
su
sin
g
an
SS
P
of
le
ng
th
20
,w
ith
tw
o
ex
ce
pt
io
ns
:j
es
sa
nd

ja
va
c,
fo
rw
hi
ch
Iu
se
d
th
e
la
rg
er

SS
P
va
lu
e
re
po
rte
d
in
th
e
5t
h
co
lu
m
n.

89

Chapter 5. Object Lifetime Prediction

Be
nc
hm
ar
k

V
M

Li
br
ar
y

A
pp
lic
at
io
n

%
Pr
ed
ic
te
d

%
A
llo
c.

%
Pr
ed
.
%
A
llo
c.

%
Pr
ed
.
%
A
llo
c.

%
To
ta
lP
re
d.

co
m
pr
es
s

37
.9
7

63
.6
3

11
.8
9

53
.4
1

50
.1
4

74
.3
3

67
.7
8

je
ss

0.
57

78
.9
0

19
.6
9

99
.0
1

79
.7
4

5.
25

23
.4
0

db
0.
29

61
.4
7

94
.8
3

94
.7
8

4.
88

94
.7
8

90
.3
6

m
pe
ga
ud
io

42
.4
8

70
.5
1

10
.1
6

66
.5
7

47
.3
7

88
.0
5

78
.4
2

m
trt

0.
19

68
.4
0

1.
94

67
.0
1

97
.8
7

49
.7
4

50
.1
1

ja
va
c

15
.9
1

5.
86

26
.5
4

32
.2
1

57
.5
4

33
.2
8

28
.6
3

ra
yt
ra
ce

0.
22

67
.9
7

1.
03

66
.6
8

98
.7
6

41
.2
9

41
.6
1

ja
ck

3.
22

96
.9
4

48
.2
6

42
.9
9

48
.5
2

77
.0
5

61
.2
5

ps
eu
do
jb
b

0.
53

73
.3
5

33
.1
9

33
.8
1

66
.2
7

88
.4
3

57
.5
2

Ta
bl
e
5.
7:
Se
lf
pr
ed
ic
tio
n
fo
rt
hr
ee
ca
te
go
rie
so
fo
bj
ec
ts
ac
co
rd
in
g
to
ob
je
ct
ty
pe
.F
or
ea
ch
of
th
e
th
re
e
ca
te
go
rie
so
ft
yp
es

(v
irt
ua
lm
ac
hi
ne
,l
ib
ra
ry
,a
pp
lic
at
io
n)
,t
he
pe
rc
en
ta
ge
of
to
ta
la
llo
ca
te
d
ob
je
ct
s
th
at
fa
ll
in
th
e
ca
te
go
ry
is
gi
ve
n,
to
ge
th
er

w
ith
th
e
pe
rc
en
ta
ge
of
ob
je
ct
si
n
th
e
ca
te
go
ry
th
at
ar
e
pr
ed
ic
te
d.
Th
e
rig
ht
m
os
tc
ol
um
n
is
th
e
ov
er
al
lp
er
ce
nt
ag
e
of
ob
je
ct
s

pr
ed
ic
te
d
(c
or
re
sp
on
di
ng
to
th
e
fir
st
co
lu
m
n
of
Ta
bl
e
5.
6)
.

90

Chapter 5. Object Lifetime Prediction

Be
nc
hm
ar
k

By
te
sA
llo
ca
te
d

M
in
im
um

Si
ze

D
O
C
A
llo
ca
to
rR
es
ul
ts

ZL
S

K
LS

Se
m
isp
ac
e

ZL
S

K
LS

Se
m
isp
ac
e

µ
×
10
3

ε
Im
pr
ov
em
en
t

co
m
pr
es
s

29
58
68

15
10
56
8

11
19
16
17
6

41
08

52
40
36

83
53
59
2

10
.3
2

0.
01
6

1.
01

db
23
54
74
52

26
22
73
96

31
59
06
24

41
08

12
38
75
8

92
39
77
6

24
.2
8

0.
61

2.
51

m
pe
ga
ud
io

52
53
88

25
57
32
4

39
02
04
4

41
08

52
44
52

32
13
56
0

10
.3
3

0.
44

1.
77

m
trt

47
71
44
08

25
00
65
84

76
97
84
60

41
08

52
35
00

85
47
51
6

10
.3
1

0.
49

1.
92

ja
ck

94
58
13
56

72
27
55
44

12
55
78
35
6

41
08

52
44
12

34
76
03
6

10
.3
2

0.
57

2.
30

ps
eu
do
jb
b

44
64
36
28

64
64
35
88

17
60
59
17
2

41
08

54
58
20

28
40
13
00

10
.7
4

0.
38

1.
60

Ta
bl
e
5.
8:
Th
e
by
te
s
al
lo
ca
te
d
to
th
e
di
ffe
re
nt
he
ap
s
an
d
th
ei
rm
ax
im
um

siz
es
,a
nd
w
ith

µ,
ε,
an
d
fa
ct
or
of
im
pr
ov
em
en
t

ba
se
d
on
a
50
M
B
he
ap
.

91

Chapter 6

Methods, Method Sequences, and other

Variants

In Chapter 3, I examined the simplest feature of execution in the application of anomaly

intrusion detection. This chapter extends that work in several directions. First, I increase

the granularity of the feature by looking at the execution context of methods as they are

invoked. Another way to state this is that in this chapter I describe a dynamic sandbox that

observes method sequences. Next, a method for correlating anomalies is introduced, de-

creasing the number of false positives. Following that, I describe a scheme to filter selected

method invocations from observation. This is important because for some applications the

behavior I am interested in observing is a just a subset of the entire application. Finally I

describe a way to sandbox individual threads instead of the application as a whole.

All of these variants of the Chapter 3 sandbox are tested in the context of fault detection

(see Chapter 2). Fault detection requires a faulty program. Unlike the simple programs

discussed earlier, a large, imperfect program is required to test my methods. The majority

of this chapter examines both method invocation and method sequence behavior in the

context of a large simulation of unmanned aerial vehicles (UAVs). Before the specific

92

Chapter 6. Methods, Method Sequences, and other Variants

Figure 6.1: A fault tolerant system relying on anomaly detection. The anomaly detec-
tion system observes behavior and flags anomalies. Anomalous behavior is then analyzed
and a signature for a specific fault is determined. That signature is used to flag future
anomalies as known faults which incorporate specific responses. The system described
here incorporates only the shaded box: the anomaly detector.

case study, however, I start the chapter by summarizing the application and examining the

behavior of method invocation.

6.1 Motivating Application: Fault Detection

Software fault tolerance consists of fault detection and response. In this chapter I discuss

an anomaly detector that is designed to detect faults. It is an expansion of the domain

of dynamic sandboxing, from just the intersection of anomaly and intrusion detection to

a general purpose system for fault detection (see Figure 2.1). The assumption is that

behavior not observed during training indicates a fault state.

The system described below is not a complete fault tolerant system. Figure 6.1 depicts

a complete system for fault tolerance. The system flags anomalies, but does not then

determine if the system is in an error state, and if it is, what the proper response should be.

93

Chapter 6. Methods, Method Sequences, and other Variants

Method sequences were included as a feature for the fault tolerance application be-

cause simply looking for the presence of method invocations, as in Chapter 3, is unlikely

to be sufficient. Faults, unlike intrusions, emerge from internal interactions. No code is

injected so behavior is unlikely to dramatically change similarly to that of a compromised

system. Thus, some context is required, and that context is provided by method invoca-

tion order. If a fault occurs, affecting program behavior, the change in program behavior

should be evident in the order in which methods are called, even if the application calls no

new methods.

A real application is required to test this hypothesis. I used theMetron UAV simulation.

Before the case study, however, I present some data concerning benchmarks to illustrate

typical behavior of method sequence profiles.

6.2 Benchmark Behavior

The SPEC JVM98 benchmarks are larger than the Olden benchmarks presented in the

previous chapter. Around 1000 unique methods are invoked during a typical SPEC bench-

mark run, compared to about 225 for an Olden.

To provide context, I examine the sequence order of method inovocation. There are

two ways to do this. First, one could look at the stream of method invocations as they

are invoked. This is simplest to implement and fastest during execution if the analysis is

not done within the same process as the VM. Unfortunately, this is unsuitable for multi-

threaded applications, and therefore, I do not explore it in this case study. The second way

is to examine the execution stack.

The top of the execution stack, or the stack string prefix (SSP), allows the capture of

context.1 The stack string prefix is a fixed length list of methods from the top of the stack

1In Somayaji’s pH, this corresponds to the window size.

94

Chapter 6. Methods, Method Sequences, and other Variants

Figure 6.2: How the SSP prefix works. Stack frames are pushed on the top when a method
is invoked. They are popped off when they exit. The stack string prefix of length 2 is the
signature of the top 2 frames concatenated together: Method3-Method2.

(where the most recently invoked method resides) through the active method execution

frames. For example, if Method1 invokes Method2 which invokes Method3, the SSP of

length 2 during the execution of Method3 is Method3-Method2. See Figure 6.2 for a visual

respresentation.

In Table 6.1, I present the number of unique SSPs for the SPEC JVM98 benchmarks

during a standard run. The first column is equivalent to the numbers provided in the

previous chapter. Profile sizes can potentially increase dramatically as the SSP length

increases. The possible profile size is ml , where m is the number of possible methods

and l is the SSP length. Under the default security policy (in which all library methods

95

Chapter 6. Methods, Method Sequences, and other Variants

Benchmark SSP Length
1 2 3 4 8 16

201 compress 889 1644 2265 2854 4490 8892
202 jess 1323 2743 4323 6022 11048 23464
209 db 905 1731 2484 3247 5625 10898
213 javac 1687 4810 11381 24517 167231 594712
222 mtrt 1056 1960 3420 3420 5428 11910
227 mpegaudio 1038 2089 3911 3911 6350 12468
228 jack 1135 2398 5330 5330 16558 47592

Table 6.1: The number of unique stack string prefixes (SSPs) for various prefix lengths for
the SPEC JVM98 benchmarks. An SSP length of 1 denotes methods without context, as
in Chapter 3.

are available), the possible profile is larger than 38,000 for SSP=1 but expands rapidly to

1.45×108 for SSP=2 and 1.94×1073 if one looks 16 frames down. In practice, of course,

the actual sandbox size is much smaller, and grows linearly instead of exponentially.

A similar calculation was carried out by Somayaji in calculating pH’s profile sizes [97].

His eventual representation, look-ahead pairs, is on the order of several hundred thousand,

depending on window size. Based on that example, one would expect that an SSP length

of 2 produces a large enough space for fault detection. However, the proper length is an

empirical calculation and may be dependent on application behavior. Consider javac, for

example. Its behavior is vastly different from the other benchmarks. It is different because

it is a compiler. Unlike the other benchmarks which operate as a loop doing calculations

on an external set of data, compilers are constructed as large recursive case statements,

creating a large possible state space. This indicates that a stable profile is hard to provide

for larger SSP lengths for these types of programs. For other programs, however, a stable

profile for larger SSPs may be achievable.

Benchmarks are small programs that do not provide faults. To test a fault detection

system based on method sequences, a real application is required, and I therefore introduce

96

Chapter 6. Methods, Method Sequences, and other Variants

our test case: a complex simulation of unmanned aerial vehicles.

6.3 The Metron UAV simulation

Previous tests of dynamic sandboxing used either synthetic programs or standard bench-

marks. Here I examine the Metron UAV simulation used extensively in the DARPA Task-

able Agents Software Kit (TASK) program in which my lab participated. The program is

a composition of two separate simulations. We find it useful because it is an examplar of

a real, commercially developed program.

The Metron UAV application simulates an Unmanned Aerial Vehical (UAV) in two

modes of operation: search and surveillance. In surveillance mode, the UAV is assigned to

keep track of known targets. It does this by solving the travelling salesperson problem for

its list of known target locations and exploring that circuit. If the target has moved beyond

the sensor range of its last known location, the UAV performs a spiral movement until it

is found. If it is not found, then the target is placed on a list of unknown targets for the

search UAVs. In search mode, UAVs use a probability map of likely locations of targets to

decide their paths. Once a target is found, it is assigned to one of the surveillance UAVs to

maintain. UAVs can be transferred from one mode to the other depending on the ratio of

found to missing targets.

The simulation consists of two applications linked together. The surveillance and

search modes are complete simulations on their own and share little code beyond primi-

tives for thread synchonization. Such synchronization is necessary because the combined

simulation is aggresively multi-threaded, especially on the search side. Because of this,

runs are not replicable due to race conditions. Figure 6.3 shows a screenshot of the simu-

lation in GUI mode.

97

Chapter 6. Methods, Method Sequences, and other Variants

Figure 6.3: A screenshot of the Metron UAV simulation with the graphical interface. The
surveillance sim is on the left and the search sim is on the right.

6.4 Scenarios

Faults, called anomaly scenarios, were added to the Metron UAV simulation by program-

ming hooks directly into the simulation itself. These were as unobtrusive as possible.

The scenarios are controlled by the anomaly scenario subsystem, a package I added to

the Metron UAV simulation. On simulation initialization, the subsystem is alerted to the

presence of an anomaly scenario description file. If one exists, the subsystem is switched

on and the description file is parsed. From then on, the subsystem is entered only if the

98

Chapter 6. Methods, Method Sequences, and other Variants

subsystem is on and the various hooks at specific points in the simulation are exercised.

These points are located at configuration and specific points during each timestep of the

simulation.

There are two basic types of anomaly scenarios: UAV and sensor. In the UAV sce-

narios, the total behavior of the UAV is changed. In the sensor scenarios, the anomaly

framework merely changes the values provided by the UAVs sensors. Six of the scenarios

change the behavior of one UAV. In only one scenario (random movement all) does the

behavior of all of the UAVs change.

Descriptions of the anomaly scenarios follow:

• The Null Scenario (nop)

This scenario loads the anomaly scenario subsystem and nothing more. This mini-

mal amount of activity is useful for comparison to the other scenarios.

• UAV Faults

These scenarios simulate faults in specific UAVs.

– A Security Fault (exec process)

An external process, in this case an x-terminal, is launched in this scenario.

This scenario simulates a successful intrusion into the UAV.

– A UAV Crash (crash uav)

This scenario contains the most intrusive code in the simulation. It removes a

UAV in a quick and unclean way.

– Random Movement in all UAVs (random movement all)

All UAVs randomly search the environment instead of moving up the proba-

bility gradient.

– Random Movement in one UAV (random movement one)

99

Chapter 6. Methods, Method Sequences, and other Variants

This scenario differs from the previous one in that only one UAV roams ran-

domly.

• Sensor Faults

These scenarios demonstrate sensor faults.

– Search UAV that never finds targets (search fnr)

The value that determines the probability of a UAV finding a target in search

mode is set to 0.

– Surveillance UAV that always reports a target (always yes)

The probability of inaccurately reporting a target is found is set to 1.

– Surveillance UAV that never finds its target (no true positives)

The probability of a UAV in surveillance mode actually finding a target is set

to 0.

Before running the experiments, I predicted that some of these scenarios would be eas-

ier to detect than others. This was born out in the experiments, with a few surprises. Before

we consider the results, here is the order of difficulty, from easiest to hardest, that I ex-

pected: exec process, crash uav, random movement all, always yes, random movement one,

search fnr, and finally no true positives. Scenario exec process should be the easiest to de-

tect because it initiates a complicated cascade of method invocations that ends in a child

process. Next is crash uav, which forces the removal of a UAV in an unclean manner. The

standard way to remove a UAV from the simulation is a complicated affair that requires it

to message the rest of the sim and launch a helper thread to distribute various goals among

the remaining UAV before cleaning up after itself. Random movement all causes a radi-

cal change in behavior in all the search UAVs. Always yes, and random movement one,

search fnr each affect the behavior of a single UAV in a radical way, and ought to be

detectable. Detecting no true positives was predicted to be difficult because its behavior

could realistically model an unlucky UAV.

100

Chapter 6. Methods, Method Sequences, and other Variants

Figure 6.4: Reducing false positives. An anomaly is triggered only if two events are
correlated in time. In this example, an anomaly is defined as 2 events that occur within a
3 method invocation span of time.

6.5 Dynamic Sandboxing

In Chapter 3, I defined a dynamic sandbox that allowed only methods invoked during

training to be invoked during sandboxing. Here, I introduce several variants of dynamic

sandboxing. First I extend the execution feature frommethods to method sequences. Other

additions are required to deal with the change.

The first is a variant to extend the analysis beyond single anomaly events. This allows

us to control false positives. I introduce two new parameters: the invocation-window, and

the event-threshold. Figure 6.5 diagrams how this works during execution. The invocation-

window specifies a number of method invocations. The threshold determines the number

of anomaly faults within the event-threshold that constitute an actual anomaly event.2 In

2This is similar to the locality frame in pH, Somayaji’s IDS that analyzes system call informa-
tion.

101

Chapter 6. Methods, Method Sequences, and other Variants

the previous chapter these parameters are both implicitly set to one. Insisting that events

be correlated in time produces a higher threshold for triggering an anomaly, suppressing

false positives. It is hoped that true positives produce a series of events, pushing the event

count past the threshold and triggering an anomaly.

Another variant involves monitoring individual threads instead of the application as

a whole. Although the previous variants are inherently thread specific, the number of

total anomalies is a global value. We can instead count anomalies separately for each

thread, labelling a thread as anomalous instead of the application. These variants can be

combined.

A final variant allows us to monitor only certain methods. In the analysis to follow,

the goal is to find faults within the UAVs, not the simulation as a whole. Therefore, the

system can ignore all method invocations that originate outside UAV code.

Filtering method invocations may be useful beyond the Metron simulation. DEEs in

many ways act as operating systems, and separate threads and classes can act as different,

separate applications. This filtering method allows selective sandboxing.

6.6 Implementation

The dynamic sandbox variations using the stack string prefix rely on determining the exact

state of the stack at any time. A system that received only method invocation events

would have difficulty if it could not distinguish between different threads.3 Access to

VM internals allows direct access to the state of the stack, but this research was done in

simulation using an external monitor. The solution was to access VM internals through

Sun’s semi-standard debugging interface (Java Debug Interface)[76].4 A short application

3This is similar to the difficulty pH has with programs using user-space threading.
4Unfortunately, this interface is substantially different in Java 1.5.

102

Chapter 6. Methods, Method Sequences, and other Variants

produces a trace which can then be analyzed in real-time by the sandboxing engine or

saved to a file.

Figure 6.5: Filtering method invocations. No method invocations are logged until a
method from the trigger list is invoked (Uav.calculateBestPath in this example). Con-
fig.getConfig() is on this ignore list and is ignored. The other methods are recorded be-
cause they were invoked within a method on the trigger list and are not on the ignore list.
Thus the stack visible to the analysis engine is, from top to bottom: ValueMap.isValid(),
MovementDecider.determineBestPath(), Uav.CalculateBestPath(). All methods invoked
above SearchSim.newTimePeriod will continue to be recorded until the stack falls below
that level. This example is not taken from the simulation code.

103

Chapter 6. Methods, Method Sequences, and other Variants

The trace consists of method invocation event records. Each record contains whether

the event is a method entry or exit, the thread identifier, the class and method signature, and

the stack height. The stack height is required for us to filter out simulation specific method

calls. For one set of experiments method invocations from the simulation are filtered out—

only method invocations that originate within UAVs are examined. The straightforward

way to do this is to record method entries and exits. Unfortunately, this is not possible

in Java because methods that exit by exceptions are not recorded. This is why the stack

height is part of the trace record. The stack height is recorded whenever the system enters

a method belonging to a UAV. These classes are called triggers.5 All method invocations

are then recorded, unless they are on an ignore list, until the stack height falls below

the original entrance height. Only the anomaly scenario subsystem, consisting of only

the ds.Config class, was ignored. Figure 6.5 demonstrates how this is calculated in the

prototype. For a description of a more efficient implementation integrated with the VM,

see Section 7.2.

6.7 Experiments and Discussion

I examined several variants of dynamic sandboxing: stack-based, per-thread, and varia-

tions of window and threshold size. Each variant includes results for filtering out simula-

tion methods, labelled “All simulation method invocations”, and with filtered UAV only

methods “UAV class originated simulation invocations”. I present results only for win-

dows and thresholds of 1-1 and 2-2. I conducted experiments with windows of 1 to 8, 16,

32, 64, 128, 512 and thresholds of 1 to 4, 8 and 16 but increasing the window or threshold

past 2 did not improve results; the best results were obtained with parameters of 1-1 or

5These classes are searchsim.UAV, searchsim.SearchBot, searchsim.Ugs, searchsim.UavInfo,
searchsim.UgsInfo, uavsim.bot.UavBot, uavsim.bot.UavBrain, and uavsim.bot.UavSensor.

104

Chapter 6. Methods, Method Sequences, and other Variants

2-2.6

Differences in training were also examined. Columns labeled “Separate” contain aver-

ages of 25 runs, containing the cross of 5 profiles with 5 sandboxes. “Combined” runs use

a sandbox profile containing the union of the 5 sandboxes with the separate runs. This is

not difficult to do since profiles, like all the dynamic sandboxes previously described, are

unordered sets of method sequences.

The tables include the ratio of events of anomaly scenarios to nop. This is necessary to

give a basis as to what is truly anomalous. Without nop, it would be difficult to establish the

number of events that define a scenario as anomalous. The nop scenario gives us a baseline

for the number of false positives that should be expected. If significantly more anomalies

are observed than that number we can conclude that the scenario is truly anomalous. Thus,

ratios close to or below one indicate an inability to identify the scenario as anomalous.

Ratios far greater than one mean that they can be identified easily.

6.7.1 Sandboxing with SSP=1

Sandboxes with an SSP=1 are similar to the sandbox presented Chapter 3. The difference

is the addition of the window and threshold parameters. The basic sandbox is tested when

windows and thresholds are 1.

Table 6.2 shows the results of experiments using this sandbox. The non-filtered experi-

ments exhibit unimpressive results. In both the combined and separate sets of experiments,

the non-filtered case only reliably identifies random movement all as anomalous out of the

seven anomaly scenarios. The experiments examining only method invocations originat-

ing within the UAV class instances (the filtered experiments, shown in the lower half of

6Given an SSP length, a window and threshold value can be determined that identifies each
anomaly routinely. These values are different for each scenario, however. As a whole, only 1-1 and
2-2 produced consistently good results.

105

Chapter 6. Methods, Method Sequences, and other Variants

All simulation method invocations
Combined Separate

Scenario Events ratio/nop Events ratio/nop
nop 2397 1 3054 1
exec process 2503 1.0 3230 1.0
crash uav 2210 0.9 2849 0.9
random movement all 6931 2.9 7414 2.5
random movement one 3861 1.6 4430 1.5
search fnr 2399 1.0 3138 1.0
always yes 2397 1.0 3002 1.0
no true positives 2397 1.0 2898 1.0

UAV class originated simulation invocations
Combined Separate

Scenario Events ratio/nop Events ratio/nop
nop 0 1 662 1
exec process 54 ∞ 785 1.2
crash uav 37 ∞ 680 1.0
random movement all 7500 ∞ 7995 12
random movement one 417 ∞ 1265 1.9
search fnr 0 1 742 1.1
always yes 0 1 608 0.9
no true positives 0 1 509 0.8

Table 6.2: Data from SSP=1 (non-stack) based detection of anomalies using a window and
threshold of 1.

the table) show somewhat different behavior. In the cases not using a combined sandbox

profile, the results are similar to the previous case. However, four scenarios are identified

as anomalous using combined sandbox profiles. These scenarios, crash uav, exec process,

random movement all, and random movement one, are UAV fault scenarios.

The total number of events for nop is an indicator of the suitability of the sandbox

profile. A large average number of events (hundreds), indicates that the sandbox does not

embody enough normal behavior to distinguish between nop and the anomaly scenarios.

This accounts for the results of the experiments using separate sandboxes.

Table 6.3 shows the data corresponding to Table 6.2 with different values for the win-

dow and threshold. The results of these experiments are better than in the 1 and 1 case with

106

Chapter 6. Methods, Method Sequences, and other Variants

All simulation method invocations
Combined Separate

Scenario Events ratio/nop Events ratio/nop
nop 0 1 3.3 1
exec process 79 ∞ 86.6 26
crash uav 4.2 ∞ 12.7 3.8
random movement all 0 0 18.6 5.6
random movement one 0 0 4.2 1.3
search fnr 0 0 4.7 1.4
always yes 0 0 2.8 0.8
no true positives 0 0 6.6 2

UAV class originated simulation invocations
Combined Separate

Scenario Events ratio/nop Events ratio/nop
nop 0 1 4 1
exec process 38 ∞ 47 11.9
crash uav 23 ∞ 32 8.2
random movement all 1512 ∞ 1539 389
random movement one 0 0 144 36
search fnr 0 0 5.3 1.3
always yes 0 0 3.3 0.8
no true positives 0 0 7 1.8

Table 6.3: Data from SSP=1 (non-stack) based detection of anomalies using a window and
threshold of 2.

the exception of the quadrant using filtered results and combined sandbox profiles (lower

left). There are no longer problems with excessive numbers of events (false positives) for

nop. Interestingly, instead of too little behavior embodied in the profile, in this case the

opposite occurs—the sandbox profile is too inclusive for the combined cases. Events ap-

pear only for crash uav and exec process when looking at all invocations, and additionally

random movement all in the filtered case.

When using sandboxes based on individual runs, an average number of 3.3 and 4

events are observed for non-filtered and filtered nop, respectively, compared to the hun-

dreds and thousands seen in Table 6.3. The system is able to classify with ease crash uav,

exec process, and random movement all for both the filtered and unfiltered experiments.

107

Chapter 6. Methods, Method Sequences, and other Variants

The ratios for no true positives and search fnr, while greater than one, are not large enough

to consistently determine the run as anomalous. The data from individual runs reveals bi-

modal behavior for those scenarios. The sandbox detects them on some occasions but

on others they produce few anomalies. In all cases, the sandbox was unable to identify

always yes.

All simulation method invocations
Combined Separate

Scenario Events ratio/nop Events ratio/nop
nop 6309 1 16474 1
exec process 8279 1.3 18604 1.1
crash uav 5952 0.9 10253 0.6
random movement all 26791 4.2 56638 3.4
random movement one 12999 2.06 31742 1.9
search fnr 6342 1.0 7913 0.5
always yes 6225 1.0 16286 1.0
no true positives 6110 0.9 8722 1.1

UAV class-originated simulation invocations
Combined Separate

Scenario Events ratio/nop Events ratio/nop
nop 3138 1 357784 1
exec process 5150 1.6 339538 0.95
crash uav 2905 0.9 298886 0.83
random movement all 8850 2.8 312503 0.87
random movement one 23689 7.5 360540 1.01
search fnr 3258 1.0 379137 1.06
always yes 3040 1.0 344980 0.96
no true positives 3016 1.0 338906 0.95

Table 6.4: Data from SSP=2 detection of anomalies using a window and threshold of 1.

To summarize, four out of the seven anomaly scenarios are detected by the dynamic

sandbox. Filtering out invocations that did not originate within UAV instances improves

our ability to identify them. False positives, defined here as large numbers of events for

nop, are a problem when using classical dynamic sandboxing (windows and thresholds

of 1). The “sweet spot” used windows and thresholds of 2 with separate sandboxes and

filtering.

108

Chapter 6. Methods, Method Sequences, and other Variants

All simulation method invocations
Combined Separate

Scenario Events ratio/nop Events ratio/nop
nop 2498 1.0 11960 1.0
exec process 2604 1.0 12162 1.0
crash uav 2277 0.9 5894 0.5
random movement all 12927 5.2 42709 3.6
random movement one 5359 2.1 23496 1.9
search fnr 2415 1.0 3213 0.3
always yes 2506 1.0 11919 1.0
no true positives 2437 1.0 14680 1.2

UAV class originated simulation invocations
Combined Separate

Scenario Events ratio/nop Events ratio/nop
nop 4 1.0 280932 1
exec process 133 33 264214 0.94
crash uav 91 23 233342 0.83
random movement all 1883 470 245534 0.87
random movement one 10497 2624 280520 1.00
search fnr 1.4 0.4 297580 1.06
always yes 1.4 0.4 270487 0.96
no true positives 4.6 1.2 265924 0.95

Table 6.5: Data from SSP=2 based detection of anomalies using a window and threshold
of 2.

6.7.2 Sandboxing with SSP=2

Next, I present the results of experiments using the variant of dynamic sandboxing em-

ploying an SSP with length 2. Table 6.4 contains the results using a window and threshold

of 1. They are not an improvement over the SSP=1 case. It is clear that not enough normal

behavior is embodied in the sandbox profile—the smallest average number of events for

nop was 3138. Only the random movement scenarios produced the large number of events

necessary to discriminate between themselves and nop. This is unexpected because the

changes made to the sim for nop could not have introduced the novelty for the filtered run

in a conventional way. It is likely that the modifications in nop changed the usual timing of

threads, and consequently the order of method invocations. Thus, the UAV sim exhibited

109

Chapter 6. Methods, Method Sequences, and other Variants

different behavior, even when no configuration changes were made.

All simulation method invocations
SSP=1 SSP=2

Benchmark 1–1 2–2 1–1 2–2
exec process �
crash uav �
random movement all � � �
random movement one � �
search fnr
always yes
no true positives
UAV class originated simulation invocations

SSP=1 SSP=2
Benchmark 1–1 2–2 1–1 2–2
exec process � � �
crash uav � � �
random movement all � � � �
random movement one � � �
search fnr
always yes
no true positives

Table 6.6: Sensitivity of variants using combined training data. A checkmark indicates
that the system reliably identified the scenario as anomalous.

The large number of false positives in the 1-1 case suggests that correlating events in

time might increase the signal. Using a threshold and window of 2 decreases the number

of events, as Table 6.5 clearly shows. There is still a problem with false positives for three

of the quadrants, however. The lower left quadrant shows a good signal for the four UAV

faults but not for the sensor faults.

Table 6.6 summarizes the results of the variants that use combined sandbox profiles

from several runs for training data. The results of the experiments with separate training

runs are not shown because the combined sandbox results are better. The two sandboxing

techniques (SSPs of 1 or 2) generally show equal results. Both are able to detect the four

110

Chapter 6. Methods, Method Sequences, and other Variants

2500

3000

3500

4000

4500

5000

5500

6000

6500

0 2 4 6 8 10 12 14 16

Runs

E
n
t
r
ie
s

Unfiltered

Filtered

Figure 6.6: Growth in profile size over repeated training. The profiles grow very slowly.
Sandbox size, however, is only loosely related to the number of events produced during a
simulation using the sandbox.

UAV faults, but show less sensitivity for the sensor faults.

The table also shows that the effective parameter settings are predictable. Both are

most effective when extraneous method invocations are filtered out. However, sandboxes

with an SSP length of 1 are most effective when events are not filtered, while sandboxes

using the stack are most effective when they are filtered. This makes sense. In the first

case, false positives are not a problem, so filtering filters out true positives. In the second,

the filtering does helps filter out false positives. Unfortunately, a longer SSP does not seem

to increase the sensitivity of the dynamic sandbox.

The primary function of using the SSP is to increase the granularity of the sandbox

111

Chapter 6. Methods, Method Sequences, and other Variants

profile. The space of the sandbox becomes the number of methods available to the appli-

cation raised to the length of the SSP. For classical dynamic sandboxing, the SSP length

is one and the the number of methods available is about 3000. In my experiments, using

a window of 2, this computes to 9 million. In practice the growth in observed behavior

behaves similarly to the benchmarks. It is much more linear: sandbox sizes grow from

1500 to 3200 entries in the unfiltered case and 2000 to 6000 in the filtered case. The larger

number of events should therefore be expected.

We would generally expect the increase in granularity to require more training. To test

this expectation, sandboxes were constructed from 15 separate runs. Figure 6.7.2 shows

the growth in sandbox size over the runs for both the filtered and unfiltered cases. The

sandbox grows very slowly from runs 1 to 8 and stops after run 9. The total growth is less

than 2% for both. When this sandbox was tested against anomaly scenarios, results were

qualitatively similar. Therefore, because extra training neither increases the size of the

profile nor improves results, this test indicates that insufficient training time is responsible

for the false positives.

From the differences in the “Combined” and “Separate” columns it is clear that even

small differences in sandbox size can have large effects on the number of anomalous

events. The results indicate two possibilties: much longer training times are required,

or that the minimal code changes to nop produce idiosyncratic events even when all first

order effects are removed. The first would be unfortunate, because few would want to use

systems that take many times longer to train than to use. The second is perhaps the more

likely, but proof would require a study of the application’s race behavior.

The factor of “raciness” in the system is not likely to be a problem with other large

applications. Races occur when the relative order of method invocations between threads

can affect the behavior of a system. This means that different runs produce different re-

sults, even with identical initial conditions. The sandbox profile is therefore incomplete.

Slight changes to the code, as with nop, can change the usual timing behavior, leading to

112

Chapter 6. Methods, Method Sequences, and other Variants

even more novelty. This unpredictability is very unusual in an application and is usually

avoided by design. Races are seen as bugs, not features. If the sandbox is indeed influ-

enced by the races it is, in a sense, properly detecting faults. There are several anomaly

detection systems aimed at detecting nothing but race conditions [86, 23].

Moving from parameter settings to the individual scenarios, one might question, “Why

are the four UAV faults detectable and the sensor faults not?” For the most part, the initial

analysis of the scenarios holds true. The sensor faults are fundamentally harder to detect.

Scenarios crash uav and exec process cause a large amount of disruption to the system

over a short period of time. The random movement scenarios cause UAVs in search to

behave in a fashion that would be visually odd to one watching the GUI version over the

entire course of the simulation. The three anomaly scenarios the sandbox cannot detect

affect one UAV in a particular mode over the course of its run.

6.7.3 Per-Thread Sandboxing

The next variation I implemented was per-thread sandboxing. Instead of counting a global

number of anomalies for each application, the dynamic sandbox keeps a count for each

thread. This makes sense because in the Metron UAV sim many anomalies affect only one

UAV. This is not a custom sandbox for each thread type, it is merely using the same profile

independently for each thread.

To test it, I gathered both more and larger traces (2.5 times the usual run length).

Because of the longer traces, combined sandboxes were not used. Table 6.7 shows the

results using a window and threshold of 1, and Table 6.8 is the equivalent with a window

and threshold of 2. For many of the parameter settings that false-positives still wash out

the signal. The results are markedly better for some configurations, however. In particular,

windows and thresholds of 2 produce at least a weak signal for all the anomalies except in

113

Chapter 6. Methods, Method Sequences, and other Variants

All simulation method invocations
SSP of 1 SSP of 2

Scenario Events ratio/nop Events ratio/nop
nop 2728 1 5559 1
exec process 2738 1.0 8142 1.5
crash uav 2499 0.9 5080 0.9
random movement all 2741 1.0 5557 1.0
random movement one 2743 1.0 34806 6.4
search fnr 2744 1.0 5513 1.0
always yes 2676 1.0 5560 1.0
no true positives 2730 1.0 5561 1.0

UAV class originated simulation invocations
SSP of 1 SSP of 2

Scenario Events ratio/nop Events ratio/nop
nop 3.9 1 2526 1
exec process 37.6 9.6 5098 2.0
crash uav 42.6 10.9 2300 0.9
random movement all 1258.8 321.9 3756 1.5
random movement one 731 187.1 35517 14.1
search fnr 16.6 4.2 2550 1.0
always yes 5.4 1.4 2526 1.0
no true positives 6.9 1.8 2527 1.0

Table 6.7: Per-thread sandboxing for a window and threshold of 1. Events reflect the
average number of events in the maximum thread of each scenario.

the unfiltered case with an SSP of 2.7

My results are strongly affected by the highly multi-threaded nature of the simulation.

I was aware that the sim was multi-threaded before I started the analysis and took some

steps to alleviate those complications (see Section 6.6). I did not anticipate, however, that

the sim would generate hundreds or thousands of threads during a standard run. When

only one thread is anomalous, its signal is washed out by the hundreds of other threads

that appear normal.

The Metron UAV simulation can be seen as worst-case test of dynamic sandboxing.

7The individual traces indicate the system does not identify all cases of always yes and
no true positives.

114

Chapter 6. Methods, Method Sequences, and other Variants

All simulation method invocations
SSP of 1 SSP of 2

Scenario Events ratio/nop Events ratio/nop
nop 1.2 1 2752 1
exec process 15.9 13.9 2823 1.0
crash uav 3.5 6.0 2512 0.9
random movement all 10.7 9.3 2751 1.0
random movement one 4.8 4.1 2755 1.0
search fnr 3.0 2.6 2729 1.0
always yes 2.8 2.5 2752 1.0
no true positives 4.1 3.5 2753 1.0

UAV class originated simulation invocations
SSP of 1 SSP of 2

Scenario Events ratio/nop Events ratio/nop
nop 1.2 1 6.3 1
exec process 17.3 14.2 64.9 10.3
crash uav 10.9 8.9 62.9 10.0
random movement all 266.8 218.7 1507 239
random movement one 147.4 120.8 941 149
search fnr 7.6 6.2 27.8 4.4
always yes 2.7 2.2 10.0 1.6
no true positives 4.0 3.2 12.9 2.0

Table 6.8: Per-thread sandboxing for a window and threshold of 2. Events reflect the
average number of events in the maximum thread of each scenario.

Earlier versions of the Metron application used a single-threaded model and the behav-

ior was quite dissimilar. My experience with benchmarks and the earlier version of the

simulation led me to expect low false positives and predictable behavior. It was only the

extremely varied behavior of this simulation which required per-thread sandboxing.

6.8 Intrusion Detection

Since the dynamic sandbox of Chapter 3 stops the four intrusions introduced earlier it

is clear that these variations would stop them as well. However, adding context to the

sandbox might prevent some types of intrusions that try to avoid a simpler sandbox.

115

Chapter 6. Methods, Method Sequences, and other Variants

StrangeBrew, for example, could be reimplemented to introduce no new methods. In-

stead of adding help methods, it could simply add its code directly to the existing con-

structors. The simple sandbox would not be capable of stopping the virus if the boxed

application also used the common file I/O methods also used by the virus. A dynamic

sandbox using a SSP length of 2 would only fail to identify the intrusion if the infected

constructor itself used those file I/O methods, a much more unlikely situation.

Generalizing from the example, adding context by increasing the number of observed

stack frames can make some attacks significantly more difficult. So-called “mimicy” at-

tacks take advantage of the inner workings of applications to attack while still behav-

ing similarly to the attacked application [109]. Adding context makes this more difficult

because it restricts the attacker to using only methods usually invoked from within the

enclosing method that the exploit attacks, instead of any method invoked by the entire

application.

6.9 Possible Extensions and Conclusions

Stopping mimicry attacks was a principle motivation for testing the system. The case study

study examining the Metron UAV simulation was used to determine whether the system

could identify more subtle errors. That is, could the system be used in wider settings than

just anomaly intrusion detection?

The case study reveals the strengths and weakness of dynamic sandboxing. It shows

that it can reliably detect several of the anomaly scenarios, and that different variations of

the dynamic sandboxing can improve detection. The weaknesses are in the required length

of training requirement, the difficulty in determining training length by observing profile

size, and the amount of parameter “tweaking” to produce a good result.

On the whole, these results reinforce my confidence in dynamic sandboxing’s design.

116

Chapter 6. Methods, Method Sequences, and other Variants

With proper but intuitive parameter settings the sandboxes with different SSP lengths were

able to detect 4 out of the 7 anomalies in a challenging application. Although further

research is needed to discover applications beyond intrusion detection in which the longer

SSP length will be useful, proper parameter settings indicate that false positives can be

controlled. Furthermore, the per-thread sandboxes showed some ability to detect more

than the four UAV faults.

Using the stack frame as a feature seems to be necessary for catching some anomalies

but the behavior can be described as “brittle”. The training weaknesses could be lessened

by greater analysis during profile generation or at runtime. The system could analyze

the events as they occur to determine if the profile is incomplete. New anomalies could

then be added to the profile instead of generating events. Somayaji’s pH includes such a

system [97].

A possible extension of per-thread boxes is to create a customized sandbox for each

thread type. The standard Java security mechanisms envision per-thread custom sand-

boxes. An individual Java sandbox, called a “protection domain” can exist for each thread.

A short examination of this idea is presented in Section 7.1.4.

117

Chapter 7

Other Features and a Complete System

Design

The previous four chapters described case studies that investigated the dynamics of several

features of execution observable within DEEs. In this chapter I briefly describe some

features that did not receive the same scrutiny as those of the case studies. Then I describe

how a complete and practical system could be implemented. It would duplicate the total

functionality of the previously described ones, add the ability to observe other features,

and allow for responses to anomalies.

7.1 Other Features

I mentioned several features in the Introduction that were not addressed by the case stud-

ies. Four features that one might logically observe are types, method arguments, method

frequencies, and per-thread custom sandboxes.

118

Chapter 7. Other Features and a Complete System Design

Figure 7.1: Dynamic sandboxing using types. The sandbox interposes itself between the
mutator (the application) and the allocator. In normal operation, the allocator is given a
type and returns a reference to a region of memory to place an instance of that type. A
sandbox, implemented as an allocator proxy, would allow only allocation of types allowed
by its profile.

7.1.1 Types

The object lifetime prediction system described in Chapter 5 is highly dependent on so-

phisticated implementations of garbage collection. One might imagine a simpler system,

more useful for dynamic sandboxing, that interposed itself between the allocator and the

mutator’s requests for memory (these are indicated by new instructions). This is depicted

in Figure 7.1. When training, the sandbox examines allocation requests and records the

type information accompanying it in the profile. When sandboxing, the system prevents

any allocation that is not in the sandbox profile.

The main argument for not building the system is that it is redundant. The simple

method invocation sandbox designed in Chapter 3 sandboxes by types already—a special

<clinit>method is called each time a class is initialized. It was possible to observe the

behavior I was interested in without implementing another system.

119

Chapter 7. Other Features and a Complete System Design

Redundancy is not a always a disadvantage, however. Because it operates on a different

interface from the method invocation sandbox, bugs in one sandbox would not affect the

other, turning redundancy into a positive. Another argument in favor of such a system

is its potential performance. A sandbox that only impacted allocation could be fast. It

would not be as fast as the single method sandbox of Chapter 3, but faster than the method

sequence sandboxes described in Chapter 6 that can only be implemented through stack

introspection.

Benchmark App Classes Library Classes Total
201 compress 7 20 27
202 jess 9 20 29
209 db 7 20 27
213 javac 13 20 33
222 mpegaudio 19 20 39
227 mtrt 8 20 28
228 jack 8 20 28

Table 7.1: Number of application and library classes used during a run of the SPEC JVM98
benchmarks.

Another possible advantage is the precision of the granularity. False positives became a

problem once execution context was added to the dynamic sandbox. The source may have

been the decreased granularity (larger size) of that feature space. Although that problem

did not occur with the simpler sandbox, future versions of Java or other DEEs may suffer

from a similar problem, even excluding context. Tables 7.1 and 3.1 suggest that the space

of types and the resulting type sandbox sizes are about the tenth the size of the method

sandbox profiles. As Java and other DEEs grow in size, finding profiles of less precise

granularity may help reduce false positives.

120

Chapter 7. Other Features and a Complete System Design

7.1.2 Method Arguments

Unlike the case for types, there are several strong reasons for not observing method argu-

ments. First, the feature is observable but not part of the standard profiling infrastructure

for DEEs. Cataloging argument values is possible through debugging extensions, but it

would incur enormous performance penalties. Another problem is in semantics. Deter-

mining similarity for primitives, such as integers, doubles, and strings, is not difficult, but

how should compound objects be handled? As an initial investigation I computed the hash

functions for objects as a proxy for value using the Kaffe JVM. This approach leads to

the largest problem: profile blowup. This is because each method needs to be stored with

the set of legal arguments (either primitives or hash values). The Permission sandbox of

Chapter 4 can be seen as a subset of this sandbox. It covers only one particular method—

checkPermission().

Sandboxing by method arguments records data, and data naturally change from run

to run. Generalization is required for this to work. How to generalize? Again, for most

primitives there are distance metrics to make this possible. For compound objects, the ob-

vious handle on identity is through a hash function, which is only comparable for equality,

making generalization difficult.

Darko Stefanovic recently suggested abandoning values and analyzing the types of

the arguments passed to methods. Types are of course specified by the parameter lists in

method signatures, but in Java and other object-oriented languages an object may be of

several types. Sandboxing on the most specific subtype might be feasible, but this has not

been explored.

121

Chapter 7. Other Features and a Complete System Design

7.1.3 Method Frequency

From the start, method arguments seemed difficult to categorize. Method frequencies,

by contrast, seem easier. Anomaly detection based on method frequencies is simply a

different representation of the successful systems described in earlier chapters. It is also

the primary feature used by the JIT compilation system to improve performance.

The obvious problem is the presence of working sets during execution. Working sets

are caused by modality in program execution. A program typically executes using a small

set of its codebase and then switches to another set. The dramatic change in the frequency

of method execution during a program’s run. Under a binary representation of behavior for

sandbox profiles, the large changes in frequency embodied by switches between working

sets of methods are ignored, so there were fewer false positives.

Another solution is to use different bounds, based on the frequency variance, for clas-

sifying methods as anomalous. I used the traces gathered for Chapter 6 to analyze the

behavior of a potential system.

The sandbox profile for the dynamic sandbox employing method frequencies consists

of a set of records. Each record contains the method signature, the average method fre-

quency during a run, and the standard deviation computed from the training runs. Obvi-

ously, this variant requires several training runs to generate the sandbox.

An anomaly score can be generated from three components:

1. A method invoked in the test trace is not in the sandbox profile (standard model).

2. A method not invoked in the trace is in the profile (the opposite case).

3. A method is in the sandbox profile and is invoked during the trace but with signifi-

cantly different frequencies.

122

Chapter 7. Other Features and a Complete System Design

The sum of all frequencies that match case 1 is the α component. The sum of all

frequences that fall under case 2 is the β component. The frequencies of case 3 are referred

to as the γ component and are parameterized by the spread: its value is the sum of all

differences of frequencies and the profile for those method frequencies that lie outside

plus or minus the spread times the standard deviation of their sandbox frequency:

γ =
n

∑
i=1

xi, where xi =






0, if di fi ≤ spread× stdev(pro f ilei)

di fi, otherwise.

and di fi = |pro f ilei− f requencyi|

I do not try to calculate a total score in this exploration. Instead, I investigate the

implications of the individual components.

All methods UAV methods
Scenario α×10000 ratio/nop α×10000 ratio/nop
nop 1.67 1 0.00 1
exec process 1.78 1.06 0.0140 ∞
crash uav 1.65 0.99 0.00977 ∞
random movement all 3.47 2.08 3.37 ∞
random movement one 2.00 1.20 0.18 ∞
search fnr 1.56 0.94 0 1
always yes 1.72 1.03 0.00 1
no true positives 1.74 1.04 0 1

Table 7.2: Average frequencies for α (method invocations that do not appear in the sand-
box profile) and their ratio over nop.

The algorithm was tested against the anomaly scenarios presented in Chapter 6. Ta-

bles 7.2 and 7.3 present the portion of scores for α and β , respectively, using composite

profiles from five runs. Looking at the α component, we see, similarly to the results pre-

sented above, that discrimination is successful only when filtering is enabled. When it is

123

Chapter 7. Other Features and a Complete System Design

All methods UAV methods
Scenario β ×100000 ratio/nop β ×100000 ratio/nop
nop 3.58 1 5.05 1
exec process 3.55 0.99 4.86 0.99
crash uav 3.57 0.99 5.04 0.99
random movement all 16300 4570 28100 5560
random movement one 3.57 0.99 5.00 0.99
search fnr 3.56 0.99 5.00 0.99
always yes 3.57 0.99 5 0.99
no true positives 3.55 0.99 5.03 0.96

Table 7.3: Average frequencies for β (methods that do appear in the sandbox profile but
not in the trace) and their ratio over nop.

not enabled, a moderately strong result is seen for random movement all, compared with

the usual four in the filtered case.

The α component corresponds to the dynamic sandbox of Chapter 3: it gauges the pro-

portion of method invocations that were never invoked during training. The β component

tries to gauge the opposite—methods that were invoked during training, but not during the

run, which cannot be computed online. The β component results are particularly weak.

Only random movement all gives a good score. The differences between the α and β

component scores indicate that the design for the simple dynamic sandbox is robust. The

α component, using filtered invocations, gives results as good as those described above

for non-frequency based detection, as one would expect. The β component, adding little,

strengthens the conclusion that the representations used in Chapter 3 and 6 are sufficient

to capture behavior.

Of course, the most important part of frequency-based detection is the comparisons of

non-zero frequencies. These results are presented in Table 7.4. The portion of the score

based on non-zero frequencies in both training and testing is dependent on γ and spread.

Table 7.4 shows only the ratio of average events of the anomaly scenarios over nop for

different values of spread. There are three things to note from the table. First, unlike the

124

Chapter 7. Other Features and a Complete System Design

All simulation method invocations
Scenario 1 2 4 8 16
exec process 1.44 1.71 4.11 17.9 215.65
crash uav 1.62 2.01 2.78 6.15 1.88
random movement all 13.6 20.4 74.9 1261 251437
random movement one 1.94 2.48 2.34 15.4 649
search fnr 1.42 1.73 1.53 6.12 29.67
always yes 1.09 0.99 1.43 1.20 32.85
no true positives 1.57 2.11 3.41 2.78 1.56

UAV class originated simulation invocations
Scenario 1 2 4 8 16
exec process 1.73 2.87 2.74 23.6 1399
crash uav 1.71 3.26 1.54 0.01 1.40
random movement all 15.1 44.1 90.4 2064 322551
random movement one 1.95 2.16 0.48 1.06 59.14
search fnr 1.61 2.23 1.53 8.42 1.27
always yes 1.19 1.50 0.36 1.10 1.08
no true positives 1.66 2.64 1.44 2.25 1.25

Table 7.4: Presents the ratio of each scenario with nop and the specified spread (1, 2, 4,
8 , 16) with a γ of 1.

other experiments, the γ component benefits from seeing all method invocations, rather

than only those originating in UAV classes. Second, the component’s score benefits from

larger values of γ . Finally, there is some ability to distinguish the sensor-based scenarios

from nop, at least when the run is not filtered.

Detection using non-zero frequencies seems effective for high values of spread. This

is misleading. First, the results hold only when non-filtered traces are used. This is “cheat-

ing” as the goal was to simulate the behavior within individual UAVs. When non-UAV

invocations are filtered out, only three of the usual four scenarios were identified. Finally,

the large value of spread is puzzling. It is not clear whether the results are robust. Their

qualitative similarity to the earlier approaches, however, supports the contention that they

do in fact distinguish those scenarios. This result, along with the α and β scores, gives

confidence in the previous systems.

125

Chapter 7. Other Features and a Complete System Design

From the current set of results it cannot be concluded that method frequency is useful in

determining program behavior abnormality. Frequency monitoring in the Metron UAV sim

produced interesting results for only a few configurations. The simulation is very different

from most applications, however. Its multi-threaded nature, and the behavior differences

in types between those threads, creates an obstacle to frequency based approaches. Even

if method frequencies are stable for each thread type, the number of each type may differ

in each run, making runs seem anomalous.

More research is needed to determine if there are enough regularities in method fre-

quencies to make anomaly detection worthwhile.

7.1.4 Per-thread Custom Sandboxes

The Metron UAV simulation made several problems apparent in the method invocation

sandboxing schemes. Chief among them was the profile instability caused by the large

number of threads produced by the program.

One solution I presented in Section 6.7.3 used individual anomaly counts for each

thread. This was partially effective but suffered from higher false positive rates. A further

extension to this would be to use different sandboxes for each thread type as well. This

would increase the granularity of the profile space considerably, allowing a more precise

profile.

Such an approach essentially treats each thread as a different program. This may not

make sense for multi-threaded applications like Apache, in which all threads operate sim-

ilarly [38], but in cases where different threads do in fact behave differently, a per-thread

sandbox may be appropriate.

I investigated the behavior of the Metron UAV Sim by recording profiles for each

thread in the format of the simple method invocation sandbox. Figure 7.6 shows a short

126

Chapter 7. Other Features and a Complete System Design

run of the simulation. The run produced about 250 threads and called about 2600 unique

methods. The threads were sorted using k-means clustering with a cluster size of 9 [34].

The clustering reveals, as one would expect from the simulation’s source, that there are

distinct behaviors for several thread types.

I did not attempt to build such a system. Per-thread sandboxing increases the complex-

ity of training enormously. The dynamic sandbox would become more like a traditional

host-based system, examining every application, than a sandbox specific to an application.

Faced with the increased difficulty in training, I decided not to pursue such a system. Still,

a per-thread sandbox system may be practical for programs that behave with more reg-

ularity than the Metron application. As in the method frequency case, more research is

needed.

7.1.5 Feature Fusion

One idea for an observable feature that I have not tested in this work is the combination of

features. False positives might be reduced by correlating anomalies by feature. I have not

and cannot test a combined system because each of the systems presented in the previous

series of chapters was designed and tested independently. Furthermore, they were imple-

mented using several different JVMs, and the behavior between them is different enough

that comparisons between different chapters cannot readily be made.

An integrated system would be the next logical step. A new system, engineered from

the individual systems described here, would allow us to observe global regularities be-

tween features, as well as introduce responses to anomalies. In the next section I describe

how this system could be implemented.

127

Chapter 7. Other Features and a Complete System Design

7.2 The Complete System

Each of the case studies introduced applications or simulations that were not of produc-

tion quality. Three different JVMs were used out of the four examples. To continue this

research forward, a unified VM capable of simultaneously observing all the interesting

features is required. This dynamic sandbox would also be capable of response.

To construct this VM, three capabilities are required: a custom security manager, a new

garbage collector and allocator, and a stack introspector. In non-DEE environments, these

functions are integrated into each application and are not easily observed or modified.

In DEEs, these components are common to all applications and could be, with access to

source code, observed, replaced, or modified.

7.2.1 Stack Introspection

The method sequence sandbox of Chapter 6 was the slowest of the dynamic sandboxes

because it was the only one running entirely in simulation. A small library was used to

output method invocation information and a second process simulated and analyzed the

stack behavior.

An implementation entirely within the VM could be much faster. Modelling the stack

is not necessary because the entire stack is already available. The sandbox would use the

JIT compiler to generate a small amount of code in the method prologue to examine the

stack and compare it to the profile. More specifically, at each method invocation during

training the prologue would scan the top of the stack, observe the integer valued method

identifiers, and interleave them together to form a new hash to add to the profile. During

testing, the prologue’s code would generate the hash again and compare it to the sandbox,

and initiate a response if necessary.

The number of stack lookups could be one less than the SSP length because the pro-

128

Chapter 7. Other Features and a Complete System Design

logue would provide the first method identifier in the code itself. A hash table would be

used to store the profile. In Chapter 6 we saw typical profile sizes of SSP=2 were under

3000 for most of the benchmarks but up to 6000 for the Metron UAV sim. In the larger

case, a hash table of perhaps 32KB or 64KB, allowing for collision detection, could be

used. Another possibility would be to ignore collisions and allow for a much sparser hash

table, using bits instead of bytes. Cache performance considerations would determine the

exact representation.

Stack introspection-based approaches are not as fast as the system built out of just the

top frame, like the sandbox implemented with ORP. That system incurred no overhead

after a method’s first invocation. Indeed, there is a performance reason to implement such

a system, even in the presence of an implementation of stack introspection. The reason is

that native code cache, the collection of methods that has been translated from bytecode

to native instructions, can be used as the profile. Instead of recording method signatures

or their hashes, the code cache could be saved to disk. On startup, the VM does not need

to involve the JIT compilation system. Instead, the native versions of methods could be

loaded and linked immediately. This would provide both a boost in performance and an

increased level of security.

7.2.2 Windowing

Another variant introduced in Chapter 6 correlated anomalous events in time before trig-

gering an alert. This used the parameters window length and trigger threshold.

A straightforward implementation uses a circular array and a variable holding the cur-

rent count. After a method is invoked and its status determined, the next element of the

array is overrwritten and the count recomputed, with its result depending on the old and

new element value. A count greater than the threshold would trigger a response.

More generally, windowing could be subsumed by a configurable component analyz-

129

Chapter 7. Other Features and a Complete System Design

Figure 7.2: Unified dynamic sandbox. A central repository analyzes behavior from inter-
face proxies. Anomalous behavior is analyzed and then the proper response is initiated
through the appropriate proxy.

ing events from many different feature sandboxes. A centralized store and analyzer for

anomalous events allows for feature fusion, and a smarter, most context dependent re-

sponse mechanism.

Figure 7.2, a reworking of the standard DEE from Figure 1.2, depicts the sandboxing

system interacting with all the DEE’s components. As one would expect, different features

all interact with the centralized sandbox, which would store profiles, correlate events, and

initiate responses.

7.2.3 Response

My research has concentrated on detection—the classification of various features of exe-

cution into the predictable or unpredictable. The prototypes used simple responses, such

as shutting down the system or logging the event. These responses are not appropriate to a

production system. Shutting down the system does not address false positives, and doing

130

Chapter 7. Other Features and a Complete System Design

nothing but logging an anomaly allows intrusions and other faults to succeed.

Any response beyond logging would affect program execution. Although the responses

would begin in the dynamic sandbox, all of them would appear to come from someplace

else to preserve the original semantics (the lines in Figure 7.2 indicate information flow in

both directions.) Responses would take the form of exceptions.

Exception handling is a method of dealing with error conditions raised during oper-

ation. It was first popularized in the mid 1970s for languages like Ada, but has become

a requirement for DEE languages like Java [41]. The details of the exception response

would decide in which part of the DEE the exception occured. This exception would be a

subtype of a standard error thrown through the same interface. For example, an anomaly

thrown through the method sequences sandbox could be a StackOverflowError. Normally,

these errors result in program termination.

Applications could be modified, however, to trap these errors. Information about the

anomaly, ignored by the standard application, could be analyzed by adding exception han-

dlers. That information would be added by the sandbox by creating subtypes of the usual

exceptions and inserting details of the anomaly into the exception object. Programs would

run without modification while allowing developers to add code to determine whether

anomalies were false positives.

The existence of false positives complicates response. Analysis would be needed to

decide whether an anomaly was a true or a false positive, and what the proper response

should be. This would be helped by the inclusion of the stack trace in the Exception.

Analysis could be divided between the dynamic sandbox and the application, allowing the

dynamic sandbox to provide a confidence level, perhaps, to the program.

The program’s response could be very simple. If it were an interactive application, it

could ask the user to determine a response. A more sophisticated response could borrow

from Somayaji’s pH. pH uses exponentially increasing delays of subsequent system calls

131

Chapter 7. Other Features and a Complete System Design

in the executing process. Small numbers of anomalies have small delays, and go unnoticed.

Large numbers of temporally clustered anomalies, produced when programs execute novel

code paths, have such large delays that the program essentially freezes.

The appropriate response strategy depends on the exploits and the monitored programs.

The dynamic sandbox described here seems best suited to server or middleware applica-

tions, where security is most needed and behavior usually limited. Interactive applications,

which are closer to the user, might have functionality that is invoked at infrequent intervals,

creating larger numbers of false positives. The first response strategy, providing more in-

formation for specific anomalies, might work well in server applications while the strategy

of delay is more appropriate for interactive applications.

7.2.4 Memory Prediction

If dynamic sandboxing was implemented with types, responses would come from raising

already expected exceptions (such as OutOfMemory or Instantion errors). The case study

from Chapter 5, though it involved the memory manager, was not a dynamic sandbox. The

lifetime predictor responds to regularities instead of anomalies, and the result is the Death-

Ordered-Collector. Earlier, I analyzed the best-case performance of the Death-Ordered

Collector, the memory management system built to exploit lifetime prediction. It could

not operate as described because it assumes that a misprediction is never made. Although

true prediction revealed our accuracy to be very good (> 99% for many benchmarks),

there is still the rare occurrence when objects live longer than forecasted.

A realistic implementation would need to relax that one assumption of the DOC imple-

mentation. Without that assumption, Section 5.7.1 demonstrated that the DOC is superior

to a standard semispace collector if the overhead is small. Here I argue that a realistic

implementation will be similar to that of a generational collector.

Let us first consider the overhead of allocation. Allocation is more expensive in the

132

Chapter 7. Other Features and a Complete System Design

DOC because the allocator must decide whether to allocate into the standard heap or the

KLS. Placement requires the examination of the SSP, which in some cases is quite long.

During execution, the SSP would be available only as separate values in individual stack

execution frames, or perhaps as a separate display-like structure.

To show how allocators incorporating prediction are constructed, I provide an example.

At the point of an allocation (a new in Java), the compiler would generate inline code for

the allocation. By way of example, consider this point of execution in the diagram below

(Figure 7.3):

Figure 7.3: The 3 SSPs that need to be considered for an allocation at execution point 10
with their associated predictions. Although the SSP length is 6, the allocator need consider
at most 2 positions for linear comparisons, and only 1 for random access.

The application is at execution point 10, and has three options for allocation. The

top two SSPs lead to predictions, the third does not. The task at hand is to compare the

current SSP, embodied by the execution stack, with those in the predictor. It is impractical

to consider the entire SSP as a single entity because each value within the SSP is a full

integer in length. Instead, consider the individual values which make up the SSP: the

133

Chapter 7. Other Features and a Complete System Design

method ID and position within the method, which is equivalent to the return address.

Since the generated code for this allocator is customized to the allocation site (execution

point 10), it need not consider any SSP starting with a value other than 10. Nor, since all

SSPs we need consider start with 10, need it consider the starting SSP position. Instead,

the allocator simply needs to look at enough values of its own stack string to uniquely

distinguish between the three SSPs. To accomplish this, the allocator is constructed as a

tree. At the first SSP value, it considers values for the second SSP position, which are 1

and 3. For SSPs beginning 10:3, there is no prediction, so the compiler generates code

for the normal allocation path. For the two SSPs, the compiler then generates code that

examines the second value, which makes the prediction of 32056 bytes for 10:1:2 and

2016 bytes for 10:1:6.

The example is depicted in Figure 7.4. Note that these need not be binary trees. For

each position, there are as many edges leaving the node as there are unique SSP values

at that position. If we assume that each SSP is observed at this allocation point an equal

number of times then the average depth of search is 5/3.

The previous example considers an implementation that assumes that application stack

examination is similar to walking a list. If a display-like structure is available, where

access to any value in the SSP is in constant time (random access), the allocator needs only

one node with 3 values, that for position 3 (outlined in the diagram) and the average depth

for search drops to 1.1 Choosing an optimal sequence of positions when random access

is available is in general a hard problem. However, the following heuristic works well:

choose the position with the largest number of unique values. This breaks the set down

into that number of subsets. Repeat with this heuristic on each subset until no ambiguities

exist.

Because all of the stack strings are recorded during the profiling run, the allocator can

1Displays are used in languages that allow nesting of functions. The display allows constant
time access to variables within containing functions [1].

134

Chapter 7. Other Features and a Complete System Design

1 3

62 No Prediction

Predict 32056 Predict 2016

Allocator

Figure 7.4: Linear allocator generated for the execution point 10 shown in Figure 7.3. The
allocator needs to consider only two positions of the SSP to uniquely distinguish them.

calculate the average search depth required, as shown in Table 7.5 for my set of bench-

marks. The column labeled “linear” shows results for the algorithm described above that

assumes that the stack is similar to a list, where execution frames that are further away

take longer to examine. However, assuming constant time random access to the execution

frames, many lookups are eliminated, as shown in the column labeled “random”. In each,

instead of the full SSP length, for most benchmarks only 1 to 2 comparisons are required

for each allocation. Even for very long SSP lengths, like those in jess and javac, the av-

erage number of lookups is 4 or less in the linear case and less than that in the random

access case. Thus, allocation can be made efficient in the DOC system.

The overhead of collection in the DOC system is similar to that of a generational

collector. Like all generational collectors, the DOC system requires write barriers and

135

Chapter 7. Other Features and a Complete System Design

Benchmark Fully Precise Logarithmic
ssp linear random ssp linear random

compress 20 1.92 1.28 10 1.92 1.28
jess 24 3.08 2.12 26 3.08 2.12
db 20 0.98 1.86 3 0.96 1.85
raytrace 20 2.00 1.45 4 1.62 1.07
javac 32 3.84 3.27 32 3.84 3.27
mpegaudio 20 2.09 1.40 8 2.06 1.37
mtrt 20 2.01 1.46 3 1.25 0.99
jack 20 4.02 3.21 20 4.02 3.21
pseudojbb 20 2.50 1.89 14 2.48 1.86

Table 7.5: The average number of hash table queries that are required to identify an allo-
cation context for a given ssp and benchmark. The two sets of data shown are for the SSP
lengths used in Table 5.6. For each set, I calculate the average depth using hash tables
constructed using the SSP with linear access and with random access.

remembered sets. The heaps are arranged as described in the previous subsection, and

shown in Figure 7.5. Remembered sets are required between the two heaps, as any multi-

space collector requires. A remembered set is also required for objects in the KLS pointing

to objects with smaller predicted lifetimes. This feature makes the KLS similar to Barret

and Zorn’s generational collector with a dynamic/threatening boundary [10]. Like that

scheme, the DOC can collect a variable amount of space to “tune” pause times. It is likely

that the remembered sets for objects being collected in the KLS are small, due to the high

accuracy. However, if set size is a problem, one might unify the two heaps into one looking

very similar to the Barret and Zorn collector described above, in which my predictions are

used as a parameterized pretenuring scheme, with the object lifetime predictions used to

determine their placement in the list. This would have overheads very similar to Barret and

Zorn’s collector. The choice of heap arrangement is an empirical question that involves

the relative performance of various parts of the memory management system.

In the worst case, the DOC’s overhead will be similar to that of a standard heap, be-

cause its overhead is similar to that of a generational collector. When the DOC can use its

136

Chapter 7. Other Features and a Complete System Design

KLS, it will outperform a traditional collector. Implementing the DOC and measuring its

performance experimentally is an area of future investigation.

7.3 Summary

This chapter explored how the results of Chapters 3-6 could be incorporated into an opera-

ble system. The resulting system would have production class performance, but would not

be a production system. It also discussed other potential execution features that have not

been explored in depth. I have discovered features and representations that would likely

be useful, but the space of parameters that could tune the system in the areas of response,

generalization, and sandbox granularity still need to be explored. Only then, when the

complete behavior of target applications is examined, could a proper system be built to

improve security and performance.

137

Chapter 7. Other Features and a Complete System Design

Known Lifetime Space

Normal Heap

Remembered Sets

Time

Figure 7.5: A visual representation of the death-ordered collector. The ovals within the
top and bottom rectangles represent objects within the normal heap and the known life-
time space (KLS), respectively. Objects in the KLS are arranged in order of predicted
death. Arrows indicate references from one object to another. Arrows that overlap the re-
membered sets rectangle must be considered as roots when a collection occurs (though the
sets do not have to be unified in any particular implementation). The dotted line indicates
the current time. A DOC starts a collection with objects at the far left, the ones with the
earliest predicted time-of-death, up to the current time. Remembered sets are necessary
because objects not considered for collection, those in the normal heap and those not pre-
dicted to be dead, are assumed to be alive and thus any objects pointed to by them must
also be considered alive.

138

Chapter 7. Other Features and a Complete System Design

Fi
gu
re
7.
6:
D
iff
er
en
ce
sb
et
w
ee
n
th
re
ad
si
n
th
e
M
et
ro
n
U
AV

sim
ul
at
io
n.
Ea
ch
ro
w
co
rre
sp
on
ds
to
a
th
re
ad
an
d
ea
ch
co
lu
m
n

co
rre
sp
on
ds
to
a
m
et
ho
d.
Pi
xe
l(
i,
j)
is
w
hi
te
if
m
et
ho
d
ii
s
in
vo
ke
d
at
le
as
to
nc
e
du
rin
g
th
e
ru
n
of
th
re
ad
j.
Th
er
e
ar
e

ap
pr
ox
im
at
el
y
25
0
th
re
ad
sa
nd
26
00
m
et
ho
ds
sh
ow
n.

139

Chapter 8

Conclusion

In this work I have discovered regularity in the behavior of several features of execution

and shown that such regularity can be exploited. This was accomplished by developing

several prototype systems. In this chapter I summarize the contributions of my research

and comment about the differences in my views compared to when I began this line of

research.

8.1 Contributions

The contributions of my research are in the areas of computer security, garbage collection,

and virtual machine technology. I have also provided evidence for my thesis for several of

the features I examined:

The behavior of applications in DEEs is regular, and that regularity can be

exploited.

Although the regularity of DEE behavior depends on each program examined, I have

shown that many common benchmarks produce regular behavior in a variety of ways, and

140

Chapter 8. Conclusion

I have shown that the regularity is exploitable for performance and security purposes.

Individually, these are the contributions:

• Chapter 1 introduced the term dynamic execution environments (DEEs), defined as

virtual machines with the following characteristics: verifiable instruction sets, Just-

In-Time (JIT) compilation, garbage collection, large standard libraries, and runtime

profiling.

• Chapter 2 described related work and introduced the tools and data used for this

research. It also reported on the current state of Java security and analyzed all Java

vulnerabilities since 1999. Such analysis has not been carried out previously.

• Chapter 3 introduced the first and simplest implementation of the dynamic sand-

boxes. By controlling the JIT compilation interface to allow only previously invoked

methods to be compiled, the sandbox stopped intrusions without hindering perfor-

mance in real applications.

• Chapter 4 built a system around Permissions, the feature used for access control in

Java. This dynamic sandbox had finer granularity than the previous ones, and exhib-

ited more false positives. Its sandbox profile was expressed as a standard security

policy for the virtual machine, allowing easy manual modification.

• Chapter 5 moved away from dynamic sandboxing to address optimization in the

memory management system. I showed that for some applications many object

lifetimes are predictable and then presented a design and analysis of the potential

performance of a garbage collector designed to use those predictions to improve

efficiency. Called the Death-Ordered-Collector (DOC), it would collect items as

soon as they died, minimizing overhead and maximizing free space. I also showed

that objects that are born and die before the next object is allocated form a significant

141

Chapter 8. Conclusion

portion of all objects, a fact that was previously unknown. This is important because

it might be used as advice for for other memory management optimizations.

• Chapter 6 extended the method invocations sandbox by examining several variants

in the context of a large multi-threaded simulation in the application of fault detec-

tion. One variant increased sensitivity by adding execution context. Another was

used to reduce false positives by correlating anomalies in time. These variants were

only partially successful when tested against the Metron UAV Simulation. The sim-

ulation showed a large amount of novelty, even when incorporating large amounts

of training data. However, the variant sandboxes were effective enough to conclude

that they would be more fruitful when used with conventional programs.

• Chapter 7 described more cursory investigations of method arguments, method fre-

quencies, types, and thread groups. It also described the implementation of a system

that would integrate several of the dynamic sandboxes as well as the DOC.

The results of this research are supplemented by datasets and software. The datasets

consist of traces from several sets of benchmarks from the experiments in Chapters 6 and

5. The lifetime prediction traces are particularly useful. They record benchmark behavior

with exact lifetime data, and they can no longer be duplicated with recent versions of Jikes.

The datasets are complemented by software. The four exploits that were used to test

the dynamic sandboxing software in various chapters are not generally available to re-

searchers. I reimplemented the three that were discovered in the wild, and HTTPTrojan,

the synthetic trojan horse, is arguably the most interesting of the four. Other software con-

sists of analysis tools. These tools were developed for Chapters 5 and 6. The rest of the

software consists of the systems themselves: the patched version of ORP from Chapter 3

and the reimplemented SecurityManager and utilities from Chapter 4.

142

Chapter 8. Conclusion

8.2 DEEs and Anomaly Detection

The original goal of my research, beyond proving the thesis, was to construct an integrated

system more capable and complex than the one described in Chapter 7.

Constructing and testing these systems was more involved than I anticipated. Jikes,

in particular, was complicated to use and modify. In the end, I was never able to collect

traces for certain benchmarks and configurations.1

Data collection and analysis was another challenge. By recording traces I was able

to simulate the behavior of several different sandboxes or predictors. The actual trace

used, however, was often hundreds or thousands of megabytes, even when compressed.

Simulations often took hours.

Beyond the implementation challenges, I was overly optimistic about the progress of

architecture and optimization with DEEs. I believed that platforms like Transmeta’s Cru-

soe [64] would incorporate the dynamic optimization of VMs like Dynamo [105] and spe-

cialization like that of Massalin’s Synthesis [82] to produce radically different machines.

Such a machine would monitor itself constantly, recoding and rewriting both itself and the

application to improve performance.

DEEs, however, have advanced slowly. The most complex DEE to date, the Java

HotSpot VM, was first introduced in 2000 and has had only incremental improvements

since then. Its primary method of feedback directed optimization is still method frequen-

cies. A recent paper showed that simple heuristics for JIT compilation could improve both

startup and throughput times, suggesting that even currently available profiling informa-

tion is being ignored [59]. Transmeta no longer makes processors, and most VM work is

1My systemwas implemented on Jikes 2.0.3. While newer versions of Jikes purportedly support
Merlin, none run all the SPEC or DaCapo benchmarks with the finest lifetime granularity. Also, at
no time have benchmarks suites completed using Jikes’s optimizing compiler as the JIT compiler.
This makes my traces particularly valuable for garbage collection research.

143

Chapter 8. Conclusion

aimed at simulating IA32 processors.

The research projects originating from my group often compare computers with bio-

logical systems. This is becoming a more apt analogy. Even with the slow advancement of

DEEs, these systems’ behaviors are now too complex to understand from first principles.

It is impossible to predict or understand the behavior of our systems from their design

and configuration. Biologists struggle with a similar problems in ontogeny—knowing the

genetic code of an organism does not provide much information on its final structure or

behavior. Because the problems we face in studying program behavior are so similar to

biological ones, we should employ biologically inspired techniques, The advantage com-

puter scientists have is that we can easily observe detail that biologists cannot. We should

take advantage of it.

144

Appendices

145

Appendix A

Classification of Java Exploits from the

CVE Dictionary

The Common Vulnerabilities and Exposures (CVE) Dictionary is a list of all publicly

known vulnerabilities [27]. It is maintained by the MITRE corporation to provide a com-

mon name for these exploits. The following table excerpts all vulnerabilities strictly re-

lated to the Java platform from the CVE dictionary. This includes all Java plugins, li-

braries, and virtual machines but does not include Enterprise Edition libraries or other

applications written in Java.

The descriptions are excerpted from the CVE dictionary and copyrighted by theMITRE

corporation. They are used here with permission.1 The classification of entries into VM,

library, or policy is my own work.

There are 51 exploits listed. There are 6 VM , 2 policy, and 43 library vulnerabilities.

See Chapter 2 for a description of Java security and its vulnerabilities.

1The CVE web site states: “You may search or download CVE, copy it, redistribute it, reference
it, and analyze it, provided you do not modify CVE itself. CVE is publicly available and free to
use.” [28].

146

Appendix A. Classification of Java Exploits from the CVE Dictionary

CVE Number Description VM Library Policy

CVE-1999-0141 Java Bytecode Verifier allows malicious applets

to execute arbitrary commands as the user of the

applet.

�

CVE-1999-0142 The Java Applet Security Manager implementa-

tion in Netscape Navigator 2.0 and Java Devel-

oper’s Kit 1.0 allows an applet to connect to arbi-

trary hosts.

�

CVE-1999-0440 The byte code verifier component of the Java

Virtual Machine (JVM) allows remote execution

through malicious web pages.

�

CVE-1999-0766 The Microsoft Java Virtual Machine allows a ma-

licious Java applet to execute arbitrary commands

outside of the sandbox environment.

�

CVE-1999-1262 Java in Netscape 4.5 does not properly restrict ap-

plets from connecting to other hosts besides the

one from which the applet was loaded, which vi-

olates the Java security model and could allow re-

mote attackers to conduct unauthorized activities.

�

CVE-2000-0162 The Microsoft virtual machine (VM) in Internet

Explorer 4.x and 5.x allows a remote attacker to

read files via a malicious Java applet that escapes

the Java sandbox, aka the “VM File Reading” vul-

nerability.

�

Continued on next page

147

Appendix A. Classification of Java Exploits from the CVE Dictionary

Table A.1 – continued from previous page

CVE Number Description VM Library Policy

CVE-2000-0327 Microsoft Virtual Machine (VM) allows remote

attackers to escape the Java sandbox and execute

commands via an applet containing an illegal cast

operation, aka the “Virtual Machine Verifier” vul-

nerability.

�

CAN-2000-0563 The URLConnection function in MacOS Runtime

Java (MRJ) 2.1 and earlier and the Microsoft vir-

tual machine (VM) for MacOS allows a malicious

web site operator to connect to arbitrary hosts us-

ing a HTTP redirection, in violation of the Java

security model.

�

CVE-2000-0676 Netscape Communicator and Navigator 4.04

through 4.74 allows remote attackers to read arbi-

trary files by using a Java applet to open a connec-

tion to a URL using the “file”, “http”, “https”, and

“ftp” protocols, as demonstrated by Brown Ori-

fice.

�

CVE-2000-0711 Netscape Communicator does not properly pre-

vent a ServerSocket object from being created by

untrusted entities, which allows remote attackers

to create a server on the victim’s system via a ma-

licious applet, as demonstrated by Brown Orifice.

�

Continued on next page

148

Appendix A. Classification of Java Exploits from the CVE Dictionary

Table A.1 – continued from previous page

CVE Number Description VM Library Policy

CVE-2000-1061 Microsoft Virtual Machine (VM) in Internet Ex-

plorer 4.x and 5.x allows an unsigned applet to

create and use ActiveX controls, which allows a

remote attacker to bypass Internet Explorer’s se-

curity settings and execute arbitrary commands

via a malicious web page or email, aka the “Mi-

crosoft VM ActiveX Component” vulnerability.

�

CVE-2000-1099 Java Runtime Environment in Java Development

Kit (JDK) 1.2.2 05 and earlier can allow an un-

trusted Java class to call into a disallowed class,

which could allow an attacker to escape the Java

sandbox and conduct unauthorized activities.

�

CAN-2000-1117 The Extended Control List (ECL) feature of

the Java Virtual Machine (JVM) in Lotus Notes

Client R5 allows malicious web site operators to

determine the existence of files on the client by

measuring delays in the execution of the getSys-

temResource method.

�

CAN-2001-0068 Mac OS Runtime for Java (MRJ) 2.2.3 allows re-

mote attackers to use malicious applets to read

files outside of the CODEBASE context via the

ARCHIVE applet parameter.

�

Continued on next page

149

Appendix A. Classification of Java Exploits from the CVE Dictionary

Table A.1 – continued from previous page

CVE Number Description VM Library Policy

CAN-2001-0324 Windows 98 and Windows 2000 Java clients al-

low remote attackers to cause a denial of service

via a Java applet that opens a large number of

UDP sockets, which prevents the host from es-

tablishing any additional UDP connections, and

possibly causes a crash.

�

CVE-2001-1008 Java Plugin 1.4 for JRE 1.3 executes signed ap-

plets even if the certificate is expired, which could

allow remote attackers to conduct unauthorized

activities via an applet that has been signed by an

expired certificate.

�

CAN-2002-0058 Vulnerability in Java Runtime Environment (JRE)

allows remote malicious web sites to hijack or

sniff a web client’s sessions, when an HTTP

proxy is being used, via a Java applet that redi-

rects the session to another server, as seen in (1)

Netscape 6.0 through 6.1 and 4.79 and earlier, (2)

Microsoft VM build 3802 and earlier as used in

Internet Explorer 4.x and 5.x, and possibly other

implementations that use vulnerable versions of

SDK or JDK.

�

Continued on next page

150

Appendix A. Classification of Java Exploits from the CVE Dictionary

Table A.1 – continued from previous page

CVE Number Description VM Library Policy

CVE-2002-0076 Java Runtime Environment (JRE) Bytecode Ver-

ifier allows remote attackers to escape the Java

sandbox and execute commands via an applet

containing an illegal cast operation, as seen in (1)

Microsoft VM build 3802 and earlier as used in

Internet Explorer 4.x and 5.x, (2) Netscape 6.2.1

and earlier, and possibly other implementations

that use vulnerable versions of SDK or JDK, aka

a variant of the “Virtual Machine Verifier” vulner-

ability.

�

CVE-2002-0865 A certain class that supports XML (Exten-

sible Markup Language) in Microsoft Virtual

Machine (VM) 5.0.3805 and earlier, proba-

bly com.ms.osp.ospmrshl, exposes certain unsafe

methods, which allows remote attackers to ex-

ecute unsafe code via a Java applet, aka “In-

appropriate Methods Exposed in XML Support

Classes.”

�

CVE-2002-0866 Java Database Connectivity (JDBC) classes in

Microsoft Virtual Machine (VM) up to and

including 5.0.3805 allow remote attackers to

load and execute DLLs (dynamic link libraries)

via a Java applet that calls the constructor

for com.ms.jdbc.odbc.JdbcOdbc with the desired

DLL terminated by a null string, aka “DLL Exe-

cution via JDBC Classes.”

�

Continued on next page

151

Appendix A. Classification of Java Exploits from the CVE Dictionary

Table A.1 – continued from previous page

CVE Number Description VM Library Policy

CVE-2002-0867 Microsoft Virtual Machine (VM) up to and in-

cluding build 5.0.3805 allows remote attackers to

cause a denial of service (crash) in Internet Ex-

plorer via invalid handle data in a Java applet, aka

“Handle Validation Flaw.”

�

CVE-2002-0941 The ConsoleCallBack class for nCipher running

under JRE 1.4.0 and 1.4.0 01, as used by the

TrustedCodeTool and possibly other applications,

may leak a passphrase when the user aborts an

application that is prompting for the passphrase,

which could allow attackers to gain privileges.

�

CAN-2002-0979 The Java logging feature for the Java Virtual

Machine in Internet Explorer writes output from

functions such as System.out.println to a known

pathname, which can be used to execute arbitrary

code.

�

CVE-2002-1257 Microsoft Virtual Machine (VM) up to and in-

cluding build 5.0.3805 allows remote attackers to

execute arbitrary code by including a Java applet

that invokes COM (Component Object Model)

objects in a web site or an HTML mail.

�

Continued on next page

152

Appendix A. Classification of Java Exploits from the CVE Dictionary

Table A.1 – continued from previous page

CVE Number Description VM Library Policy

CAN-2002-1258 Two vulnerabilities in Microsoft Virtual Machine

(VM) up to and including build 5.0.3805, as used

in Internet Explorer and other applications, al-

low remote attackers to read files via a Java ap-

plet with a spoofed location in the CODEBASE

parameter in the APPLET tag, possibly due to a

parsing error.

�

CVE-2002-1260 The Java Database Connectivity (JDBC) APIs in

Microsoft Virtual Machine (VM) 5.0.3805 and

earlier allow remote attackers to bypass security

checks and access database contents via an un-

trusted Java applet.

�

CAN-2002-1286 TheMicrosoft Java implementation, as used in In-

ternet Explorer, allows remote attackers to steal

cookies and execute script in a different security

context via a URL that contains a colon in the do-

main portion, which is not properly parsed and

loads an applet from a malicious site within the

security context of the site that is being visited by

the user.

�

CAN-2002-1287 Stack-based buffer overflow in the Microsoft Java

implementation, as used in Internet Explorer, al-

lows remote attackers to cause a denial of service

via a long class name through (1) Class.forName

or (2) ClassLoader.loadClass.

�

Continued on next page

153

Appendix A. Classification of Java Exploits from the CVE Dictionary

Table A.1 – continued from previous page

CVE Number Description VM Library Policy

CAN-2002-1288 The Microsoft Java implementation, as used in

Internet Explorer, allows remote attackers to de-

termine the current directory of the Internet Ex-

plorer process via the getAbsolutePath() method

in a File() call.

�

CAN-2002-1289 The Microsoft Java implementation, as used

in Internet Explorer, allows remote attackers

to read restricted process memory, cause a

denial of service (crash), and possibly exe-

cute arbitrary code via the getNativeServices

function, which creates an instance of the

com.ms.awt.peer.INativeServices (INativeSer-

vices) class, whose methods do not verify the

memory addresses that are passed as parameters.

�

CAN-2002-1290 TheMicrosoft Java implementation, as used in In-

ternet Explorer, allows remote attackers to read

and modify the contents of the Clipboard via an

applet that accesses the (1) ClipBoardGetText and

(2) ClipBoardSetText methods of the INativeSer-

vices class.

�

CAN-2002-1291 TheMicrosoft Java implementation, as used in In-

ternet Explorer, allows remote attackers to read

arbitrary local files and network shares via an ap-

plet tag with a codebase set to a “file://%00” (null

character) URL.

�

Continued on next page

154

Appendix A. Classification of Java Exploits from the CVE Dictionary

Table A.1 – continued from previous page

CVE Number Description VM Library Policy

CAN-2002-1292 The Microsoft Java virtual machine (VM)

build 5.0.3805 and earlier, as used in Inter-

net Explorer, allows remote attackers to ex-

tend the Standard Security Manager (SSM) class

(com.ms.security.StandardSecurityManager) and

bypass intended StandardSecurityManager re-

strictions by modifying the (1) deniedDefinition-

Packages or (2) deniedAccessPackages settings,

causing a denial of service by adding Java applets

to the list of applets that are prevented from run-

ning.

�

CAN-2002-1293 The Microsoft Java implementation, as

used in Internet Explorer, provides a pub-

lic load0() method for the CabCracker class

(com.ms.vm.loader.CabCracker), which allows

remote attackers to bypass the security checks

that are performed by the load() method.

�

CAN-2002-1295 TheMicrosoft Java implementation, as used in In-

ternet Explorer, allows remote attackers to cause

a denial of service (crash) and possibly conduct

other unauthorized activities via applet tags in

HTML that bypass Java class restrictions (such as

private constructors) by providing the class name

in the code parameter, aka “Incomplete Java Ob-

ject Instantiation Vulnerability.”

�

Continued on next page

155

Appendix A. Classification of Java Exploits from the CVE Dictionary

Table A.1 – continued from previous page

CVE Number Description VM Library Policy

CVE-2002-1325 Microsoft Virtual Machine (VM) build 5.0.3805

and earlier allows remote attackers to determine

a local user’s username via a Java applet that ac-

cesses the user.dir system property, aka “User.dir

Exposure Vulnerability.”

�

CAN-2003-0111 The ByteCode Verifier component of Microsoft

Virtual Machine (VM) build 5.0.3809 and earlier,

as used in Windows and Internet Explorer, allows

remote attackers to bypass security checks and ex-

ecute arbitrary code via a malicious Java applet,

aka “Flaw in Microsoft VM Could Enable System

Compromise.”

�

CAN-2003-0525 The getCanonicalPath function in Windows NT

4.0 may free memory that it does not own and

cause heap corruption, which allows attackers to

cause a denial of service (crash) via requests that

cause a long file name to be passed to getCanon-

icalPath, as demonstrated on the IBM JVM using

a long string to the java.io.getCanonicalPath Java

method.

�

Continued on next page

156

Appendix A. Classification of Java Exploits from the CVE Dictionary

Table A.1 – continued from previous page

CVE Number Description VM Library Policy

CAN-2003-0896 The loadClass method of the

sun.applet.AppletClassLoader class in the

Java Virtual Machine (JVM) in Sun SDK and

JRE 1.4.1 03 and earlier allows remote attackers

to bypass sandbox restrictions and execute

arbitrary code via a loaded class name that

contains “/” (slash) instead of “.” (dot) characters,

which bypasses a call to the Security Manager’s

checkPackageAccess method.

�

CAN-2003-1123 Sun Java Runtime Environment (JRE) and SDK

1.4.0 01 and earlier allows untrusted applets to

access certain information within trusted applets,

which allows attackers to bypass the restrictions

of the Java security model.

�

CAN-2004-0651 Unknown vulnerability in Sun Java Runtime En-

vironment (JRE) 1.4.2 through 1.4.2 03 allows re-

mote attackers to cause a denial of service (virtual

machine hang).

CAN-2004-0723 Microsoft Java virtual machine (VM) 5.0.0.3810

allows remote attackers to bypass sandbox restric-

tions to read or write certain data between ap-

plets from different domains via the “GET/Key”

and “PUT/Key/Value” commands, aka “cross-site

Java.”

�

Continued on next page

157

Appendix A. Classification of Java Exploits from the CVE Dictionary

Table A.1 – continued from previous page

CVE Number Description VM Library Policy

CAN-2004-1489 Opera 7.54 and earlier does not properly limit

an applet’s access to internal Java packages from

Sun, which allows remote attackers to gain sen-

stive information, such as user names and the in-

stallation directory.

�

CAN-2004-1503 Integer overflow in the InitialDirContext in Java

Runtime Environment (JRE) 1.4.2, 1.5.0 and pos-

sibly other versions allows remote attackers to

cause a denial of service (Java exception and

failed DNS requests) via a large number of DNS

requests, which causes the xid variable to wrap

around and become negative.

�

CAN-2004-1753 The Apple Java plugin, as used in Netscape 7.1

and 7.2, Mozilla 1.7.2, and Firefox 0.9.3 on Ma-

cOS �10.3.5, when tabbed browsing is enabled,
does not properly handle SetWindow(NULL)

calls, which allows Java applets from one tab to

draw to other tabs and facilitates phishing attacks

that spoof tabs.

�

CAN-2005-0223 The Software Development Kit (SDK) and Run

Time Environment (RTE) 1.4.1 and 1.4.2 for

Tru64 UNIX allows remote attackers to cause a

denial of service (Java Virtual Machine hang) via

object deserialization.

�

Continued on next page

158

Appendix A. Classification of Java Exploits from the CVE Dictionary

Table A.1 – continued from previous page

CVE Number Description VM Library Policy

CAN-2005-0418 Argument injection vulnerability in Java Web

Start for J2SE 1.4.2 up to 1.4.2 06, on Mac OS

X, allows untrusted applications to gain privileges

via the value parameter of a property tag in a

JNLP file. NOTE: it is highly likely that this item

will be MERGED with CAN-2005-0836.

�

CAN-2005-0471 Sun Java JRE 1.1.x through 1.4.x writes tempo-

rary files with long filenames that become pre-

dictable on a file system that uses 8.3 style short

names, which allows remote attackers to write ar-

bitrary files to known locations and facilitates the

exploitation of vulnerabilities in applications that

rely on unpredictable file names.

�

CAN-2005-0836 Argument injection vulnerability in Java Web

Start for J2SE 1.4.2 up to 1.4.2 06 allows un-

trusted applications to gain privileges via the

value parameter of a property tag in a JNLP file.

�

CAN-2005-1080 Directory traversal vulnerability in the Java

Archive Tool (Jar) utility in J2SE SDK 1.4.2, 1.5

allows remote attackersto write arbitrary files via

a .. (dot dot) in filenames in a .jar file.

�

CAN-2005-1105 Directory traversal vulnerability in the Mime-

BodyPart.getFileName method in JavaMail 1.3.2

allows remote attackers to write arbitrary files via

a .. (dot dot) in the filename in the Content-

Disposition header.

�

159

References

[1] Alfred Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison Wesley, 2nd edition, 1988.

[2] M. Almgren and U. Lindqvist. Application-integrated data collection for security
monitoring. In Proceedings of Recent Advances in Intrusion Detection (RAID),
pages 22–36. Springer, October 2001.

[3] Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber, Stephen Smith, Ton
Ngo, John J. Barton, Susan Flynn Hummel, Janice C. Sheperd, and Mark Mergen.
Implementing Jalapeño in Java. In OOPSLA ’99: Proceedings of the 14th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 314–324, New York, NY, USA, 1999. ACM Press.

[4] J. Anderson. Information security in a multi-user environments. Advances in Com-
puters, 12, 1972.

[5] James Anderson. Computer security threat modelling and surveillance. Technical
report, James P Anderson Company, April 1980.

[6] Apache. BCEL - byte code engineering library. http://jakarta.apache.
org/bcel/manual.html.

[7] Algirdas Avizienis. The methodology of n-version programming. In Michael Lyu,
editor, Software Fault Tolerance, pages 23–46. John Wiley & Sons Ltd., 1995.

[8] Stefan Axelsson. Intrusion detection systems: A taxomomy and survey. Technical
Report 99-15, Dept. of Computer Engineering, Chalmers University of Technology,
March 2000.

[9] Gabriela Barrantes. Automated Methods for Creating Diversity in Computer Sys-
tems. PhD thesis, University of New Mexico, 2005.

160

http://jakarta.apache.org/bcel/manual.html
http://jakarta.apache.org/bcel/manual.html

References

[10] David A. Barrett and Benjamin Zorn. Garbage collection using a dynamic threat-
ening boundary. In Proceedings of SIGPLAN’95 Conference on Programming Lan-
guages Design and Implementation, volume 30 of SIGPLAN Notices, pages 301–
314, La Jolla, CA, June 1995. ACM Press.

[11] David A. Barrett and Benjamin G. Zorn. Using lifetime predictors to improve mem-
ory allocation performance. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 187–196, 1993.

[12] S. M. Blackburn, K.S. McKinley, J. E. B. Moss, E. D. Berger, P. Cheng, A. Di-
wan, S. Guyer, M. Hirzel, C. Hoffman, A. Hosking, X. Huang, A. Khan, P. Mc-
Cachey, D. Stefanovic, and B. Wiedermann. The dacapo benchmarks. http:
//ali-www.cs.umass.edu/DaCapo/Benchmarks, 2004.

[13] Stephen M. Blackburn, Richard E. Jones, Kathryn S. McKinley, and J. Eliot B.
Moss. Beltway: Getting around garbage collection gridlock. In Proceedings of
SIGPLAN 2002 Conference on Programming Languages Design and Implementa-
tion, PLDI’02, Berlin, June, 2002, volume 37(5) of ACM SIGPLAN Notices. ACM
Press, June 2002.

[14] Stephen M. Blackburn, Sharad Singhai, Matthew Hertz, Kathryn S. McKinley, and
J. Eliot B. Moss. Pretenuring for Java. In Proceedings of SIGPLAN 2001 Confer-
ence on Object-Oriented Programming, Languages, & Applications, volume 36(10)
of ACM SIGPLAN Notices, pages 342–352, Tampa, FL, October 2001. ACM Press.

[15] J.M. Bradshaw, S. Dutfield, P. Benoit, and J.D. Woolley. Software Agents, chapter
KAoS: Towards an Industrial Strength Generic Agent Architecture, pages 375–418.
AAAI Press/MIT Press, 1997.

[16] Tim Brecht, Eshrat Arjomandi, Chang Li, and Hang Pham. Controlling garbage
collection and heap growth to reduce the execution time of Java applications. In
OOPSLA, pages 353–366, 2001.

[17] J. Burns, A. Cheng, P. Gurung, S. Rajagopalan, P. Rao, D. Rosenbluth, A. V. Suren-
dran, and D. M. Martin Jr. Automatic management of network security policy.
In DARPA Information Survivability Conference and Exposition (DISCEX II ’01),
volume 2, June 2001.

[18] B. Cahoon and K. McKinley. Tolerating latency by prefetching Java objects. In
Workshop on Hardware Support for Objects and Microarchitectures for Java, Oc-
tober 1999.

161

http://ali-www.cs.umass.edu/DaCapo/Benchmarks
http://ali-www.cs.umass.edu/DaCapo/Benchmarks

References

[19] Dante J. Cannarozzi, Michael P. Plezbert, and Ron K. Cytron. Contaminated
garbage collection. In Proceedings of the 2000 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 264–273, 2000.

[20] Martin C. Carlisle and Anne Rogers. Software caching and computation migration
in Olden. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 29–38, Santa Barbara, CA, July 1995.

[21] Perry Cheng, Robert Harper, and Peter Lee. Generational stack collection and
profile-driven pretenuring. In Proceedings of SIGPLAN’98 Conference on Pro-
gramming Languages Design and Implementation, volume 33 of SIGPLAN Notices,
pages 162–173, Montreal, Québec, Canada, June 1998. ACM Press.

[22] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and
Sam Midkiff. Escape analysis for Java. In Proceedings of the 1999 ACM SIGPLAN
Conference on Object Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA 99), November 1999.

[23] M. Christiaens. Dynamic techniques for the optimization of data race detection. In
Program Acceleration through Application and Architecture driven Code Transfor-
mations: Symposium Proceedings, pages 73–75, Edegem, 9 2002.

[24] Lap chung Lam and Tzi cker Chiueh. Automatic extraction of accurate application-
specific sandboxing policy. In Proceedings of the Seventh International Symposium
on Recent Advances in Intrusion Detection, September 2004.

[25] David A. Cohn and Satinder Singh. Predicting lifetimes in dynamically allocated
memory. In Michael C. Mozer, Michael I. Jordan, and Thomas Petsche, editors,
Advances in Neural Information Processing Systems, volume 9, page 939. The MIT
Press, 1997.

[26] M. Condell, C. Lynn, and J. K. Zhao. Security policy specification language (spsl).
Internet Draft.

[27] MITRE Corporation. Common vulnerabilities and exposures. http://www.
cve.mitre.org/.

[28] MITRE Corporation. CVE terms of use. http://www.cve.mitre.org/cve.

[29] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy specification
language. In Proceedings of the Workshop on Policies for Distributed Systems and
Networks (POLICY 2001), Bristol, UK, 2001. Springer-Verlag.

[30] Dorthy Denning. An intrusion detection model. IEEE Transactions on Software
Engineering, 13(2):222, 1987.

162

http://www.cve.mitre.org/
http://www.cve.mitre.org/
http://www.cve.mitre.org/cve

References

[31] A. Deutsch. On the complexity of escape analysis. In Proceedings of the 24th
Annual ACM Symposium on Principles of Programming Languages, pages 358–
371, 1997.

[32] Sylvia Dieckman and Urs Hölzle. A study of the allocation behavior of the
SPECjvm98 Java benchmarks. In Erik Jul, editor, ECOOP’98 - Object-Oriented
Programming, 12th European Conference, Brussels, Belgium, July 20-24, 1998,
Proceedings, volume 1445 of Lecture Notes in Computer Science, pages 92–115.
Springer-Verlag, 1998.

[33] Sylvia Dieckmann and Urs Hölzle. The allocation behavior of the SPECjvm98 Java
benchmarks. In Rudi Eigenman, editor, Performance Evaluation and Benchmarking
with Realistic Applications. The MIT Press, 2001.

[34] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley
Interscience, 2 edition, 2001.

[35] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
Bugs as deviant behavior: A general approach to inferring errors in systems code.
In Proceedings of the Symposium on Operating System Principles, pages 57–72,
October 2001.

[36] Robert P. Fitzgerald and David Tarditi. The case for profile-directed selection of
garbage collectors. In Proceedings of the Second International Symposium onMem-
ory Management (ISMM), pages 111–120, 2000.

[37] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for Unix
processes. In Proceedings of the 1996 IEEE Symposium on Computer Security and
Privacy. IEEE Press, 1996.

[38] Apache Software Foundation. Apache http server project. http://httpd.
apache.org/.

[39] Free Software Foundation. Classpath. http://www.classpath.org.

[40] Li Gong, Gary Ellison, and Mary Dageforde. Inside Java 2 Platform Security:
Architecture, API Design, and Implementation. Addison-Wesley, 2 edition, 1993.

[41] John B. Goodenough. Exception handling: issues and a proposed notation. Com-
munications of the ACM, 18(12):683–696, 1975.

[42] P. H. Gum. System/370 extended architecture: Facilities for virtual machines. IBM
Journal of Research and Development, 27(6), November 1983.

163

http://httpd.apache.org/
http://httpd.apache.org/
http://www.classpath.org

References

[43] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using auto-
matic anomaly detection. In Proceedings of the International Conference on Soft-
ware Engineering, May 2002.

[44] Timothy L. Harris. Dynamic adaptive pre-tenuring. In Proceedings of the Second
International Symposium on Memory Management (ISMM), pages 127–136, 2000.

[45] Barry Hayes. Using key object opportunism to collect old objects. In Proceedings
of SIGPLAN 1991 Conference on Object-Oriented Programming, Languages, &
Applications, volume 26(11) of ACM SIGPLAN Notices, pages 33–40, Phoenix,
AZ, October 1991. ACM Press.

[46] Barry Hayes. Key Objects in Garbage Collection. PhD thesis, Stanford University,
Stanford, California, March 1993.

[47] Matthew Hertz, Stephen M Blackburn, J Eliot B Moss, Kathryn S. McKinley, and
Darko Stefanović. Error-free garbage collection traces: How to cheat and not get
caught. In SIGMETRICS 2002 International Conference on Measurement and Mod-
eling of Computer Systems, volume 30(1) of ACM Performance Evaluation Review,
pages 140–151, Marina Del Rey, CA, June 2002. ACM Press.

[48] Martin Hirzel, Johannes Henkel, Amer Diwan, and Michael Hind. Understanding
the connectivity of heap objects. In Proceedings of the Third International Sympo-
sium on Memory Management (ISMM), pages 36–49, 2002.

[49] Steven Hofmeyer. An Immunological Model of Distributed Detection and its Appli-
cation to Computer Security. PhD thesis, University of New Mexico, 1999.

[50] Steve Hofmeyr. An Immunological Model of Distributed Detection and its Applica-
tion to Computer Security. PhD thesis, University of New Mexico, 1999.

[51] Steven Hofmeyr and Matthew Williamson. Primary response technical whitepa-
per. http://www.sanasecurity.com/resources/perspectives.
php?source=web-resources-resp.

[52] Jerry Honeycut. Microsoft Virtual PC. http:
//download.microsoft.com/download/c/f/b/
cfb100a7-463d-4b86-ad62-064397178b4f/Virtual_PC_
Technical_Overview.doc.

[53] Hajime Inoue and Stephanie Forrest. Anomaly intrusion detection in dynamic ex-
ecution environments. In Proceedings of the New Security Paradigms Workshop
2002. ACM Press, 2002.

164

http://www.sanasecurity.com/resources/perspectives.php?source=web-resources-resp
http://www.sanasecurity.com/resources/perspectives.php?source=web-resources-resp
http://download.microsoft.com/download/c/f/b/cfb100a7-463d-4b86-ad62-064397178b4f/Virtual_PC_Technical_Overview.doc
http://download.microsoft.com/download/c/f/b/cfb100a7-463d-4b86-ad62-064397178b4f/Virtual_PC_Technical_Overview.doc
http://download.microsoft.com/download/c/f/b/cfb100a7-463d-4b86-ad62-064397178b4f/Virtual_PC_Technical_Overview.doc
http://download.microsoft.com/download/c/f/b/cfb100a7-463d-4b86-ad62-064397178b4f/Virtual_PC_Technical_Overview.doc

References

[54] Hajime Inoue and Stephanie Forrest. Inferring Java security policies through dy-
namic sandboxing. In Proceedings of the 2005 International Conference on Pro-
gramming Languages and Compilers. CSREA Press, 2005.

[55] Hajime Inoue, Darko Stefanovic, and Stephanie Forrest. On the prediction of Java
object lifetimes. Submitted to IEEE Transactions on Computers, 2003.

[56] Ecma International. Standard ecma-335: Common language infrastruc-
ture (CLI). http://www.ecma-international.org/publications/
standards/Ecma-335.htm.

[57] Inc Internet Security Systems. Realsecure OS sensor. http://www.iss.
net/{securing}_e-business/security_products/intrusion_
detection/realsecure_ossensor/, 2001.

[58] Landing Camel Intl. Codebreakers. http://www.codebreakers.org, 1998.

[59] Azeem Jiva and Rober Chun. Compilation scheduling for the Java virtual machine.
In Proceedings of the 2005 International Conference on Programming Languages
and Compilers. CSREA Press, 2005.

[60] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley, Chichester, 1996.

[61] Maria Jump and Ben Hardekopf. Pretenuring based on escape analysis. Technical
Report TR-03-48, University of Texas at Austin, November 2003.

[62] L. Kagal. Rei: A policy language for the me-centric project (hpl-2002-070). Tech-
nical report, HP Labs, 2002.

[63] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via program
shepherding. In Proceedings of the 11th USENIX Security Symposium, August
2002.

[64] A. Klaiber. The technology behind Crusoe processors. http://www.
transmeta.com/crusoe/dnload/pdf/crusoetechwp.pdf, 2000.

[65] Donald E. Knuth. An empirical study of FORTRAN programs. Software—Practice
and Experience, 1:105–133, 1971.

[66] Benjamin A. Kuperman and Eugene Spafford. Generation of application level data
via library interposition. Technical Report CERIAS TR 1999-11, COAST Labora-
tory, West Lafayette, Indiana 47907-1398, October 1999.

165

http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.codebreakers.org

References

[67] Intel Microprocessor Research Labs. Open runtime platform. http://www.
intel.com/research/mrl/orp/, 2000.

[68] Terran Lane. Machine Learning Techniques for the Computer Security Domain of
Anomaly Detection. PhD thesis, Purdue University, August 2000.

[69] James R. Larus. Whole program paths. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 259–269, 1999.

[70] H. Lee. BIT: Bytecode instrumenting tool, 1997.

[71] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification Second
Edition. Addison-Wesley, 1999.

[72] Lime Wire LLC. Limewire. http://www.limewire.com/english/
content/home.shtml.

[73] Carla Marceau. Characterizing the behavior of a program using multiple-length
n-grams. In New Security Paradigms Workshop 2000, Cork, Ireland, 2000.

[74] Microsoft. Ms02-069: Flaw in microsoft VM may compromise Windows. http:
//support.microsoft.com/kb/810030/EN-US/, 2002.

[75] Sun Microsystems. Java 2 Platform, Enterprise Edition. http://java.sun.
com/j2ee/index.jsp.

[76] SunMicrosystems. The Java debug interface. http://java.sun.com/j2se/
1.5.0/docs/guide/jpda/jdi/.

[77] Sun Microsystems. Java technology. http://java.sun.com/.

[78] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Freder-
ick Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A
realistic typed assembly language. Technical report, Cornell University, 1999.

[79] Gleb Naumovich and Paolina Centonze. Static analysis of role-based access control
in J2EE applications. SIGSOFT Softw. Eng. Notes, 29(5):1–10, 2004.

[80] EIQ Networks. Systemanalyzer. http://www.eiqnetworks.com/
products/systemanalytics.shtml.

[81] Tim O’Reilly. On understanding the technology book market. http://www.
oreillynet.com/pub/wlg/5573.

[82] C. Pu, H. Massalin, and J. Ioannidis. The synthesis kernel. Computing Systems 1,
1:11–32, 1988.

166

http://www.intel.com/research/mrl/orp/
http://www.intel.com/research/mrl/orp/
http://www.limewire.com/english/content/home.shtml
http://www.limewire.com/english/content/home.shtml
http://support.microsoft.com/kb/810030/EN-US/
http://support.microsoft.com/kb/810030/EN-US/
http://java.sun.com/j2ee/index.jsp
http://java.sun.com/j2ee/index.jsp
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdi/
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdi/
http://java.sun.com/
http://www.eiqnetworks.com/products/systemanalytics.shtml
http://www.eiqnetworks.com/products/systemanalytics.shtml
http://www.oreillynet.com/pub/wlg/5573
http://www.oreillynet.com/pub/wlg/5573

References

[83] IBM Research. Jikes research virtual machine (JikesRVM). jikesrvm.
sourceforge.net.

[84] Anne Rogers, Martin Carlisle, John H. Reppy, and Laurie J. Hendren. Supporting
dynamic data structures on distributed-memory machines. ACM Transactions on
Programming Languages and Systems, 17(2):233–263, March 1995.

[85] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in
computer systems. In Proceedings of the IEEE, volume 63(9), pages 1278–1308,
September 1975.

[86] Stefan Savage, Michael Burrows, Greg Nelson, and Patrick Sobalvarro. Eraser:
A dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, November 1997.

[87] D. Scott and R. Sharp. Spectre: A tool for inferring, specifying, and enforcing
web-security. Technical report, Cambridge University, 2002.

[88] Matthew L. Seidl and Benjamin Zorn. Predicting references to dynamically allo-
cated objects. Technical Report CU-CS-826-97, University of Colorado, 1997.

[89] Matthew L. Seidl and Benjamin G. Zorn. Segregating heap objects by reference
behavior and lifetime. In Proceedings of the Eighth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages
12–23, 1998.

[90] Julian Seward and Nick Nethercote. Valgrind, an open-source memory debugger
for x86-gnu/linux. http://developer.kde.org/˜sewardj/.

[91] Yefim Shuf, Manish Gupta, Rajesh Bordawekar, and Jaswinder Pal Singh. Exploit-
ing prolific types for memory management and optimizations. In Symposium on
Principles of Programming Languages, pages 295–306, 2002.

[92] Yefim Shuf, Mauricio J. Serrano, Manish Gupta, and Jaswinder Pal Singh. Charac-
terizing the memory behavior of Java workloads: a structured view and opportuni-
ties for optimizations. In SIGMETRICS/Performance, pages 194–205, 2001.

[93] Stephen Smaha. Haystack: An intrusion detection system. In In Proceedings of the
4th Aerospace Computer Security Applications Conference, pages 37–44, Decem-
ber 1988.

[94] Michael D. Smith. Overcoming the challenges to feedback-directed optimization.
In Proceedings of the ACM SIGPLAN Workshop on Dynamic and Adaptive Compi-
lation and Optimization (Dynamo ’00), Boston, MA, January 2000.

167

jikesrvm.sourceforge.net
jikesrvm.sourceforge.net
http://developer.kde.org/~sewardj/%20

References

[95] Psionic Software. Logsentry. http://sentrytools.sourceforge.net,
2003.

[96] S. Soman, C. Krintz, and G. Vigna. Detecting malicious Java code using virtual
machine auditing. In Proceedings of the Twelfth USENIX Security Symposium,
2001.

[97] Anil Somayaji. Operating System Stability and Security through Process Home-
ostasis. PhD thesis, University of New Mexico, 2002.

[98] Standard Performance Evaluation Corporation. SPECjvm98 Documentation, re-
lease 1.03 edition, March 1999.

[99] Standard Performance Evaluation Corporation. SPECjbb2000 (Java Business
Benchmark) Documentation, release 1.01 edition, 2001.

[100] Symantec. Security response: Javaapp.strangebrew. http://
securityresponse.symantec.com/avcenter/venc/data/
javaapp.strangebrew.html.

[101] Symantec. Security response: Java.beanhive. http://securityresponse.
symantec.com/avcenter/venc/data/java.beanhive.html.

[102] Transvirtual Technologies. Kaffe 1.0.6. http://www.kaffe.org, 2000.

[103] G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A Uszok. Semantic
web languages for policy representation and reasoning: A comparison of kaos, rei,
and ponder. In Proceedings of the International Semantic Web Conference (ISWC
03), Sanibel Island, Florida, 2003.

[104] Perl.org. Parrot. http://www.parrotcode.org/.

[105] B. Vasanth, E. Duesterwald, and S. Banerjia. Dynamo: A transparent dynamic
optimization system. In Proceedings of the ACM SIGPLAN ’00 Conference on
Programming, Language Design and Implementation, 2000.

[106] VirusList.com. not-a-virus: Javaclass.port25. http://www.viruslist.com/
en/viruses/encyclopedia?virusid=62347.

[107] VMWare. VMWare an EMC company. http://www.vmware.com/.

[108] DavidWagner and Drew Dean. Intrusion detection via static analysis. In 2001 IEEE
Symposium on Security and Privacy, 2001.

168

http://sentrytools.sourceforge.net
http://securityresponse.symantec.com/avcenter/venc/data/javaapp.strangebrew.html
http://securityresponse.symantec.com/avcenter/venc/data/javaapp.strangebrew.html
http://securityresponse.symantec.com/avcenter/venc/data/javaapp.strangebrew.html
http://securityresponse.symantec.com/avcenter/venc/data/java.beanhive.html
http://securityresponse.symantec.com/avcenter/venc/data/java.beanhive.html
http://www.kaffe.org
Perl.org
http://www.parrotcode.org/
http://www.viruslist.com/en/viruses/encyclopedia?virusid=62347
http://www.viruslist.com/en/viruses/encyclopedia?virusid=62347
http://www.vmware.com/

References

[109] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion detection
systems. In CCS ’02: Proceedings of the 9th ACM conference on Computer and
communications security, pages 255–264, New York, NY, USA, 2002. ACM Press.

[110] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Effi-
cient software-based fault isolation. In Proceedings of the Symposium on Operating
System Principles, 1993.

[111] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system
calls: Alternative data models. In Proceedings of the 1999 IEEE Symposium on
Security and Privacy, pages 133–145, Los Alamitos, CA, 1999. IEEE Computer
Society.

[112] David Welton. Programming language popularity. http://www.dedasys.
com/articles/language_popularity.html.

169

http://www.dedasys.com/articles/language_popularity.html
http://www.dedasys.com/articles/language_popularity.html

	List of Figures
	List of Tables
	Introduction
	Program Behavior is Regular
	Dynamic Execution Environments
	Observable Features
	Overview

	Background
	Related Work
	Fault Tolerance
	Intrusion Detection
	Anomaly Detection
	Sandboxing
	Policy
	Java Security

	Data: JVMs, Benchmarks and Exploits

	The Simplest Feature: Method Invocation
	Motivating Application: an Anomaly IDS by Method Invocation Observation
	Dynamic Sandboxing
	Experimental Results
	Effectiveness
	Efficiency
	False Positives

	Discussion
	Summary

	Using Permissions to Infer Standard Security Policy
	Motivating Application: Anomaly Intrusion Detection
	The Java Security Infrastructure
	Policy Inference Implementation
	Experiments
	False Positives and Generalization
	Performance
	Comparison to the Chapter 3 Dynamic Sandbox

	Future Extensions
	Summary

	Object Lifetime Prediction
	Motivating Application: Better Garbage Collection
	Object Lifetime Prediction
	Self Prediction
	Fully Precise Self Prediction
	Logarithmic Granularity
	Variations

	True Prediction
	Zero-Lifetime Objects
	Prediction and Object Types
	Exploiting Predictability: Towards an Ideal Collector
	A Limit Study

	Related Work
	Discussion and Conclusions

	Methods, Method Sequences, and other Variants
	Motivating Application: Fault Detection
	Benchmark Behavior
	The Metron UAV simulation
	Scenarios
	Dynamic Sandboxing
	Implementation
	Experiments and Discussion
	Sandboxing with SSP=1
	Sandboxing with SSP=2
	Per-Thread Sandboxing

	Intrusion Detection
	Possible Extensions and Conclusions

	Other Features and a Complete System Design
	Other Features
	Types
	Method Arguments
	Method Frequency
	Per-thread Custom Sandboxes
	Feature Fusion

	The Complete System
	Stack Introspection
	Windowing
	Response
	Memory Prediction

	Summary

	Conclusion
	Contributions
	DEEs and Anomaly Detection

	Appendices
	Classification of Java Exploits from the CVE Dictionary
	References

