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Abstract

In this dissertation, I advance the concept known as negative databases, or nega-

tive representation of information, by developing a negative relational algebra, a

negative database management system architecture, and by exploring how negative

information can improve finding solutions to combinatorial problems. This disser-

tation shows how to combine positive data with its complement, known as negative

data, to provide secure and/or compact representation as required by an application.

Positive data consist of a set of binary strings of a given length l. A negative

database represents this set by maintaining a set of ternary strings matching all

strings of length l, except those in the positive set. It is known that certain negative

databases are NP-Hard to reverse, in which case an adversary must resort to enu-

merating all 2l strings to recover the positive set. Although recovering of positive
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data is difficult, answering membership queries remains efficient — an advantage

for privacy-enhancing applications. This dissertation extends the negative database

concept by defining an algebra that corresponds to the positive relational model.

Understanding these operations and their complexity illuminates the complexity of

queries and set operations over negative databases. Certain operations are shown

to be more efficient than their positive counterparts and others are shown to be less

efficient. In addition, I develop a negative database architecture that uses a tradi-

tional relational database management system to better manage both positive and

negative data simultaneously. By bringing negative databases into a more main-

stream concept, others will more easily understand and adopt them for their use.

Lastly, I apply negative database ideas to abstract interpretation, more specifically,

set-sharing analysis of logic programs. For a given number of program variables,

the number of variable sharings can be exponential leading to an intractable prob-

lem instance. I show how to represent set-sharings more efficiently and precisely

by maintaining a compact positive or negative representation, as required by the

analysis.

viii



Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1

2 Background 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Negative Database (NDB) . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Hard-to-Reverse NDBs . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Compressed NDBs . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Negative Database Strengths and Weaknesses . . . . . . . . . 10

2.3 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Database Management System . . . . . . . . . . . . . . . . . . 15

2.4 Constraint Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Data Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ix



Contents

2.5.1 Cryptographic Schemes . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Encryption with an untrusted service provider . . . . . . . . . 20

2.5.3 Secure Multiparty Computation . . . . . . . . . . . . . . . . . 21

2.5.4 Private Matching . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.5 Private Information Retrieval . . . . . . . . . . . . . . . . . . 23

2.5.6 Searching Over Encrypted Data . . . . . . . . . . . . . . . . . 24

2.5.7 K-anonymity . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.8 Data Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.9 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Set-Sharing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Relational Algebra for Negative Database 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Relational Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Negative Select . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Negative Union . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Cartesian Product, Join and Intersection . . . . . . . . . . . . 46

3.2.4 Negative Cartesian Product . . . . . . . . . . . . . . . . . . . 47

3.2.5 Negative Join . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.6 Negative Intersection . . . . . . . . . . . . . . . . . . . . . . 50

x



Contents

3.2.7 Negative Project . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.8 Negative Set Difference . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Example Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Applications of Negative Relational Algebra . . . . . . . . . . . . . . 61

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Negative Database Management System 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 NDBMS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Internal Data Representation . . . . . . . . . . . . . . . . . . 74

4.3.2 Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.3 Design and Implementation . . . . . . . . . . . . . . . . . . . 77

4.4 NDBMS Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Efficient Representations for Set-Sharing Analysis 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Set-Sharing Encoded by Binary Strings . . . . . . . . . . . . . . . . . 89

xi



Contents

5.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Abstract Operations . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Ternary Set-Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Pattern Generate . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.2 Manage Growth . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.3 Example of Conversion from bSH to tSH . . . . . . . . . . . . 99

5.4.4 Ternary Set-Sharing Operations . . . . . . . . . . . . . . . . . 101

5.5 Negative Ternary Set-Sharing . . . . . . . . . . . . . . . . . . . . . . 104

5.5.1 Deleted Cache Size . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5.2 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.3 Example of Conversion from bSH to tNSH . . . . . . . . . . . 111

5.5.4 Negative Ternary Set-Sharing Operations . . . . . . . . . . . . 114

5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.7 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . 127

6 Conclusion 129

A NDBMS Data Model 132

A.1 Negative Databases using RDBMS . . . . . . . . . . . . . . . . . . . 133

A.1.1 Membership Query in an RDBMS . . . . . . . . . . . . . . . . 134

A.1.2 Basic Negative Database Operators . . . . . . . . . . . . . . . 136

xii



Contents

References 138

xiii



List of Figures

3.1 Negative Set Difference Diagram . . . . . . . . . . . . . . . . . . . . 57

3.2 Example 1: Negative Reduce . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Example 2: Negative Reduce . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Private Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . 72

4.2 NDBMS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Example: Entity-Relationship Diagram . . . . . . . . . . . . . . . . 76

4.4 Query times for finding a match . . . . . . . . . . . . . . . . . . . . 80

4.5 Storage Size Comparison . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 bsh to tsh Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Size Comparison of bsh and tsh . . . . . . . . . . . . . . . . . . . . 99

5.3 Compress Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Negative Convert Algorithms . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Example: Deleted Cache Size . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Example: Sorted vs. Unsorted Input . . . . . . . . . . . . . . . . . . 110

xiv



List of Figures

5.7 k-Unspecified Bit Size Comparisons . . . . . . . . . . . . . . . . . . 123

5.8 Memory and Time Usage Comparisons . . . . . . . . . . . . . . . . 125

5.9 AMGU Memory and Time Usage Comparisons . . . . . . . . . . . . 126

xv



List of Tables

2.1 Simple NDB Example . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Example: Private Patient Data . . . . . . . . . . . . . . . . . . . . . 26

2.3 Example: 2-Anonymized Patient Data . . . . . . . . . . . . . . . . . 27

3.1 Sample SQL Table for NDB . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Example: Positive Relational Operations . . . . . . . . . . . . . . . 38

3.3 Example: Negative Relational Operations . . . . . . . . . . . . . . . 38

3.4 Relational Operation Compexity . . . . . . . . . . . . . . . . . . . . 58

4.1 Table scheme for NDB . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Example: Managed Growth . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Summary of Conversion Algorithms . . . . . . . . . . . . . . . . . . 113

5.3 Example: Equivalent Negative Sets . . . . . . . . . . . . . . . . . . 121

A.1 Example 1: NDB Table . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.2 Example 2: NDB Table . . . . . . . . . . . . . . . . . . . . . . . . . 135

xvi



Chapter 1

Introduction

Today’s technology and communication infrastructure provides unlimited access to

vast amounts of data. Such ubiquitous access to information has privacy advocates

clamoring for more control over who has access to information and how that infor-

mation is used. This concern is countered by the increasing need to collaborate and

share information, fueling a tendency to make available as much data as possible.

However, responsible data owners, motivated by prudent business practices or gov-

ernment regulations, strive to control access to sensitive data. They are more likely

to share data if privacy protection were guaranteed and/or if they had control over

the types of operations conducted over their data. However, these privacy enhanc-

ing protocols introduce many system challenges especially in handling sensitive data

from disparate sources.

Privacy enhancing applications are in demand and have been studied by several

researchers [3, 8, 18, 50, 52, 69, 53, 106]. Cryptography has been the most common

primitive for developing solutions to privacy enhancing applications. Current crypto-

graphic protocols are based on number theoretic problems such as factoring, discrete

logarithm, and elliptic logarithm [37]. These problems are related so if one is broken
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Chapter 1. Introduction

then all may be compromised [36]. I explore using an alternative tool called negative

databases, which is based on the difficulty of finding satisfying (SAT) assignments to

Boolean logic formulas. Another disadvantage of using encryption is that key man-

agement, to include key distribution, overhead may not be appropriate for certain

applications. To our favor, negative databases do not depend on the concept of keys

for its security. One of the primary goals of this research is to establish negative

databases as a viable alternative to encryption for privacy-enhancing applications.

Negative representation of information, as proposed by Fernando Esponda, at-

tempts to address data privacy requirements without cryptographic means. It was

inspired by the theory of self-nonself discrimination of the immune system [38]. Im-

mune cells recognize the body’s own cells and molecules from foreign ones. These

detectors, called T-cells, undergo a filtering process in the thymus, called negative

selection, which destroys T-cells that recognize itself. Thus, only T-cells that de-

tects foreign antigens remain and are distributed throughout the body. This pro-

cess enables the immune system to detect antigens without initially encountering

them. From an information content perspective, the collection of active T-cells,

those trained to recognize nonself, can be viewed, in complement form, as a model

of what self truly is. He proposed a mapping of nonself representation as a set of

strings enabling them to be treated as a database. Taken from a finite universe, this

negative database is a representation of all the elements not contained in a given

positive set. Although possessing different properties, a set and its complement con-

tain the same amount of information. An important observation is that queries can

be answered by either a positive or negative database by complementing the results

accordingly. For example, if we ask whether a string is in the positive database using

its negative representation and we get a false answer (does not appear in the nega-

tive database), then we know the string is actually in the positive set and the answer

is true. However, as a privacy-enhancing feather of the negative representation, the

positive information is not apparent and can be difficult to retrieve. In this way,

2



Chapter 1. Introduction

negative representations can potentially be used to provide privacy protection for

sensitive data without using cryptography.

This dissertation begins with a description a negative relational algebra and

the complexity of each operation as applied to negative databases. Then, I pro-

pose how negative databases, managed by a negative database management system

(NDBMS), can be used as an enabler for privacy-enhancing applications. In addi-

tion, I describe a way to represent negative data within a managed system and how

to conduct negative database operations over them. I strive to develop an extensible

architecture that can service both positive and negative data simultaneously. It is

envisioned that having an automated system will encourage the adoption of nega-

tive databases for general database applications, especially in cases where database

privacy is desired.

Privacy preserving applications, such as private matching, are the basis for several

real-world applications. These applications enable different database owners to share

information and get query results, such as set intersection, without revealing any

other information to the other party. For example, with the increased emphasis on

flight safety, airliners may want to verify that their list of passengers are not on

the “no-fly” list of suspected terrorists. An airliner can privately match its flight

manifest against the government’s terrorist watchlist. However, for privacy reasons

the airliner may not want to reveal its entire manifest containing other personal

information to the government, and for security reasons, the government does not

want to reveal its watchlist to airliners. Today, cryptological-based private matching

protocols have been proposed to help solve these types of problems. In Chapter 4, I

show how negative databases can also solve this problem.

On a related but different research thrust, Chapter 5 shows how to leverage the

potentially compact size of a set’s complement. Negative databases, using comple-

mentary information, to represent large positive sets, i.e., whose size is more than
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Chapter 1. Introduction

half of its universe, are smaller since there are less elements to represent in its com-

plement. This property leads to more compact storage and efficient algorithms for

certain applications. One class of problems that may benefit from negative represen-

tation is that of variable tracking during set-sharing analysis of logic programs [61].

This application has the property that the positive data representation may yield

an exponential number of relationships during execution. Set-sharing analysis deter-

mines which variables share, or dependent, and those variables (or set of variables)

that are independent may be optimized for parallel scheduling or execution.

Current solutions, using positive representations, must contend with an expo-

nential number of relationships. However, maintaining the negative representation

of these relationships yields a smaller set size and enables more efficient algorithms

for computing set-sharings. We explore this new paradigm proving that negative

database concepts are applicable and beneficial to this class of problems.

We begin this dissertation with the essential background topics and previous work

on this research area, i.e., negative databases, database systems, privacy-enhancing

databases, and set-sharing analysis. Chapter 3 continues with a description of a neg-

ative relational algebra. A formal relational algebra as applied to negative databases

is essential in furthering our understanding of how to better manage the negative rep-

resentation of information. This helps explain which negative operations are efficient

and which are not. Chapter 4 proposes an extensible negative database management

system built over an existing relational database management system. Here we show

a general architecture that can be used for managing large numbers of negative data

among positive data. Chapter 5 shows how to use negative database concepts to

increase the size of solvable set-sharing problem instances. Finally, this dissertation

concludes with a summary and outlines possible avenues for future work.
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Chapter 2

Background

2.1 Introduction

This chapter highlights previous works related to negative database concepts and

applications. Negative database (NDB) ideas, as proposed by Esponda [44, 38],

were inspired by how the immune system maintain and represents information. In

particular, Esponda focused on the relationship of databases with the theory of self-

nonself discrimination [63]. Self-nonself theory describes how the body’s immune

system detects antigens it has never before encountered and how it classifies these

foreign substances for elimination.

Several immune system inspired algorithms have been proposed to help model

this process, such as the clonal selection algorithm [35] and the negative selection

algorithm [49]. The clonal selection algorithm emulates the way B-cells secrete an-

tibodies killing the specific type of antigen detected. It also models how B-cells

are stimulated by antigens to proliferate versions of itself to further kill encountered

antigens. This model lends itself to evolutionary algorithms for simulation. On the

other hand, the negative selection algorithm models how T-cells function. T-cells are
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Chapter 2. Background

censored before distribution throughout the body so that only the ones receptive to

cells other than itself (nonself) are allowed to leave the thymus [48]. Those that can

bind to self are destroyed within the organ. Therefore, T-cells released to the rest

of the body possess a high confidence that they are not harmful to the organism.

These mature T-cells are able to bind and kill antigens never before encountered.

From an information representation perspective, one can think of a collection of

all T-cells as a distributed model describing a set of data items not itself—its nonself.

So, given a finite universe, if the collection precisely captures nonself, then it may

also serve as a sufficient model to describe self.

2.2 Negative Database (NDB)

From these concepts, Esponda proceeded to map a representation of self and nonself

as bit strings; thus, yielding a mechanism to transition from the immune system to

database theory. More specifically, a positive set of binary strings representing self is

consider the database (DB). For each positive database, the universe is based on a

finite set of fixed length strings, created from a binary alphabet {0,1}. On the other

hand, a negative database (NDB) is a representation of all elements not contained

in a given DB.

A negative database compactly represents the complement of DB by introducing

a special symbol, ∗, that allows a single NDB entry to denote many binary strings.

A string with a ∗ at position i represents two strings, one with a 0 and one with 1 at

position i (with all other bit positions equal). We define a negative database as a set

of strings of length l defined over Σ = {0, 1, ∗} that match (see Definition 5.4.2) each

and every string in U \ DB, where U is the finite set of all possible binary strings

of length l and DB ⊆ U . Thus, a negative database containing an entry with l ∗

symbols, {∗l}, represents 2l binary strings. Table 2.1 illustrates a simple example.
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Chapter 2. Background

DB U \DB NDB
000 001 01*
101 010 11*

011 0*1
100 1*0
110
111

Table 2.1: A 3-bit example of a positive database (DB), all the strings not in DB,
those in U \DB, and its corresponding negative database (NDB) defined over Σ =
{1, 0, ∗}.

Several algorithms for creating negative databases have been proposed, most of

which are able to generate an NDB in time polynomial in the size of its input

DB [44, 38, 109, 108]. The prefix-algorithm, for example, creates an NDB with at

most l|DB| entries in O(l|DB|) time. However, the NDB produced by the prefix

algorithm is easy-to-reverse and obtain the DB represented. In [45], Esponda et al.

proposed a hard-to-reverse algorithm reviewed in the next section. Different negative

pattern generation algorithms produce NDBs with varying properties depending on

the number of ∗’s (the unspecified positions), its record length, and the total number

of records in the database.

2.2.1 Hard-to-Reverse NDBs

Esponda et al. established a relationship between negative databases and Boolean

expressions, specifically satisfiability (SAT) formulas [43, 44]. It was shown in [44]

that the general problem of reversing a negative database to recover the correspond-

ing DB is NP-Hard using a reduction from 3SAT. In [43], they presented a new

and efficient way to generate negative databases that are hard-to-reverse, i.e., it is

extremely difficult to obtain the positive set from the negative representation. The

algorithm takes advantage of the relationship of the negative data representation with

7



Chapter 2. Background

SAT formulas. In addition, they showed that by transforming a negative database

into a Boolean formula and submitting it to state-of-the-art SAT solvers, an empiri-

cal assessment of an NDB’s hardness is possible. In some cases, their method creates

an inexact negative image of DB. In other words, other strings not in DB are also

missing from the negative representation. This property further hides the true posi-

tive data among superfluous strings. However, in order to precisely answer queries,

these extra strings must be distinguishable from the true data. They addressed this

by including error detecting codes to precisely tag members of DB. They contend

that in lieu of cryptography, hard-to-reverse NDBs may be used to secure sensitive

data in applications where encryption is not desirable [43].

Hard-to-reverse NDBs were evaluated for their hardness empirically using two

well-known SAT solvers, zChaff [9] and WalkSAT [87]. Esponda et al. showed that

both solvers find a possible solution in time exponential to the length of the string

[45]. In addition, candidate NDBs were deemed hard-to-reverse if neither solver

was able to find a solution within 24-hours of computation or before running out

of memory [43]. See [43, 37] for examples of how to generate hard instances. They

consistently found negative databases to be hard-to-reverse when generated using

records 1000-bits long and created using an algorithm proposed by Jia et al. in [64].

The algorithm was designed to hide a known satisfying assignment to a hard SAT

instance. This hidden assignment is a member of DB represented by the hard-to-

reverse NDB. However, a limitation of the process is that it hides only a single DB

record. Thus, for each value in a database that we want to protect, we must produce

a separate, singleton NDB (SNDB). In applications with storage limitations or

those dealing with resource constraint hardware, hard-to-reverse NDBs may not be

the best option. However, for applications where storage size is less critical, SNDBs

may be a viable alternative to encryption.

As suggested above, not all instances of NDBs are hard in practice. More inter-
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Chapter 2. Background

estingly, within the same application easy or hard NDB instances can be constructed

depending on the generation algorithm used and they can interact with each other.

Finally, situations may arise where DB is unknown and negative data is the only

type of data available, e.g., remote sensors storing data that has not been sensed

or when performing operations over existing SNDBs. In these cases, manipulating

the negative database is the only option. Chapter 3 presents a relational algebra for

negative databases enabling them to be treated as conventional relational databases.

Having many singleton NDBs in a database may pose a data management prob-

lem. As the number of data entries increase, keeping track of each negative database

and its associations can be cumbersome. An automatic negative database man-

agement system would to help alleviate the administration burden associated with

maintaining a large database. Chapter 4 proposes such a system.

Other security schemes based on NP-Complete problems have been suggested,

most notably the Merkle-Hellman cryptosystem [82] based on the general knapsack

problem, but most of these schemes have been broken [93]. Other research efforts

have looked into creating hard-to-solve SAT instances, e.g., [1, 26, 85, 64, 67, 102].

The flexibility of a relational algebra described in Chapter 3 could offset the lack of

full cryptographic protection. This could be useful for applications in which rela-

tional operations over protected data is required, e.g., for limited searches and par-

tial matching. Identifying such applications and deepening our understanding of the

tradeoff between privacy protection and flexible data access is critical to expanding

negative databases’ utility.cannot read the data. And if the database is compromised,

physically or logically, then the data will reveal nothing to the adversary.

9



Chapter 2. Background

2.2.2 Compressed NDBs

In this research, we also explore how NDBs can be used to exploit its compressed

representation of the complement of large sets. Some applications may not require

the security enhancing property of negative databases. Sets with a cardinality of

more than 50 percent the size of its universe will have fewer elements in its com-

plement. We explore whether the negative representation achieves favorable results

in certain combinatorial problems. In particular, where input sets typically contain

elements near its power set. Chapter 5 shows how NDBs can be used for such an

application, called set-sharing analysis. In this chapter, a deterministic NDB gen-

eration algorithm is presented that attempts to produce the most compact NDB

by reducing redundancies inherent in the ternary string representation. Associated

operations to conduct set-sharing analysis using the negative representation are also

defined. The ultimate goal of this part of the research is to increase the size of

solvable instances of an intractable problem.

2.2.3 Negative Database Strengths and Weaknesses

Negative databases possess known properties, summarized below, that must be con-

sidered before using them. The following list briefly describes some of these proper-

ties:

•Alternative to Encryption. Computationally hard-to-reverse NDBs provide

an alternative to encryption-based security algorithms [43]. Due to the similarities

of encryption primitives used [36], alternative cryptographic primitives are desirable

in the event one encryption system is broken, so that they are not all compromised.

De Mare et al. proposed in [37] to exploit the hardness of finding solutions to SAT

formulas and secure set membership problems as the building block for a secured

protocol without encryption. Since NDBs maps directly to SAT formulas, NDBs
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can also be used as primitives for secure set membership problems.

• Partial Matching. An essential property of good cryptographic protocols

ensures that cipher text generated from two similar data (even those that differ by

just one bit) are considerably different from one another. This offers great data

security, but without prior knowledge of expected queries, partial data matching

is impossible. Negative databases, by using ∗ symbols as wild cards, can perform

partial matching over its obfuscated form.

• No Key Management. Key distribution and updates are management over-

heads that should not be ignored by any enterprise employing cryptographic tools.

Negative databases do not use keys. They rely on the complexity of finding satis-

fying solutions, rather than some large numerical computation. Thus, no keys are

required. This is especially beneficial when new users are granted access to shared

data. They will not have to obtain the keys ahead of time. In addition, no periodic

updates to keys are required.

• Long-Term Storage. Without keys, long-term data storage no longer de-

pends on remembered keys or passwords. Since there are no keys to forget, lose, or

compromise, a negative database remains available to service queries as long as its

available.

• Less Information Leakage. Negative databases are suitable for privacy en-

hancing applications because when a portion of a negative database is compromised,

the amount of information revealed by the negative is less than the positive database

[38]. If an adversary acquires access to a portion of a positive database, then the

adversary can inspect the records and know exactly which subset of records are in the

database. On the other hand, if the adversary obtains and reverses a percentage of

a negative database, any discovered positive records may still be contained in other

uncompromised negative database. Thus, the adversary receives no guarantee that
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captured records actually belong to the positive database.

• Equivalent But Different. Different versions of negative databases can rep-

resent the same positive database. Depending on parameter settings, i.e., number of

specified bits, record length, random seeds, etc., a different negative database can be

created representing the same positive database. As shown by Esponda, the Morph

operation changes an existing negative database without actually changing its se-

mantics [38]. This is convenient for preventing an adversary from deducing patterns

within a database. After a set amount of queries, a negative database management

system can automatically initiate a Morph operation and change the actual strings

in a negative database without changing what they represent.

• Closed Set Operations. As shown in Chapter 3, set operations over negative

databases are possible. These operations result in another negative database that

represents a positive database as if the operations were conducted on the positive

databases represented by the inputs.

• Computation Time. Basic operations, such as insertion and deletion of

negative records, take longer, in comparison to a similar-sized positive database [38].

However, some relational operations over NDBs do take longer, while others are

more efficient, see Table 3.4.

• Hard Relational Operators. Certain relational operators are NP-Hard,

namely Negative Project and Negative Set Difference. These operations presents

unique challenges that must be addressed. These operations should be avoided as

much as possible. For special cases, these operations can be compensated for, e.g.,

designing the database schema around Negative Project, see Figure 4.3.

• Smaller Complement Set. Negative databases that represent large positive

sets, i.e., more than half of its universe, result in smaller sets. Less storage and more

efficient computations are possible for certain applications, see Chapter 5.
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• Large Databases. On the other hand, for small positive databases, negative

databases are usually much larger in size. This size difference may not be suitable for

applications with memory constraints or without any security requirements. At this

time, only single record DB can be converted into hard negative databases. These

hard-to-reverse, singleton NDBs are even larger than other types of NDBs.

• New Paradigm. A paradigm shift is required in developing algorithms for

performing straight-forward positive database operations. What seems like a simple

operation in positive databases must be carefully examined when working with its

negative representation. For example, see how the negative relational operations

(Chapter 3) and the negative abstract unification operations (Chapter 5) are defined.

2.3 Databases

A database is a structured collection of data for use by a variety of users and systems

[103]. For this research, our data is defined as a set of binary or ternary strings of

a given length. This set of bit strings can be used to represent a specific value or

character of interest. For example, an ASCII character may be represented by its 8-

bit binary value. Combining multiple bytes, we are able to store textual information

up to the given record length. In addition, in Chapter 5 we use bit strings to represent

characteristics of a given problem instance. For example, in the set-sharing analysis,

a 1 in position i of a string signifies that a particular variable, represented by the ith

bit, is present in a specific sharing group.

Within a database, there commonly exists a consistent and organized way to

represent the underlying data. This data model is comprised of a collection of tools

for describing and manipulating data, relationships, and semantics. A defined data

model helps organize and visualize the data from various users’ perspective. In [103],

several data models are described, including:
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• Relational Model. A collection of tables represents both data and the re-

lationships among those data. Each table has multiple, uniquely named columns

corresponding to attributes of specific record types. It is the most common data

model.

• Entity-Relationship (E-R) Model. Consisting of a collection of basic objects

(entities) and their relationships based on the view of the real world.

• Object-Based Data Model. An extension of the E-R model with notions of

encapsulation, inheritance, functions, and object identity. The object-relational data

model combines features both the object-based and relational model. Most modern

database system incorporates some form of data object handling.

• Semistructured Data Model. Specifies, normally by tagging, data items of the

same type to have different sets of attributes. This model works well for specifying

web pages and extensible markup language (XML) documents.

The data model determines how the data are viewed, organized and accessed.

In addition, the model determines the definition and manipulation language used

to query the database. Our research in negative relational algebra and database

management system uses the relational model as the negative data model.

In a relational model, users (or programs) interact with a relational database by

sending it a query written in some version of Structured Query Language (SQL). In

response to the query, another relation consisting of records (or rows) constituting

the answer is returned. The simplest query returns all the rows from a given table,

but more often, the rows are filtered and/or combined in some way to return just

the desired answer. Relational operators are used to manipulate the relations ac-

cordingly. The minimally complete set of relational operators, its relational algebra,

consists of: select, project, union, intersection, set difference, and Cartesian product.

We define a complete relational algebra for negative databases in Chapter 3.
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2.3.1 Database Management System

Databases have been around for many years. They are a component of a wide range of

applications, from an enterprise level information system to basic single-user catalogs.

To manage a database more efficiently, a database management system (DBMS) is

usually employed. A DBMS is a set of programs used to organize and access a col-

lection of inter-related stored data [103]. In 1972, the American National Standards

Institute (ANSI) proposed an architectural framework for databases that has been

widely adopted [32]. The standard proposed three levels of abstraction: the exter-

nal, conceptual, and internal views. The internal view is the one closest to physical

storage and how the actual data are laid out. The external view is closest to the

user; thus, it is concerned with how the data are viewed by individual users, and

it determines how users will interact with the database. The conceptual view acts

as the intermediary between the internal and external views. The conceptual view

is concerned about the database schema that is viewable by the entire community

of users. In this way, each level coincides with three different views (external, con-

ceptual, interna) of the data, the individual user view, the community user view,

and the physical view, respectively [103]. In addition, the different levels provide a

separation of information semantics from level to level. This adaptable architecture

provides the flexibility and data independence needed to develop a negative database

management system (NDBMS), see Chapter 4.

Current negative database implementations rely on flat files as the data orga-

nization for persistent storage. This research implements the relational operators

using a DBMS-based system. A system perspective provides several advantages.

Centralized data management can take advantage of availability of all data from a

single view. This may reduce redundancies and inconsistencies of data. For example,

a person’s address may be stored in multiple location (redundant) and whenever an

update occurs, all copies must be updated leading to a potential for inconsistencies.
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Storing data in a central DBMS allows designers to better establish and enforce

standards for data format, naming conventions, and database schema. Another ad-

vantage of a DBMS is it promotes data independence from applications using the

data.

On the other hand, a centralized database managed by a DBMS has several dis-

advantages. For smaller, customized applications, a DBMS is usually not necessary.

It adds complexity and increases the size of the program. In addition, maintaining

data in a central location introduces a single point of failure for the system. More

importantly, since all data are now stored in one location, without robust access

control, data may be revealed inadvertently to unauthorized users. Private informa-

tion may be leaked by the DBMS to users only authorized access to portions of the

entire database [32, 51]. Data owners should be able to select the level of protection

for each data attribute at the internal view.

This research builds on a popular open-source DMBS called PostgreSQL. It

is an object-relational DBMS licensed under the Berkeley Software Distribution

(BSD) agreement. It has had many years of active development and a proven archi-

tecture earning it a strong reputation for reliability, data integrity and correctness

[94]. Building over a robust system relieves us from reimplementing many common

algorithms, i.e., matching, sorting, etc.

2.4 Constraint Databases

A related scheme for compactly representing large datasets in a relational format is

called constraint databases. They generalize relational databases by including asso-

ciated constraints in the query and/or within the data model itself [7, 96]. These

constraints normally take the form of linear or polynomial equations. They have

been used extensively to characterize infinite sets [65]. Their ability to deal with
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infinite sets makes them particularly promising as a technology for integrating spa-

tial and temporal data with relational databases. It may be possible to represent

specific negative data, with known semantics, using constraint database constructs.

However, in general, it is unclear how the negative representation independent of

the semantics of the data can be represented correctly by any equation. In addition,

the data will no longer be secured since the equation will reveal the semantics of the

representation. Although negative databases use the relational model, constraint

databases operate on the logical level for a compact representation while negative

databases operate more on the internal representation, i.e., at the bit level. In ad-

dition, unlike typical constraint database operations, negative databases represent

finite sets using a straightforward data model (without explicit constraints). Nega-

tive databases organically induce constraints based upon its representation and the

types of operations that can be performed efficiently over them.

2.5 Data Privacy

Today’s technology and communication infrastructure provides unlimited access to

vast amounts of data. This two-edged sword has privacy advocates clamoring for

more protection of private information. In addition, the trend towards outsourcing

database services has further fueled concerns [98, 111]. Furthermore, as a response

to heightened privacy concerns and identity theft, recent laws mandate companies

to notify customers and the public of incidents that potentially expose their private

data [98, 111], along with other information security laws and regulations designed

to protect the privacy of personal information [71, 72, 73, 74, 75, 76]. Such financial

exposure by companies may lead to loss of revenue from lawsuits, civil fines, and/or

consumer confidence. These changes to the business environment are forcing industry

to rethink its approach to database management and privacy security.
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In this dissertation, I show how negative databases may be used to ensure data

privacy by leveraging both its positive and negative representations. In addition, I

show that negative databases can be treated like ordinary relational databases.

2.5.1 Cryptographic Schemes

Cryptographic techniques are the most common solution to data privacy. Thus, they

play a major role in maintaining data confidentiality in current database systems.

Even though the encryption/decryption process can be computationally expensive,

it is one of the most secure and reliable techniques for keeping databases private

[79]. Another benefit of encryption is that it also can guarantee data integrity. Any

unauthorized alterations can be recognized, i.e., using a hash signature. Hence, an

investigation can occur and data can be reconstructed from a backup copy [28]. It

is obvious that this technique meets the requirement of keeping databases private.

However, the computational expense of cryptography and the associated key manage-

ment overhead may not be appropriate for all types of applications. Also, as stated

earlier, once encrypted, partial matching is prevented. In other words, encryption is

a binary all or nothing form of protection.

Several schemes exist to combine cryptography with databases. In 1981, Davida

et al. evaluated several of these cryptographic techniques, i.e. public key encryption

and symmetric encryption at table, record and field levels. More importantly, he

described characteristics that database encryption systems should possess to ensure

a practical database management system [34]. They include the following:

• Encryption system does not need to be theoretically secure, which is impossible to

guarantee. Systems based on classically hard problems are sufficient.

• Encryption and decryption must not degrade performance to unacceptable levels,

especially decryption, which is performed more often during query execution.
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• Encrypted data must not have significantly greater storage volume than unen-

crypted data.

• Encryption must occur at the record level of a database. Since the position of a

record is likely to change during its lifetime, there should be no need to decrypt n−1

records to get to the nth record.

• Encryption should support logical view presentation depending on different user

privileges.

• An encrypted record must not contain a series of individually encrypted fields.

Such a scheme can lead to pattern matching and substitution attacks.

• Reads and writes to the database must be allowed without any special constraints.

• The systems should be able to detect and reject data using false encryption key,

even without knowing what the data contain.

In Chapter 4, we address each of the above characteristics as they relate to neg-

ative databases. Davida recommends that the encryption system be record-oriented

where a single record is a single function of all its field values. Additionally, each

field is encrypted/decrypted by means of a separate key. He called this scheme an

encryption system using subkeys [34]. Subkeys have many advantages over either ta-

ble or block level encryption. It provides better granular control preventing pattern

matching attacks and the possibility of substitution of fields. To enhance perfor-

mance, specific records (and fields) can be decrypted without decrypting the entire

block. This property is ideal for databases, where records are usually aggregated to

answer a query; however, not all fields should be visible to everyone.

A major disadvantage of this scheme is that updates are expensive. The entire

record must be re-encrypted then rewritten, which can severely degrade performance

if there are frequent updates to the database. Another possible drawback is when the

database is visible to an outsourced database management service provider; it can
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reveal private information. System manipulation by extracting encryption keys or

saving queries and results to try to crack the customer’s keys or use pattern matching

to gain private information, may be possible.

2.5.2 Encryption with an untrusted service provider

A more advance approach models database transactions with a trusted client and an

untrusted, database management service provider [28, 57]. Conventional approaches

to database encryption protect the data in storage and assume trust in the server.

The server decrypts the data for query execution then re-encrypts them before trans-

mission and subsequent storage.

In 2003, Damiani et al. proposed, an extension of work done by Haciqumus [57],

where the trusted client side performs a mapping of plain text queries to new queries

based on the encrypted values stored in the untrusted database service provider [28].

In this model, in order to keep data at the provider’s end encrypted, new indexing

information is needed. The new index is based on the encrypted data value, which

can then be used to answer queries based on ciphered data. The query result is sent

to the client for post-processing to readable text.

Their technique assumes that encryption occurs at the record level. However,

both researchers were challenged with the best way to index encrypted data. They

sought a good way to create and represent indexing information. Taking privacy

protection into account, they note two conflicting requirements for a suitable index-

ing scheme. First, the indexing information should be close enough to the data to

expedite query execution and optimization. On the other hand, the indexing infor-

mation should be obscure enough to prevent inference and pattern matching attacks

that will compromise the confidentiality of the database [28].

They recommended indexing over encrypted data rather than the unencrypted
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data or metadata. A record can be encrypted using a suitable encryption scheme

or a secure hash function over the attribute values. Then, an index is created over

ciphered texts. They also defined a metric for unwanted inference, which they called

the inference exposure coefficient [28]. Basically, it measures how close the encrypted

data is to the plain text data.

Other techniques for privacy preserving set operations, for example private set

intersection, have been proposed, all using cryptographic schemes. The following

introduces several related topics.

2.5.3 Secure Multiparty Computation

Secure Multiparty Computation is a protocol that allows a group of people to com-

pute any function, based on individual confidential inputs. The result is known to

everyone but no one learns anything about the inputs of any other members [100].

This problem is sometimes known as Yao’s millionaire problem [112], where each

millionaire wants to know who is the richest of the group without revealing their

actual wealth to others. It is based on a protocol that uses homomorphic encryption

scheme [100]. Secure Multiparty Computation provides the foundation for solutions

to many real-world problems such as distributed voting, private auctions, secure

signature sharing and others covered below.

2.5.4 Private Matching

Private matching is a special case of Secure Multiparty Computation. It has been

called by other names, such as private selective data sharing or private set intersection

problem [3, 69]. Two different data owners would like to collaborate and find common

data between their databases. However, for the protection of the privacy of its data,
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neither one of them wants to openly share all of their data nor do they want to

reveal their query parameters to the other party. This problem can be illustrated by

considering the case of an airliner and the Federal Bureau of Investigation’s (FBI)

watchlist of suspected terrorists. The airliner would like to query the watchlist

database but also wants maintain its customers’ privacy. So, it would rather not

reveal the names and other personal information of its customers as they query for a

match against the watchlist. The FBI would also rather not reveal all the people on

its watchlist for security reasons. Using private matching protocols, both the airliner

and FBI can share common data, the intersection of names or profiles, with each

other without revealing additional information.

Current solutions to private matching rely either on a trusted third party or

cryptography to ensure the privacy between the data client and server. A trusted

third party maintains a copy of all databases needed. Then, it computes the desired

set operations on both databases. The result is then returned to the query provider.

Neither the query provided nor data owner learns anything about the other party’s

query or non-relevant data. However, this solution completely relies on the third

party for protection against misuse and security breaches. In most cases, the level

of trust required is too high for this solution to be acceptable.

Cryptographic solutions to private matching employ homomorphic encryption

[50, 3, 69] along with a straightforward communication and matching protocol. Each

party encrypts its data, the query provider sends its query to the other party, then

the server conducts a search for matching encrypted records. Those that match

are sent to the query provider where the subset is decrypted. The operations that

have been supported include set-intersection, cardinality of set intersection, and set

union. This capability is similar to our NDB relational algebra operations for query

servicing.
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2.5.5 Private Information Retrieval

Private information retrieval schemes hide the values retrieved by queries from the

database server. This protocol enables a user to query the ith bit of an n-bit database

or document, while keeping the value at position i private [52] without transmitting

the entire database. To achieve this goal, the user queries multiple, non-cooperating

servers and the replies received are compared and used to compute the value at

position i.

Private information retrieval using distributed databases was introduced in 1995

by Chor et al. They showed that it was possible to efficiently use replicated, but seg-

regated databases to conduct private information retrieval [18]. With two databases,

they showed that their protocol can achieve sub-linear communication complexity.

At that time, no one was concerned about the privacy of the user (query provider)

of the database. However, it was later deemed appropriate to consider the query

provider’s privacy as well. For example, a stock investor may be interested in spe-

cific stock information but wants to keep private which specific stocks he is currently

researching. One way to perform this query is to ask for the entire database and

to conduct the queries at the user site. However, this may be impractical for large

databases due to communication complexity, or database owners may not be willing

to provide their entire database. In 2003, Gertner et al. extended Chor’s solution

and developed the Symmetrical Private Information Retrieval model guaranteeing

both user and data server privacy [52]. So, a user’s query is kept private from the

server, and of equal importance, the user only learns the result of his query and

no other information from a single query. With this solution, private information

retrieval becomes closely related to private matching (or private set intersection) in

that one can think of private matching as multiple rounds of the private information

retrieval protocol over a single database.
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2.5.6 Searching Over Encrypted Data

Searching over encrypted data and retrieving documents containing specific words

is difficult, especially without loss of data confidentiality [105]. A client can either

submit a plain text query to a trusted server, then the server encrypts the text for

matching. In this case the server learns which values the client is interested in, which

may violate the privacy of the client. Another scheme assumes an untrusted server

and the client creates the encrypted database for future use.

In [105, 106], Song et al. proposed Searchable Symmetric Key Encryption (SSKE)

scheme, introducing a way to search encrypted documents in linear time. The general

word-based approach introduced by Song et al. provided keyword-based schemes

that were used by Boneh et al. in [8] using public key encryption. In [11], Brinkman

et al. developed a more efficient tree search algorithm based on the linear search

algorithm proposed by Song et al. that is suitable for semi-structured databases and

documents.

In [54], Goh introduced the concept of a secure index, which allows the user

to search for a word in the index if and only if the user has a valid match with

an encrypted index entry. The index does not reveal any other information about

its contents to the requester. Their schemes returns which documents contain the

keyword provided. It assumes that each client has access to the same key or set of

keys used to generate the psuedorandom strings used to encrypt the document. This

may not be practical in a multiple user environment.

In [56, 57], Hacigumus et al. proposed an architecture that supports performing

SQL queries over encrypted data. Their technique employs an index, which allows

partial execution of an SQL query on the server side. The result of this query is sent

to the client. The correct result of the query is found by decrypting the data, and

executing a secondary query at the client site. Each of the above protocols perform
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some form of cipher text matching to find the desired records. However, unlike

negative databases, they cannot perform partial matching within the obfuscated

text.

2.5.7 K-anonymity

One related research area that has gain attention using a non-cryptographic approach

to share data privately is the process called k-anonymization. K-anonymizaty pro-

vides information, to trusted or untrusted clients, while preventing unwanted release

of private information. A piece of information is considered releasable if it cannot

be distinguished from k other records in the query result. As an example, hospitals

may collaborate in order to catch an outbreak of an epidemic. This collaboration

requires access to patients’ medical records containing sensitive information. In this

case, data should be provided to allow researchers to draw inferences without vio-

lating the individual’s privacy [2]. More specifically, a query result cannot lead to

identifying specific attributes belonging to a specific person.

One naive way of preventing identification is to remove explicit identifiers from the

database tables, e.g., filter out names, addresses or patient numbers. However, it has

been shown that even when explicit identifiers are removed from the database table,

non-identifying attributes can lead to narrowing and inferring specific individuals.

It has been shown that it remains possible to discover who has what disease using

a public database and voters’ list, even when identifying attributes, i.e., names and

social security numbers, have been removed [107].

As a rudimentary example, Table 2.2 contains patient health information used

by researchers for a medical study [114]. Each row consists of a patient’s date of

birth, zipcode, allergy, and history of illness. Note that no patient identifier explicitly

appears along with the table. However, a crafty adversary may be able to deduce the
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DateofBirth Zipcode Allergy HistoryofIllness
10/7/69 87111 Penicillin Stroke
8/29/65 87113 None Polio
9/22/66 87110 None Colitis
8/29/65 87119 Sulfur Diptheria
4/16/68 87113 None Stroke

Table 2.2: Patient Health Data

identity of patients using date of birth and zipcode, i.e. by using another information

source such as the voters or driver’s license database.

In the above example, the subset of attributes that may lead to an identification,

thus release of private information, is called a quasi-identifier. In this case, one quasi-

identifier is the set {date of birth, zipcode}, which uniquely identifies an individual

with significant probability. Other attributes such as allergy and history of illness

are sensitive attributes, while others are deemed irrelevant.

A breach of privacy occurs when an adversary can link the sensitive attributes to

corresponding individuals using information provided by the quasi-identifiers. The

process of k-anonymizing a database ensures that the quasi-identifiers appear at least

k times in any table. Therefore, if an adversary wanted to use the query result to

link sensitive attributes to individual identifiers, then each entity is masked by at

least k peers [114].

This is accomplished by eliminating unique attributes using a new character, i.e.,

a ∗, to partly or entirely obscure the data. Table 2.3 shows the resulting 2-anonymous

table of the previous table.

Notice that the count value of the quasi-identifier appears at least 2-times in

the table. In a more general case (larger k value), an adversary will not have high

confidence by linking quasi-identifiers to identify individuals. This process can be
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DateofBirth Zipcode Allergy HistoryofIllness
* 8711* Penicillin Stroke

8/29/65 87113 None Polio
* 8711* None Colitis

8/29/65 8711* Sulfur Diptheria
* 87113 None Stroke

Table 2.3: 2-Anonymized Patient Health Data from Table 2.2

achieved by either suppression or generalization. Suppression replaces some entries

with a new character. So, the three unique date of births were replaced with a ∗.

Generalization replaces characters within each field. For example, 87111, 87110, and

87119 generalize to 8711*.

It is important to note that this obfuscation does not use cryptography in the

process. In most cases, it is desirable to provide as much information as possible

while maintaining the desired level of privacy. However, in general this balance is

difficult to accomplish. Meyerson and Williams have shown that minimizing the

number of suppressed entries in k-anonymization is NP-Hard [83]. They provided

approximation algorithms for the problem running O(klogk) with a constant of no

more than 4. A survey paper by Ciriani et al. shows the various complexity for

several k-anonymization algorithms [19].

Although NP-Hard in general, many researchers believe that k-anonymity is

quite fast in practice [3, 19, 99, 107]. For more static databases, potentially better

performance and higher gains can be achieved in the area of private information

sharing.
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2.5.8 Data Hiding

A more recent research paper was published by Esponda in the area of data hiding

[40]. It uses negative database as a tool to obfuscate the original data within a larger

set supplemented with similar but meaningless records. These extra records act as

“chaff” obfuscating the true data amidst many other strings, making it difficult to

systematically differentiate valid datum from superfluous answers.

This technique takes advantage of the numerous superfluous data records not

captured during a new negative database generation process. By using this algorithm,

the size of the negative database need not be as large as the hard-to-reverse, singleton

NDBs [45]. The original data is secured by relying on the number of superfluous

entries and the infeasibility of retrieving only the valid items. Similar to the original

hard-to-reverse protocol, valid strings are augmented with a code based on the value

of the original string. In this way, membership queries remain efficient with respect

to the size of the database. A new contribution of this scheme is that valid strings are

effectively hidden, among many invalid strings without relying on the NP-Hardness

property of negative databases, i.e., hard-to-reverse SNDBs.

2.5.9 Security Model

Typical adversarial models used to evaluate the feasibility of privacy preserving ap-

plications are the malicious and honest-but-curious models [3, 69]. The malicious

model assumes that an adversary will do whatever is needed to obtain private in-

formation from the other parties. Any and all types of vulnerability attacks are at

this adversary’s disposal. This research did not consider attacks outside of direct

manipulation of the negative database. The main focus of this research is on lever-

aging both positive and negative representation to achieve data privacy and improve

efficiency. We employ hard-to-reverse SNDBs as proposed by Esponda et al. in [45].
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This research did not consider the malicious adversarial model, but it assumed

that two parties that share data are honest-but-curious. In other words, the requester

and data server follow the given protocol correctly, but they may hold on to interme-

diate results to gain some other information regarding the client’s database. We also

assume that the server will act appropriately, i.e., will not withhold or change query

results. Additionally, this research did not consider a trusted third party solution

which gives unconditional custody of ones data.

Data encryption at storage and transmission is the most common solution to en-

sure database confidentiality and privacy. In some situations, encrypting an entire

database may significantly slow down performance due to queries requiring encryp-

tion or decryption. A loosening of this restriction, only to protecting sensitive data

at field level, is sufficient. We take this approach in the design of the NDBMS. An

entire record need not be in the negative format but only those fields within a record

deemed sensitive.

Considering the tradeoffs discussed in Section 2.2.3, negative databases may be a

suitable surrogate for protecting sensitive data currently reserved for cryptographic

tools. Sharing of positive records is convenient but not desirable from a privacy

point of view. On the other hand, an NDB may not be as efficient, but it does

reveal little information directly. This characteristic is desirable especially when the

multiple databases are stored in different, semi-trusted locations. For this technique

to be implemented, the NDB must be manageable and provide similar mechanisms

used by traditional DBMS. This research area is rich in potential and is explored

in Chapter 4.
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2.6 Set-Sharing Analysis

A promising research area is the potential for exploiting the compact negative (com-

plementary) representation of large sets to alleviate computational efficiencies when

solving combinatorial problems. A major component of this dissertation shows how

negative database concepts can be applied toward such an application.

Abstract interpretation is a process of generating conservative approximations

of the semantics of a program. It can be used to determine run-time properties

by analyzing the code statically. Knowing the properties of a program’s run-time

behavior can be useful for debugging, code optimization, program transformation

and proof of program correctness [27].

One form of abstract interpretation as applied to logic programs is called set-

sharing analysis. Two or more variables in a logic program are said to share if,

in some execution of the program, they are bound to terms that contain a common

variable. A variable in a logic program is said to be ground if it is bound to a term that

does not contain free variables. Set-Sharing is an important type of combined sharing

and groundness analysis. It was originally introduced by Jacobs and Langen [61, 70]

and its abstract values are represented as sets of sets of variables that keep track of

sharing patterns among variables.

However, due to the large number of variable combinations that must be evaluated

during set-sharing analysis, an intractable number of sharings may occur. Due to

memory constraints and/or long computation time during analysis, compromises are

commonly made between precision of the analysis and its tractability. Therefore,

any steps toward a more compact set-sharing representation along with efficient, yet

precise, operations are desirable to further increase the size of solvable set-sharing

problem instances. We selected the area of set-sharing analysis partly due to a

collaborative effort with a programming language research team at our department.
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Negative database concepts have enabled us to increase the size of solvable set-sharing

problems. Chapter 5 covers our extensive research in this area.

2.7 Summary

This chapter presented previous work used as background material for extending the

research on negative databases. These topics help further establish the foundation

for negative database critical to applications presented in later chapters. We began

by presenting what negative databases are and highlighted several publications with

regards to this new representation. Then, a review of database and database systems

was provided along with criteria to help guide the design of our negative database

management system. It is from these ideas that we are able to integrate negative

databases into an ordinary relational database management system.

Previous research has shown that certain NDBs can be hard-to-reverse and may

provide a viable alternative to data privacy without encryption. Next, I reviewed

privacy-enhancing techniques for use with databases (with most resorting to cryp-

tographic techniques). Lastly, I introduced the area of set-sharing analysis, which

gives us an opportunity to use NDBs as a compact representation of very large sets.

Each chapter of this dissertation will cover other specifically related work in greater

detail as needed.
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Chapter 3

Relational Algebra for Negative

Database

3.1 Introduction

This chapter presents a relational algebra for negative databases. The goals of this

part of my research include gaining a better understanding of how a formal algebra

can be applied to negative databases and studying the complexity of each operation

in comparison to its positive counterpart. A large part of this chapter is excerpted

from a technical report [46] written in collaboration with F. Esponda, with E.S.

Ackley contributing. Esponda and I initially developed the beginnings of a negative

relational algebra separately. Then, we decided to collaborate and merge our efforts.

The algorithms and notations used here evolved from an initial draft written by

Esponda. They have since been refined several times for correctness and clarity.

This chapter defines the minimal set of relational operators (select, project, union,

intersection, Cartesian product, and set difference). As a consequence, we are able

to establish a better relationship between negative databases and positive relational

32



Chapter 3. Relational Algebra for Negative Database

database theory. This insight provides us with an improved understanding of how to

organize negative data and the types of queries efficiently supportable by negative

databases. This work advances the practicality of negative databases and expands

their range of application.

As introduced by Esponda in [38], the initial negative database framework sup-

ported only membership queries and operations for inserting to and deleting from a

negative database. This chapter extends that work by defining a set of relational op-

erators for the negative representation. In the following sections, a negative operator

is defined such that the result (another negative database) of the negative operator

applied to a negative representation is equivalent to the positive operator applied to

the positive representation. In other words, each relational operator takes negative

databases as input and returns another negative database representing what would

have been the positive result.

Sets are one of the most fundamental mathematical constructs and are, conse-

quently, pervasive throughout computer science. In particular, data collections can

be viewed as sets, and operations on sets are translated into operations on databases.

A relational algebra, introduced by E.F. Codd in [20], treats databases as sets and

defines operators that form the foundation for many database management systems.

Traditional databases typically store data designed for ease of access and manip-

ulation. However, data privacy and security issues are usually an afterthought and

are implemented on top of existing database architecture. Our approach is to em-

bed data obfuscation organically within the data representation itself by storing the

complement of the set of interest using a ternary alphabet. So, instead of storing the

records of interest explicitly, all the records not in the original database are stored.

This alternate representation is known as a negative database (NDB). Algorithms

for creating and storing NDBs efficiently are given in [37, 43, 44, 38, 108, 109].
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One motivation for a negative database is to restrict how easily information about

the original set can be exploited, even in the case of insider threat. The positive data

represented can be difficult to retrieve without resorting to enumerating all possible

elements. This privacy enhancing aspect of negative databases is achieved as a result

of the relation between some negative data representations and Boolean satisfiabil-

ity formulas [43]. Furthermore, the operations defined in this chapter support this

paradigm enabling negative databases to be manipulated without specific knowledge

of their contents.

For example, in a database containing names, social security numbers (SSN) and

bank account numbers, an operation can be defined to compute negatively only the

subset of DB that has SSN records from a region of the United States—the first three

digits of American SSNs show the geographical region where the number was issued.

Then, another negative database of suspected terrorists’ bank account numbers can

be joined to this restricted result using the bank account number field to produce

a third NDB for a watchlist in the negative format. Several other NDBs can be

combined without explicitly learning the positive sets, affording privacy to other

Americans with SSNs from the same geographical region.

In addition to the data hiding aspects of negative databases, there is the potential

for exploiting negative representations to achieve computational efficiencies. As Sec-

tion 3.2 shows, some simple operations using positive databases become hard (this is

the basis for the privacy enhancing features), and some difficult operations are sim-

plified. For example, by applying de Morgan’s law, the Negative Intersection of two

databases can be computed using negative databases by simply concatenating two

sets to form a Union (see Section 3.2.6). Section 3.4 describes how the complexity

of relational operations can be harnessed to support program verification.

This chapter is organized by first defining the relational operators over negative

databases giving algorithms, proofs and time complexities (Section 3.2). An example
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scenario (Section 3.3) is provided along with an implementation. In addition, how

the operators can be applied to problems, their limitations, and strategies addressing

these issues along with empirical results (Section 3.4) are presented. Lastly, a review

of related work (Section 3.5) and a summary of the important points are provided

(Section 3.6).

3.2 Relational Operations

This section defines a series of operations on sets that correspond to the well-known

relational algebra operators select, union, Cartesian product (along with join and set

intersection), project, and set difference. Each operation takes one or more NDBs

as input and produces a new NDB representing the strings that are not in the result

of applying a traditional relational operator to positive databases. Throughout this

chapter we consider a set of unique ternary bit strings as the database. Thus, the

terms sets and databases are used synonymously along with strings and records as

elements in a set or database, interchangeably.

First, we introduce the following notations and definitions used throughout the

chapter:

• Σ = {0, 1, ∗}: a ternary alphabet.

• Σl: finite set of all strings over Σ with length l.

• x, y, z: strings, a concatenation of symbols from Σl.

• x[i, ..., j]: string x projected onto positions i, ..., j.

• bm: string consisting of character b ∈ Σ repeated m times.

• xy: string x followed by string y (concatenation).

• Um: the universe of all possible binary strings of length m; if m = l, written as U .

• Ωm: an ordered list of all m positions; if m = l, simply written as Ω.

• Υ: an ordered list of string positions of interest.
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• [Υ]: bit values at positions specified by Υ.

• DB: a positive database, DB ⊆ U .

• NDB: a negative database representing U \DB. Note: U = DB ∪NDB.

The following definition is used to determine if two ternary strings represent a

common string or set of strings.

Definition 3.2.1 (Match, M ). Given two ternary strings of length l, x, y ∈ Σl,

match is a function M : Σl × Σl → Boolean, such that ∀i 1 ≤ i ≤ l,

x M y =

 true, if (x[i] = y[i]) ∨ (x[i] = ∗) ∨ (y[i] = ∗)

false, otherwise

Therefore, when two strings x and y match, it means that they represent some

common string(s), i.e., they have a non-empty bitwise intersection. However, x and

y may represent other strings not in their intersection. This leads to an important

property that two sets of ternary strings may represent equivalent positive databases

without containing the same exact records. In other words, two databases can be

equivalent without being equal. For example, if NDB1 = {1*1, *11} and NDB2 =

{1*1, 011}, then NDB1 ≡ NDB2 even though NDB1 6= NDB2 (they contain

different strings).

One possible internal representation of a negative set is to treat it as a table

where each column corresponds to a single character, {0,1,∗}, see Table 3.1. This

model is discussed further in Chapter 4. We design the model to facilitate the use

of Structured Query Language (SQL) queries, as illustrated below. Given a set of

ternary strings, a database can be constructed using a character for each bit position.

So, for each ternary string in the database, there is an l-bit record representing it.

Even within a relational data model, there are other possible representations; we
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Tablename1

b1 CHAR(1)
b2 CHAR(1)
.
.
.
bl CHAR(1)

Table 3.1: Sample SQL Table for Ternary Strings

present the most straightforward one here. An alternative representation is described

in the Appendix.

Given this model, we can service membership queries of a candidate string using

SQL. First, the query string must be saved as a record in a database table, say

QueryDB. Assuming our negative database is called NDB1, the following SQL

query can be constructed to check the membership of x ∈ DB represented by NDB1.

SELECT true FROM QueryDB qdb

WHERE EXISTS (SELECT true FROM NDB1 ndb1

WHERE (qdb.b1 = ndb1.b1 OR qdb.b1 = ‘*’ OR ndb1.b1 = ‘*’)

AND (qdb.b2 = ndb1.b2 OR qdb.b2 = ‘*’ OR ndb1.b2 = ‘*’)

AND ...

AND (qdb.bl = ndb1.bl OR qdb.bl = ‘*’ OR ndb1.bl = ‘*’));

A function can be used to dynamically create the above query given the argument.

In addition, certain error checking can be accomplished ensuring that the query string

is of equal length to the database entries. Other relational operations presented below

can be created using a procedural language compatible with a database management

system, e.g., PL/SQL, C, Java, PHP scripts, etc.

Throughout the following discussions, refer to Table 3.2 for examples of each

relational operator for positive data and Table 3.3 for examples. For each operation,
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DB1 DB2 σ[Υ]=101(DB1) × on ∩ ∪ πΥ=1,2(DB2) DB1 \DB2

001 001 101 001001 0010 001 001 00 101
101 010 001010 1010 010 01

101001 101
101010

Table 3.2: Two positive databases with 3-bit strings, and the result of applying the
indicated operations (select, Cartesian product, join, intersection, union, project, and
set difference). Note the join condition for on are positions Υ1 = {2, 3}, Υ2 = {1, 2}.

NDB1 NDB2 σ[Υ]=101(NDB1) × on ∩ ∪ πΥ=1,2(NDB2) NDB1\NDB2

01* 000 01* 01**** 01** 01* 011 10 01*
*00 011 *00 *00*** *00* *00 000 11 *00
11* 10* 11* 11**** 11** 11* 100 11*

11* 0** ***000 *000 000 11* 001
*1* ***011 *011 011

***10* *10* 10*
***11* *11* 11*

Table 3.3: The results of relational operators on negative databases, NDB1 and
NDB2. Corresponding results complement those from Table 3.2. Note: the * symbol
stands for both 0 and 1 and the join condition for on are positions Υ1 = {2, 3},
Υ2 = {1, 2}.

its corresponding time complexity is presented in Table 3.4.

3.2.1 Negative Select

The Select operation over a positive database restricts the relation according to some

criterion in the form of a predicate. Select is defined in terms of a relation between two

attributes (here understood as the values at some string positions), or an attribute

and a constant v. We consider the basic binary operators, θ = {<,≤, =,≥, >}. We

limit our description to the latter case, leaving the former for future work. Thus, the

Select operation applied to DB is defined as:

σ[Υ]θv(DB) = {x | x ∈ DB} ∩ {x | x[Υ] θ v}
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where Υ is an ordered list of string positions. The complement of this set is written

as:

U \ σ[Υ]θv(DB) = {x | x /∈ DB} ∪ {x | x[Υ] θ v}

where θ stands for the opposite relation of θ, i.e., < stands for ≥, = stands for 6=,

etc. In the following, we describe how to implement U \ σ[Υ]θv(DB) using negative

databases.

Let NDB1 = U \ DB, and let NDB2 contain all the strings in U that do not

satisfy the criterion, i.e., {x | x[Υ] θ v, x ∈ U}. Negative Select is defined as:

σ[Υ]θv(NDB) = {x | x ∈ NDB1} ∩ {x | x ∈ NDB2}

The above formula shows that Negative Select can be viewed as the Negative

Intersection, which is equivalent to positive union (∩ ≡ ∪) of two databases, and

therefore, their general algorithms are the same:

1. Initialize NDB3 to NDB1.

2. For every string y ∈ NDB2, append y to NDB3,

where NDB3 holds the result of the operation. NDB2 is constructed differently for

each of the operators in θ and is discussed in detail below:

Negative-Equality (σ[Υ]=v) Select

To implement Negative-Equality, it is sufficient to create a negative database that

matches every binary string x for which x[Υ] 6= v.

1. Initialize NDB2 to the empty set.
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2. For each position i in Υ:

(a) Create a string x with the position indicated by the ith entry of Υ set to

the complement of the ith bit in v (for clarity we assume that v has |Υ|

bits) and set the rest of the positions to ∗.

(b) Append x to NDB2.

Theorem 1 Negative Equality Select (σ[Υ]=v): A binary string x is matched in

NDB2 ⇐⇒ x[Υ] 6= v.

Proof 3.2.1

1. Let x be a string matched in NDB2 and y be the string that matches it. y

must have been generated during the ith iteration of the algorithm (step 2(a)).

By construction, y differs from v in the position indicated by the ith entry of

Υ, therefore, y will not match any string exhibiting v, and, given that y M x,

x[Υ] 6= v.

2. Let x be a binary string such that x[Υ] 6= v, then x must differ in at least one

position from v. Step 2(a) of the algorithm constructs a string y that matches

x.

Negative-Less-than (σ[Υ]<v) and Negative-Less-than-Equal (σ[Υ]≤v) Select

The following algorithm implements the Negative-Less-than operation. It creates a

negative database that matches every binary string x for which x[Υ] ≥ v (in terms

of their binary integer values).

1. Initialize NDB2 to the empty set.
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2. For each bit i in v that is set to 0:

(a) Create a string x of length l with the corresponding position set to 1, all

positions to the left of it (more significant positions) set to 1 where v is

1, and all other positions set to ∗.

(b) Append x to NDB2.

3. Create a string y of length l for which the positions indicated by Υ have the

same value as the corresponding positions in v, and all remaining positions set

to ∗.

4. Append y to NDB2.

Theorem 2 Negative-Less-than Select (σ[Υ]<v): A binary string x is matched in

NDB2 ⇐⇒ x[Υ] ≥ v.

Proof 3.2.2

1. Let x be a binary string matched in NDB2, and let y M x. If y was generated

in Step 2(a) then, by construction, y[Υ] and v do not match, and the most

significant position, in which the strings represented by y[Υ] and v differ, is set

to 0 in v and 1 in y[Υ]; hence, all strings matched by y[Υ] are greater than

v and x[Υ] > v. Conversely, if y was generated in step 3 then y[Υ] = v and

x[Υ] = v. Therefore, x[Υ] ≥ v.

2. Let x be a binary string such that x[Υ] ≥ v.

Assume x[Υ] > v and let i be the first position of x, from left to right, for which

x[Υ] has a 1 and v has a 0. Step 2(a) creates a string y, such that y M x[Υ] by

setting every position to the left of i to 1 where v and x[Υ] have a 1; position

i to 1 where v has as 0 and x[Υ] a 1, and all remaining positions to ∗.
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Assume that x[Υ] = v, Step 3 of the algorithm generates a string y for which

y[Υ] = v and the rest of the positions are set to ∗, thus matching x. Therefore,

there is a string in NDB2 that matches x.

The algorithm to implement the Negative-Less-than-Equal operation can be de-

rived from the algorithm presented above by removing step 3. Due to this similarity,

its formulation and proof are omitted.

Negative-Greater-than (σ[Υ]>v) and Negative-Greater-than-Equal (σ[Υ]≥v)

Select

The algorithms for these operations are analogous to their < and ≤ counterparts.

The following algorithms with the necessary adjustments are presented, but their

proofs are omitted due to their similarity to Proof 3.2.2. The following algorithm

creates a database that matches every binary string x such that x[Υ] ≤ v (in terms

of their binary integer values).

1. Initialize NDB2 to the empty set.

2. For each bit i in v set to 1:

(a) Create a string x of length l with the corresponding position set to 0, all

positions to the left of it set to 0 where v is 0, and all other positions set

to ∗.

(b) Append x to NDB2.

3. Create a string y of length l for which the positions indicated by Υ have the

same value as the corresponding positions in v, and the remaining positions

are set to ∗.
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4. Append y to NDB2.

The algorithm to implement the Negative-Less-than-Equal operation can be de-

rived from the algorithm presented above by deleting step 3.

If we assume that a string can be created in time proportional to its length l

and that it takes c time to copy a string, then the Negative Select operation takes

O(cl2 + |NDB|) time. The |NDB| factor is due to the copying of the negative

databases to create a separate output database. If the selection criteria, represented

by NDB2, is simply appended to NDB1, the running time of the operation is reduced

to O(cl2).

To summarize, restricting the contents of a positive database based on the selec-

tion criteria is accomplished by adding elements to its negative image. The result of

the selection predicate can be viewed as a negative database itself, capable of being

swapped in and out without interfering with how the database is queried.

For example, suppose CustomerNDB represents a list of existing customers and

their credit card number (CCN) (<name, CCN> tuples). Using the negative repre-

sentation prevents sales clerk or order takers from browsing the database to obtain

CCNs. As a marketing tool, if the purchaser is a member of CustomerNDB, she

should be offered a promotion at checkout (the company has found that by offering

promotions encourages repeat business). Management may also choose to offer ad-

ditional promotions to current customers that hold a specific brand of credit card.

This can easily be accomplished, using the operations described above, by restricting

(using Select) CustomerNDB to only those records that do exhibit a Visa credit

card. This can be done by inserting records to CustomerNDB that match every

possible <name, CCN> pair for Visa credit card numbers. Note that the prefix of

a credit card number, known as the bank identification number, identifies the credit

card issuer network. In this example, a single entry with all positions set to ∗, except
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the ones corresponding to the CCN’s prefix (set to Visa’s prefix, the number 4) will

match all the desired strings. The way in which the promotional database is used

does not change—if a <name, CCN> pair is found, then a promotion is offered.

When the promotion for Visa card holders expires, the negative records are readily

available and can be deleted.

3.2.2 Negative Union

We now turn to an operation that is trivially implemented using positive databases,

but it requires more care when using negative databases. For the purpose of this

section, we assume that the length of strings in both databases is the same. A new

operation is defined over ternary strings called coalesce in order to correctly extract

only the valid strings.

Definition 3.2.2 (Coalesce, �). Two strings x and y of length l coalesce into

string z, (z = x� y), if and only if x M y and ∀i 1 ≤ i ≤ l:

z[i] =

 x[i], if (x[i] = y[i]) ∨ (y[i] = ∗)

y[i], if x[i] = ∗

We now proceed to define negative union by first reviewing positive union, which

can be expressed as:

DB1 ∪DB2 = {x | x ∈ DB1 ∨ x ∈ DB2}

And, its complement is written as:

U \ (DB1 ∪DB2) = {x | x /∈ DB1 ∧ x /∈ DB2}
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Then, the Negative Union, ∪, can be defined as:

NDB1∪NDB2 = {z | z = x� y, x ∈ NDB1, y ∈ NDB2}

The following algorithm produces a new negative database, NDB3, that realizes

NDB1∪NDB2. See Table 3.3 for an example.

1. Initialize NDB3 to the empty set.

2. For every x ∈ NDB1:

(a) For every y ∈ NDB2, x M y:

i. Create a string z = x� y.

ii. Append z to NDB3.

Theorem 3 Negative Union (∪̄): A binary string x ∈ U \ (DB1 ∩ DB2) ⇐⇒

∃x′((x′ ∈ NDB1∪̄NDB2) ∧ (x′ M x)).

Proof 3.2.3

1. Let x be a string in U \ (DB1 ∪ DB2), then x ∈ U \ DB1 and x ∈ U \ DB2.

By the definitions of NDB1 and NDB2, there is a string x′ ∈ NDB1, and a

string y ∈ NDB2 that match x; by transitivity, x′ M y. Step i of the algorithm

creates a string z such that z = x′ � y.

Given that z M x′ and x′ M x, it follows that z M x. Therefore, there is a

string in NDB1∪NDB2 that matches x.

2. Let x be a binary string matched by some entry z in NDB1∪NDB2. By

construction, there are strings x′ ∈ NDB1 and y ∈ NDB2, that match z and

by transitivity, also match x. By the definitions of NDB1 and NDB2, x 6∈ DB1

and x 6∈ DB2. Therefore, x ∈ (U \ (DB1 ∪DB2)).

45



Chapter 3. Relational Algebra for Negative Database

This operation is useful in situations where at least one of the negative databases

is hard-to-reverse. Union provides a means to combine negative databases without

having to reverse them beforehand—a privacy-enhancing feature.

3.2.3 Cartesian Product, Join and Intersection

This section discusses three closely related database operations. Cartesian product

takes every string from the databases and combines them to produce all possible

ordered concatenation of the strings. The complete relational algebra, as defined in

[20], does not include join and intersection since they can be derived from other base

operations. However, we include them because they are closely related to Cartesian

product and their implementation, using negative databases, exhibits some interest-

ing subtleties.

Let the generic symbol op denote one of the following three operators:

1. × : Cartesian Product, no positions of interest defined, Υ2 = Υ1 = ∅

2. on : Join, when |Υ1| = |Υ2|, 0 < |Υ1| < |Ωm|

3. ∩ : Intersection, when |Υ1| = |Υ2| = |Ωm|

The universe over which each operation is defined is restricted by the positions

defined by Υ1 and Υ2, and by the properties a string has with respect to these

positions:

Ul+m−|Υ2| = {xy | x[Υ1] = z[Υ2], y = z[Ωm −Υ2], x ∈ Ul, z ∈ Um} (3.1)

The Cartesian product, Join and Intersection of two sets can be written as:

DB1 op DB2 = {xy | xy ∈ Ul+m−|Υ2|, y = z[Ωm −Υ2], (x ∈ DB1 ∧ z ∈ DB2)}
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The complement of these operations, referred to as the Negative Cartesian prod-

uct (×), Negative Join (on), and Negative Intersection (∩), can be defined as:

Ul+m−|Υ2| \ (DB1opDB2) = {xy|xy ∈ Ul+m−|Υ2|, y = z[Ωm −Υ2], (x 6∈ DB1 ∨ z 6∈ DB2)}

The sets Ul, Um, DB1 and DB2 are defined over the binary alphabet {0, 1}. A

negative databases NDB1, on the other hand, is defined over Σ—recall that a string

x with bi = ∗ represents two strings. In this way, a string with k ∗ symbols represents

2k binary strings.

3.2.4 Negative Cartesian Product

The Negative Cartesian product is defined using regular expressions as:

NDB1×NDB2 = {x ∗m | x ∈ NDB1} ∪ {∗ly | y ∈ NDB2}

This set can be constructed as follows:

1. Initialize NDB3 to the empty set.

2. For every string x ∈ NDB1, construct a string z that is prefixed by x and

suffixed by m ∗ symbols. Append z to NDB3.

3. For every string y ∈ NDB2, construct a string z that is prefixed by l * symbols

and suffixed by y. Append z to NDB3.

Theorem 4 Negative Cartesian Product (×): A binary string x ∈ (Ul+m \ (DB1 ×

DB2)) ⇐⇒ ∃x′((x′ ∈ NDB1×NDB2) ∧ (x′ M x)).

Proof 3.2.4

Let xy be a binary string in Ul+m \ (DB1 ×DB2), with |x| = l and |y| = m.
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1. Either x ∈ (Ul \ DB1) or y ∈ (Um \ DB2). If x ∈ (Ul \ DB1) then, by the

definition of NDB1, there is a string x′ ∈ NDB1 than matches x; step 2 of the

algorithm will create a string, x′∗m matching xy. Conversely, if y ∈ (Um\DB2),

there is a string y′ ∈ NDB2, y′ M y, and Step 3 will generate ∗ly matching xy.

Therefore, xy is matched by some entry in NDB1×NDB2.

Conversely, let xy be a binary string matched by some entry x′y′ in NDB1×NDB2,

with |x| = |x′| = l and |y| = |y′| = m.

1. By construction, either x′ ∈ NDB1 or y′ ∈ NDB2. If x′ ∈ NDB1 then, by

the definition of NDB1, x 6∈ DB1; likewise, if y′ ∈ NDB2 then y 6∈ DB2.

Therefore, xy ∈ (Ul+m \ (DB1 ×DB2)).

Examples are shown in Table 3.2 and Table 3.3. In summary, Negative Cartesian

Product appends ∗ symbols to each record in both negative database, as suffix to

NDB1 and as prefix to NDB2. A new negative database is created by combining

the two sets.

3.2.5 Negative Join

The Negative Join of DB1 and DB2, using NDB1 and NDB2, is constructed by

creating the appropriate mapping of the string positions specified in the join condition

Υ1 and Υ2 (see Table 3.2 and 3.3 for an example).

NDB1ōnNDB2 = {x ∗m−|Υ2| |x ∈ NDB1} ∪ {wz|w[Υ1] = y[Υ2], w[Ωl −Υ1] = ∗|Ωl−Υ1|,

z = y[Ωm −Υ2], y ∈ NDB2}
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1. Initialize NDB3 to the empty set.

2. For each string x ∈ NDB1, create a string z with x as its prefix and (m −

|Υ2|) ∗’s as its suffix. Append z to NDB3.

3. For every string y ∈ NDB2:

(a) Create a string w = ∗l and map onto it the values of the join positions of

y: for all i, set the value of w at the string position indicated as the ith

entry of Υ1, to the value at the string position indicated in the ith entry

of Υ2 of y.

(b) Create a string z of length m − |Υ2| by mapping onto it all the non-join

positions of y in the following way: for all i, set the value of the ith position

of z to the value of the position indicated in the ith entry of Ωm −Υ2.

(c) Concatenate w with z and append to NDB3.

The strings in the result of negative join will either have their prefix in U \DB1

suffixed with every possible y = z[Ωm − Υ2], z ∈ Um (see step 2). Or, it will have

as suffix y = z[Ωm − Υ2] (step 3(a)) prefixed with every possible string x[Υ1] =

z[Υ2], z ∈ (U \DB2) (step 3(b)).

Theorem 5 Negative Join (on): A binary string x ∈ Ul+m−|Υ2| \ (DB1 on DB2) ⇐⇒

∃x′((x′ ∈ NDB1onNDB2) ∧ (x′ M x)).

Proof 3.2.5

Let wz be a binary string in Ul+m−|Υ2|\(DB1 on DB2), with |w| = l and |z| = m−|Υ2|.

Then, either w 6∈ DB1 or z′ 6∈ DB2, for z = z′[Ωm −Υ2] and w[Υ1] = z′[Υ2].

1. If w 6∈ DB1, then w is matched by some w′ ∈ NDB1 and z′ may be matched

in NDB2. Step 2 of the algorithm creates a string w′∗|Ωm−Υ2| that will match

wz. Therefore, wz is matched by some string in NDB1onNDB2.
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2. If z′ 6∈ DB2, then z′ is matched by some z′′ ∈ NDB2 and w may be matched

in NDB1. Step 3(b) creates string y, such that y = z′′[Ωm−Υ2]
′, that matches

z, and step 3(a) creates a string x, that represents every binary string x′ for

which x′[Υ1] = z′′[Υ2] (a characteristic of all strings in Ul+m−|Υ2|, (see eq. 3.1)),

that matches w. Step 3(c) creates string xy that matches wz. Therefore, wz

is matched by some string in NDB1onNDB2.

Conversely, let wz be a binary string and xy an entry in NDB1onNDB2 that

matches wz, where |w| = |x| = l and |z| = |y| = m− |Υ2|.

1. If xy was generated by step 2, then x ∈ NDB1 and, by the definition of NDB1,

w 6∈ DB1. Substring y = ∗m−|Υ2| matches string z′′[Ωm−Υ2] for z′′ ∈ Um where

z′′[Υ2] = w[Υ1], and z′′[Ωm − Υ2] = z. Therefore, wz ∈ (Ul+m−|Υ2| \ (DB1 on

DB2)).

2. If xy was generated in step 3, then w M x and w M z′[Υ2] (step 3(a)). If

z′ ∈ NDB2, then z M y and z M z′[Ωm−Υ2] (step 3(b)). Hence, there is a string

z′′ ∈ Um, matched by z′, such that z′′[Υ2] = w[Υ1] and z′′[Ωm − Υ2] = z . By

the definition of NDB2, z′′ 6∈ DB2. Therefore, wz ∈ Ul+m−|Υ2| \ (DB1 on DB2).

Notice that the Negative Join operation is similar to the Negative Cartesian

Product, except that it shrinks the record length by keeping only one copy of the

columns of interest specified by the join condition.

3.2.6 Negative Intersection

The Negative Intersection is defined as:

NDB1∩NDB2 = {x | x ∈ NDB1} ∪ {y | y ∈ NDB2},
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which can be constructed using the following algorithm:

1. Initialize NDB3 to NDB1.

2. For every string y ∈ NDB2, append y to NDB3.

Theorem 6 Negative Intersection (∩): A binary string x ∈ (Ul+m−|Υ2| \ (DB1 ∩

DB2)) ⇐⇒ ∃x′((x′ ∈ NDB1∩NDB2) ∧ (x′ M x)).

Proof 3.2.6

1. Let w be a string in Ul+m−|Υ2| \ (DB1 ∩DB2), then w 6∈ DB1 or w 6∈ DB2. By

the definitions of NDB1 and NDB2 there is a string x ∈ NDB1 or a string

y ∈ NDB2 that matches w. The algorithm includes all strings in NDB1 and

NDB2, thereby ensuring that there is a string in NDB1∩NDB2 that matches

w.

2. Let w be a binary string and x a string in NDB1∩NDB2 that matches it. By

construction, x either belongs to NDB1, or to NDB2: if x ∈ NDB1 then, by

the definition of NDB1, w 6∈ DB1; likewise, if x ∈ NDB2 then w 6∈ DB2.

Therefore, w ∈ (Ul+m−|Υ2| \ (DB1 ∩DB2)).

An example is shown in Table 3.2 and 3.3. Negative Intersection is the simplest

of all operators, because it applies de Morgan’s law and computes the union of the

two negative databases by combining the sets. Although not required, exact string

duplicates may be eliminated, if desired.
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3.2.7 Negative Project

The positive Project operator is a unary operation on a database that returns a

subset of the attributes of a relation. The attributes can be viewed as the column

values for the string positions specified in the order requested. If one views the Select

operator as taking a horizontal slice of a relation, then Project takes a vertical slice.

In the positive DB representation, Project outputs the value of all attributes within

this vertical slice. However, in the negative database representation, Project is not

simply the same vertical slice but its complement. It is the set of attributes not

represented in the positive vertical slice. Therefore, a substring is in the result of a

negative projection if and only if all possible strings of length l with the specified

attributes missing from DB.

If we define positive Project as:

πΥ(DB) = {x ∈ U|Υ| | ∃z ∈ U|Ω−Υ|(∃y ∈ DB(z = y[Ω−Υ], x = y[Υ]))}

Then, its complement is:

U|Υ| \ πΥ(DB) = {x ∈ U|Υ| | ∀z ∈ U|Ω−Υ|(∃y /∈ DB(z = y[Ω−Υ], x = y[Υ]))}

Using a negative database that represents the complement of DB, we write the

Negative Project as:

πΥ(NDB) = {x ∈ U|Υ| | ∀z ∈ U|Ω−Υ|(∃y ∈ NDB(z M y[Ω−Υ], x M y[Υ]))}

Unlike the previous operations, there is no polynomial time algorithm that takes

as input any NDB and outputs an NDB′ that represents the Negative Project of

NDB unless P = NP , see proof below. For a special case, a heuristic algorithm,

Negative Reduce, has been implemented, see Section 3.4.
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Theorem 7 Negative Project (π): A polynomial time algorithm for computing Neg-

ative Project implies P=NP.

To show that negative project, π, is NP-Complete we first restate the definition

of Non-Empty Self Recognition (NESR) shown to be NP-Complete in [41]. Then,

we use NESR to show that there is no polynomial time algorithm for computing

Negative Project unless P = NP .

Definition 3.2.3 Non-empty Self Recognition (NESR):

INPUT: A set NDB over Σl.

QUESTION: Is DB nonempty? In other words, is there some string in U = {0, 1}l

not matched by NDB?

Proof 3.2.7

Assume there is a polynomial time algorithm M that takes as input a negative

database NDB and a bit position indicator Υ and it outputs πΥ(NDB).

We construct a polynomial time algorithm for NESR in the following way: given

any instance of NESR with input NDB, call M with NDB and Υ = {1}. If the

resulting negative database matches strings s1=0 and s2=1 (one-bit long strings)

answer “No”, otherwise answer “Yes.” We have just created a non-empty detector

for NDB and answered NESR efficiently, using M. Since NESR is NP-Complete,

then P=NP .

Intuitively, Negative Project is hard because a negative database contains all

possible combinations of attribute values, except those that appear in DB. The only

way an attribute value is not in NDB is if it appears with every other possible value

of the remaining attributes in the positive database.
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Even though Negative Project is not an efficient operation in general, it can be

implemented for some special cases. The Negative Project of a negative database

onto attribute Υ can be defined with respect to a fixed value v of the remaining

attributes Ω−Υ. This is the negative version of selecting all records from DB that

have v in Ω − Υ and then projecting onto Υ. It can be accomplished by joining

(using the positive equijoin) NDB with a table that has as its single entry v, and

then removing all string positions except Υ (projecting onto Υ). The first part of

the operation preserves all and only the NDB entries that match strings in U \DB

that have v; the second part reduces the universe of discourse over which strings are

defined to all strings with v. An example of this special case is presented in Section

3.4.

One way to avoid doing Negative Project operations is to design our database

so that each sensitive attribute results in a single negative database table. So, a

single field value is represented by a table containing negative records. Then, each

negative table is associated with other fields using some table identifier. In this way,

there is no need to perform a negative projection within a negative table. Therefore,

projection now corresponds to projecting the entire negative table, see Chapter 4 for

more details.

3.2.8 Negative Set Difference

The positive Set Difference operator is a binary operation on two databases, DB1

and DB2, having the same record length and same order of attributes. The result

is the subset of records that are in the first database, DB1, but not in the second,

DB2.

DB1 \DB2 = {x | (x ∈ DB1) ∧ (x /∈ DB2)}
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The complement:

U \ (DB1 \DB2) = {x | x /∈ DB1} ∪ {y | y ∈ DB2}

Then, Negative Set Difference can be written as:

NDB1\NDB2 = {x | x ∈ NDB1} ∪ {y | y /∈ NDB2}

Similar to Negative Project, there is no polynomial time algorithm that, given as

input NDB1 and NDB2, outputs a negative database that represents the Negative

Set Difference of NDB1 and NDB2.

Theorem 8 Negative Set Difference (\): A polynomial time algorithm for computing

Negative Set Difference implies P=NP.

We will proceed by constructing a polynomial time algorithm for the NESR prob-

lem (see Definition 3.2.3).

Proof 3.2.8

Assume a polynomial time algorithmM that takes as input two negative databases

NDB1 and NDB2 and it outputs NDB1\NDB2.

We construct a polynomial time algorithm for NESR in the following way: given

any instance of NESR with input NDB, let M compute NDB′ = ∅ \ NDB. If

NDB′ = ∅ then answer “No” otherwise answer “Yes.” Note that if NDB represents

an empty DB, then NDB matches all strings in U and NDB′ will necessarily be

empty. On the other hand, if NDB fails to match at least one string in U , then

NDB′ will contain at least one entry, and thus, be non-empty. Thus, M can be

used to answer NESR efficiently. Since NESR is NP-Complete, P=NP .
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As proven above, creating a negative database that represents the Negative Set

Difference of two negative databases cannot be realized efficiently in general. Figure

3.1 illustrates this problem using a Venn diagram. Given only NDB1 and NDB2, in

order to resolve strings inside the positive intersection of DB1 and DB2, using only

NDB1 and NDB2, would require exponentially resolving all strings in either DB1

or DB2.

However, we can determine efficiently the membership of a particular string with

respect to the Negative Set Difference. For example, string x is in the Negative Set

Difference if and only if there is a string in NDB1 that matches it or if there is no

string in NDB1∩NDB2 that matches it, as defined below:

x ∈ (NDB1\NDB2) ≡ x /∈ (DB1 \DB2) ⇐⇒

∃y ∈ NDB1(y M x) ∨ ∀z ∈ NDB2(z /M x)

Conversely,

x /∈ (NDB1\NDB2) ≡ x ∈ (DB1 \DB2) ⇐⇒

∀y ∈ NDB1(y /M x) ∧ ∃z ∈ NDB2(z M x)

Therefore, membership of a given string can be determined efficiently, but cor-

rectly producing a new negative set from the two negative database using their set

difference is hard. For example, given NDB1 = {01*, *00, 11*} and NDB2 =

{000,011,10*,11*}, then their Negative Set Difference, NDB3 = NDB1\NDB2 =

{01*, *00, 11*, 001}. So, NDB3 represents all the strings in the positive that is

the result of DB1 \ DB2. In order to create this set, all 23 strings are verified for

membership, and since string “001” is missing from both NDB1 and NDB2, “001” is
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NDB1 NDB2

DB1 DB2
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DB2
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Negative is Positive
Figure 3.1: Given NDB1 and NDB2, NDB1\NDB2 is shown by the shaded region.

included in the result. Notice that we can efficiently check if a specific string, say x =

101, is in their set difference without explicitly computing the entire NDB3. First,

verify that x is not represented by NDB1. Since, x does not match any y ∈ NDB1,

we continue and check if there exists a string z ∈ NDB2 such that z M x. Finally,

since 10* ∈ NDB2, 10* M 101, then x ∈ (DB1 \DB2).

The algorithms presented here were chosen for simplicity of exposition rather

than for optimality; however, they suffice to illustrate the differences in complexities

between a positive and a negative scheme. Table 3.4 gives the asymptotic time com-

plexity for each operation under both positive and negative representation schemes.

It assumes that a string can be created in time proportional to its length l. In

addition, the time it takes to copy a string, c, is accounted for.
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Operation Positive DB Negative DB
Select O(cl|DB|) O(cl(l + |NDB|))
on and × O(c(l + m)|DB1||DB2|) O(c(l + m)|NDB1|+ |NDB2|)
∩ O(cl|DB1||DB2|) O(cl(|NDB1|+ |NDB2|))
∪ O(cl(|DB1|+ |DB2|)) O(cl|NDB1||NDB2|)

Table 3.4: Comparison of relational operators’ asymptotic complexity. Negative
Project and Negative Set Difference are NP-Hard.

3.3 Example Scenario

Consider a law enforcement agency (LEA) investigating a money laundering scheme.

It wishes to know which clients of data providers, Bank-1 and Bank-2, have carried

out certain transactions for more than $10,000 and have also had relations with the

currency exchange company (CEX), all during the month of June 2008. The banks

and CEX are willing to provide information, but are concerned about the privacy of

their clients; they are reluctant to hand over their entire client databases and would

like to provide only the data needed for the investigation. Additionally, it is desired

that the parties not communicate with one another or to remain ignorant of other

participants in the same investigation.

Both providers can generate a table containing the client names and the trans-

action type for those individuals that have had operations for more than $10,000

during the month of June 2008: Bank-1 and Bank-2’s tables contain tuples of the

type <name, trans-1> and <name, trans-2> respectively. They each generate a

hard-to-reverse negative database for their table: NDB1 and NDB2, and make that

available to the LEA. For simplicity we assume that all the fields in all the databases

follow some standard schema. The LEA wants to discover the names of the clients

that withdrew more than $10,000 from Bank-1, deposited more than $10,000 in

Bank-2, and also conducted business with CEX—CEX’s table has tuples of the type

<name>. The following SQL expression describes the desired operation:
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SELECT Bank-1.name

FROM Bank-1, Bank-2

WHERE Bank-1.name=Bank-2.name and

trans-1 = ‘Withdrawal’ and trans-2=‘Deposit’

INTERSECT

SELECT name

FROM CEX

This query can be accomplished using the corresponding negative databases as

follows:

1. Compute the Negative Join by <name> of NDB1 and NDB2, i.e., NDB1onNDB2.
1

This results in NDB3 = <name, trans-1, trans-2>.

2. Generate a table, DBWD of the tuples <trans-1, trans-2> with the single record

{(Withdrawal, Deposit)}. This results in DBWD = <trans-1, trans-2>.

3. Create the Natural Join of NDB3 and DBWD by <trans-1, trans-2>. This

yields a negative database, NDBNJ , of the tuples <name, trans-1, trans-2>.

All entries have the trans-1 and trans-2 fields explicitly set to “Withdrawal”

and “Deposit” respectively and are fully specified (no ∗ symbols appear at

these positions).

4. Next, project NDBNJ based on name by removing from NDBNJ the fields

trans-1 and trans-2. Notice that by joining NDB3 and DBWD we have fixed the

transaction fields to specific values and thus effectively narrowed the universe

1Υ1 and Υ2 contain the string positions corresponding to the “name” field of both
databases.
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of discourse to names (character combinations) with those particular transac-

tions (see Section 3.4 for details on this operation). Send the resulting negative

database, NDBP , to CEX. Note that the reverse of NDBNJ will contain the

names of clients that withdrew money from Bank-1 and deposited money in

Bank-2—all information about other transactions has been eliminated. There-

fore, the law enforcement agency can safely eliminate this two fields and send

the resulting NDB to CEX.

5. Upon receipt, CEX computes the intersection of its client list and NDBP by

determining which of the names in its database (positive) is not in NDBP .

It returns the result to the LEA. Notice that CEX does not know what the

resulting names refer to; the provenance of NDBP ’s contents is unknown and

the particular manipulations by the law enforcement agency—restricting trans-

actions to deposits and withdrawals—have been erased.

The list of names received by the law enforcement agency represents the names

of people that have withdrawn more than $10,000 from Bank-1, deposited more than

$10,000 in Bank-2 and that have also transacted with CEX. The privacy of all other

clients has been safeguarded and no direct communication was necessary between

the entities being investigated.

It is worth mentioning that these databases are vulnerable to dictionary attacks

because the space of possible names (and transactions) is relatively small. By using

a longer identifier (other than name, credit card numbers), such an attack can be

rendered intractable.

The operations illustrated in this section can be useful in other scenarios as well,

without requiring the hard negative databases. For instance, the intersection of two

positive databases can be accomplished by computing the Negative Intersection of

their corresponding NDBs. The algorithm simply appends one negative database
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to the other. If the NDBs are easy-to-reverse and the application requires that

the original sets not be revealed, then the algorithm will be inadequate—the nega-

tive databases could be easily distributed (although the adversary must still guess

where one ends and the other begins) and then consulted or reversed. In this case,

the Negative Intersection could be created by randomly mixing the entries of both

databases, the requirement being that no information links a particular item to a

specific database. As described in the next section, the Morph operation, defined in

[42], could also be used to mix the database records and de-identify strings.

3.4 Applications of Negative Relational Algebra

Test data shows that the space complexity of building large negative databases and

applying the negative relational operators, is expensive. Strategies to ameliorate the

problem includes distributed negative databases and using the Clean-Up operation

introduced in [42] to eliminate redundant strings. Here, we describe some of the

motivating applications for each strategy.

A prototype implementation of each of the relational operator algorithms specified

in this chapter was developed by E.S. Ackley using Perl and C. It is available for

download at http://cs.unm.edu/~forrest/projects/ndb under the GNU General

Public License.

A motivating application for a distributed approach occurs in sensor networks.

Next-generation sensor networks will likely involve active human participants that

consume and divulge data to sensor networks. In such applications, privacy and

confidentiality guarantees are desired. However, mechanisms and algorithms for

privacy protection in sensor networks have been lacking. To address these concerns,

Horey et al. developed and evaluated a set of protocols that enable anonymous data

collection in a sensor network [59]. Sensor nodes, instead of transmitting their actual
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data to a base station, transmit a data value that was not collected. The base station

then uses these negative samples to reconstruct a histogram of the original data.

These protocols are collectively referred to as a negative survey [39]. This approach

could be extended so that each sensor contains a partial negative database, and the

base station issues queries to retrieve information. For this to succeed, the relational

operations presented in this chapter are essential for combining and manipulating

the datasets.

A motivating application for the second strategy uses negative databases when

the positive dataset approaches the power set of bit combinations. In this case,

it can be more efficient to obtain an answer by working with the complement of

the problem we intend to solve, and then complementing the solution. An example

arises in logic program analysis [55]. Unlike the sensor network example, this class of

problem is concerned less with privacy and more with producing the most compact

representation. This insight opens up the possibility of using negative databases to

extend the size of solvable problem instances and in answering questions that might

otherwise be intractable. Helping solve this type of combinatorial problem is covered

extensively in Chapter 5.

Using the program analysis example, we show how the Clean-Up algorithm (sim-

ilar to the Compress algorithm described in Figure 5.3) helps control the size of

the negative representation. Here, two relational operations, a modified Negative

Equality Select and the Negative Union, are used to provide a practical negative

projection. This restricted form of negative projection, known as Negative Reduce,

iteratively decrements the size of NDB. Instead of projecting the bits-of-concern

onto the negative database as if it were a positive representation, Negative Reduce

selects the negative records for all the other bits, individually, once with the value of

one, and again with a value of zero. These two partial negative databases, which no

longer contain the original selected column, are then combined using Negative Union
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Figure 3.2: Average NDB size after single-bit Negative Reduce on 24- and 12-Bit
length records, with and without Clean-Up.

followed by a constant number of Clean-Up and Morph operations. The Morph

operation changes NDB records randomly without changing the equivalent positive

database represented by introducing ∗’s randomly, if possible, while maintaining cor-

rectness [42]. The reduction is repeated until all of the unprojected bits have been

processed. We compare the average resulting NDB size, with and without Clean-Up,

at each iteration, eliminating the rightmost bit position until a single bit remains.

Based on 30 random databases each representing five 12-bit and 24-bit positive

strings, the graph in Figure 3.2 shows nearly two orders of magnitude difference in

the size of the negative database at the peak, occurring after the second bit reduction

for the shorter length record. Their sizes converge as the number of solutions they

represent diminishes. In the case of the longer record length, the simple (non-cleanup)

approach fails due to memory constraints after the first or second bit reduction, while

the projection with Clean-Up completes the test. Figure 3.3 shows the average NDB

size, alternating between the Negative Reduce and Clean-Up operations, differs as

much as three orders of magnitude.

The significant size difference is due to the use of “append” in the union step

63



Chapter 3. Relational Algebra for Negative Database

Figure 3.3: Average NDB size before and after Clean-Up in 24-Bit reduction test.

instead of using the Insert procedure, as discussed in [42] and shown in Figure 5.4.

Insert modifies the entries being inserted into the NDB by adding ∗’s, if possible.

Further tests show that Insert, while more cpu-intensive than simply appending

records to the negative database, can maintain a more gentle growth in its size,

within an order of magnitude of the size with Clean-Up on a 24-bit length record.

These Clean-Up results closely fit the curves in Figures 3.2 and 3.3. If desired, further

compression of NDB size can be achieved using ManagedGrowth shown in Figure

5.1.

Other applications may require the Select operation to be irreversible and/or for

the restriction criteria itself to remain private. We can use the Compress operation

shown in Figure 5.3 and the Insert procedure as means toward these objectives.

Ensuring the privacy of the selection criteria can also be achieved by making the

strings that comprise it into hard-to-reverse negative databases; some approaches

to this, including a distributed architecture for singleton negative databases, are

discussed in [45, 37] and Chapter 4.

By mitigating the impact of the relational operations on the NDB size with

compression and distributed approaches, we are better able to apply the relational
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algebra operations to manipulate the complemented data within its negative rep-

resentation without specific knowledge of its contents enhancing the usability of

negative databases.

3.5 Related Work

Negative databases and relational algebra are the two major sources from which this

research draws. Negative databases are investigated in [44, 38], where it is shown

that they can be created efficiently, its relation to SAT formulas is demonstrated,

and its data hiding potential explained. The work in [37] investigates several ap-

plications and algorithms that share the same security assumptions and that are of

immediate relevance to negative databases. Evidence regarding the construction of

negative databases that can enhance privacy, in practice, in the absence of other

cryptographic guarantees is provided in [43]. Reference [42] presents a series of oper-

ations that permit a negative database to be updated, i.e., that allows on-line changes

to the contents of DB using only NDB. With regards to set and database theory,

a relational algebra for positive databases is a well-developed area in practice [20].

Here, we rely only on the operations described in the original references, although

further references on the relational algebra include [21, 30, 31, 32].

Other approaches to creating compact representations of Boolean functions and

sets come from circuit minimization algorithms such as Karnaugh maps [66] and

Quine-Mccluskey algorithm [95, 80] over truth tables. In addition, reduced ordered

binary decision diagrams (ROBDDs) [13, 14] and its variants such as binary moment

diagrams (BMD) [15] and zero suppressed binary decision diagram (ZBDD) [84] have

been used to compactly represent binary functions. However, there exist functions

for which the size is always exponential in the number of bits in the string. Among

the differences between these approaches is the need of negative databases to always
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obtain a compact representation of the complement of a set without explicitly calcu-

lating it, and the ease with which some operations can be performed. The negative

relational algebra presented in this chapter will allow us to compare complexity of

operations against these representations.

Other avenues for the application of NDB, stemming from the isomorphism of

NDBs with logical formulas, include investigating SAT formulas themselves and

strengthening the usefulness of SAT theory as it relates to other fields, such as

constraint programming [62, 110, 10]. As discussed in Section 2.4, negative databases

are also quite different than constraint databases.

Danezis et al. proposed an efficient “negative database” representation using

cryptographic hash functions in [29]. Their technique generates a new random seed

used to hash each positive data string to produce an obfuscated data pair, <random

seed, hashed value>. They show that certain database operations and queries are

possible using their scheme. We do not dispute any proven security properties of

cryptographic hash functions. However, their process destroys the original strings

losing the semantics of the original database. Their aim is to be able to answer

membership queries given a specific string. It is also unclear how the relational

operators will be performed to produce another negative database without this can-

didate string to restrict the database. For example, given a candidate string, their

scheme can answer whether or not it is in the intersection of two database. However,

it is unclear how the intersection of two hashed databases will be realized without

maintaining the semantics of the original data in some way.

3.6 Summary and Conclusions

In this chapter, a stronger theoretical foundation for negative databases is presented

bringing them closer to conventional relational databases. We increased our under-
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standing of the complexities of working with the negative representation to assist

in determining the spectrum of potential applications. The work here enabled the

research leading to work on Set-sharing analysis using negative representations. Ear-

lier research proposed a negative database framework supporting only membership

queries and basic operations, such as insert and delete, to modify negative data.

This chapter extends this earlier work by defining a complete and minimal relational

algebra over the negative representation. The perspective proposed is that for each

relational operator, the corresponding negative operator is defined such that the re-

sult of the negative operator applied to a negative representation will be equivalent

to the positive version as if the operation is applied to the positive representation.

Specifically, a complete and closed set of relational operators for negative databases,

select, union, Cartesian product (along with join and intersection), project, and set

difference were described. We proved that no general efficient algorithm exists for

the latter two operations but that efficient implementations are feasible for special

interesting cases.

In addition, defining a negative relational algebra acts as a bridge to our under-

standing of negative databases’ applicability in applications that may require mixing

of both the positive and negative representations. We should design our database

schema to avoid performing Negative Project and Negative Set Difference operations

as much as possible. Furthermore, we should leverage the differences in complexity

of the negative and positive relational operations to our benefit. Chapter 4 covers

this issue in more detail.

Negative databases have been proposed as primitives for privacy-enhancing ap-

plications since some negative database constructions naturally limit the type of

inferences that can be drawn from a dataset. The operations discussed here increase

the versatility of negative databases by allowing the protected dataset to be manip-

ulated in meaningful ways without diminishing its security. An agent can combine
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two negative databases, restrict the contents of its positive image, and project onto

a specific field without any knowledge of positive entries represented.

Further, the use of negative databases for non-secure applications is strengthened

by having a relational algebra. In particular, we explore an application that needs

to dynamically identify items that are not in its positive database and occasionally

modify its contents. An operation such as Negative Select does not require access to

the negative database other than for appending entries. Negative Select establishes

conditions that the positive data must meet but requires no knowledge of the actual

data, separating the ability to select a subset of the data from the need to own it.

There are several interesting avenues for future work. They include the optimiza-

tion of the current relational algebra algorithms and their software implementation.

Furthermore, extending the suite of operations beyond those presented will further

our understand of the usefulness of negative databases in different applications. Com-

parative studies with other representations described above will prove useful and may

expose applications where negative databases can also be used.
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Negative Database Management

System

4.1 Introduction

This chapter proposes a negative database management system (NDBMS) that

can effectively manage negative representation of information. To further advance

negative database concepts and promote their use, I develop a straightforward and

extensible architecture. The design accommodates both positive and negative rep-

resentations simultaneously, in a single database management system, as a tool for

private data sharing.

Current technology enables unprecedented ability for data mining and informa-

tion retrieval among databases. With the global availability of data, many people

are concerned with the possibility of information misuse and abuse by both legiti-

mate businesses and illegitimate entities. Many news articles report several major

breaches in security exposing millions of customers’ private information to unautho-

rized personnel. Additionally, the rise of outsourcing non-core business functions,
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i.e., database management services, has led to concerns about trust in the service

provider’s ability to protect and maintain confidentiality of their data. Furthermore,

as a response to heightened privacy concerns and identity theft, laws mandate com-

panies to ensure data privacy and to notify customers (and the public) of incidents

that potentially exposes their private data [71, 72, 73, 74, 75, 76]. Such exposure

leads companies vulnerable to loss of revenue from lawsuits, civil fines, and consumer

confidence. These changes to the business environment are forcing the industry to

reevaluate its approach to database privacy and security. However, the business re-

quirement to share their data remains. Privacy preserving techniques, such as private

matching, are mandatory precautions for prudent information sharing applications.

These applications enable sharing of databases, possibly owned by different groups,

without compromising sensitive information.

To take advantage of existing database systems, we design the NDBMS over

a relational database management system (RDBMS). Unlike previous work [38],

the entire data record need not be in the negative format. Users select which at-

tributes (fields within a record) are sensitive and convert them into their negative

representations. Therefore, non-sensitive data may be left in the original positive

form.

This chapter begins by motivating how negative databases can be used in data

privacy scenarios. Then, we discuss related works that address the requirements

posed by the scenarios. From these requirements, we present the NDBMS archi-

tecture to help fulfill the requirements presented. Lastly, we analyze the design and

conclude with a summary.
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4.2 Application Scenarios

With the increased public dependence on electronic commerce and health care cou-

pled with the costly spread of electronic-based fraud and identity theft [101], there is

a strong demand for keeping databases private. Most privacy preserving protocols are

based on cryptography [3, 50, 57, 53, 69]. Their solutions employ homomorphic en-

cryption primitives to perform ciphered data matching. Others have proposed ways

to conduct ciphered text searches for matching over databases [3, 8, 18, 52, 106].

However, performing other relational queries, i.e., joins, over encrypted data is cum-

bersome at best and not possible in many cases. We show that negative databases

can be used for private data sharing.

In private sharing, the requester queries databases outside of its control. For

example, suppose a group of retail companies, together with competitors, want to

share their customer databases. The different companies agree to contribute data

for a price or for similar database sharing privileges. They may want to obtain

information to leverage its marketing strategies by offering special promotional sales

with several companies. Now suppose, a specific retailer wants to find out which of

its frequent-buyers shop at its competitors, using the same credit card. Using its

own frequent-buyer list, the requester can pose queries against the intersection of all

the credit card negative databases. A matching credit card number among its list

of prime customers would provide this information. Other customers’ information,

those not in the requester’s database, are not revealed. An advantage this scheme

over cryptographic solutions is that, there are no keys to manage and new subscribers

may join without having keys generated or registered.

If the requester wants to keep his query private and conduct private matching,

then the sources can allow him to download the negative database and perform the

query at the requester’s location. A disadvantage of this approach is that the negative
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Figure 4.1: Private matching using negative databases.

database can get large in size, see Figure 4.5, which increases data transmission

latency and query servicing.

Another way, initially proposed by Esponda, is for the requester to send all rel-

evant negative databases to each data source for private matching. Figure 4.1 illus-

trates how to implement this private matching protocol. For example, Alice wants

to find out which of her customers are in common with Bob. First, she extracts key

attributes that can be used to identify a data record, such as social security number

(SSN) or credit card number (CCN). Then, for each of these sensitive attributes,

Alice converts then into a hard-to-reverse, singleton negative databases (SNDB)

using the algorithm from [45]. Now, suppose Alice has n such attributes, private

matching can be implemented as follows:

1. Alice creates m empty SNDBs (DB = ∅) with the same length as the original

SNDBs. Alice assigns all SNDBs a unique, but temporary, identifier.

2. Alice sends all n + m SNDBs (with identifiers) to Bob in random order.

3. Bob queries each SNDB for a match using positive data values from his DB.

72



Chapter 4. Negative Database Management System

4. Bob returns the identifiers of negative databases that resulted in a positive

match.

5. Alice receives the result and correlates which SNDBs, using the identifiers,

were matched by Bob.

In this scenario, Alice’s data is kept private in a hard-to-reverse SNDB format.

The potential for Bob browsing and spoofing the result is minimized by Alice in-

troducing m empty SNDBs and randomizing the order of the SNDBs. As proven

by Esponda [38], it is NP-Complete to determine whether an NDB represents an

empty DB or not. So, without reversing the SNDBs, Bob cannot tell which SNDB

is empty and which ones are legitimate. The NDBMS can support this implemen-

tation and manage the large numbers of SNDBs effectively. Once again a large

overhead is paid by having Alice transmit numerous SNDBs to Bob. However, the

number of SNDBs to be transmitted is potentially much less than our first proto-

col above (where each source transmits its negative databases to the requester). To

further improve efficiency, a compact representation for SNDBs becomes important.

4.3 NDBMS Architecture

In this section, we define the negative database management system architecture.

For simplicity, we design the NDBMS on top of a prominent relational database

management system called PostgreSQL [94]. In this way, we can take advantage of

built-in DBMS management and optimization features, such as caching and query

pre-planning. In addition, indexing and sorting of fields may be used to improve

query performance. The following sections detail each area of the architecture shown

in Figure 4.2.
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Figure 4.2: An architecture for a Negative Database Management System (NDBMS).

tablename
b1 char
b2 char
.
.
.
bl char

Table 4.1: Table scheme for Negative Database

4.3.1 Internal Data Representation

An important first step is to determine an appropriate internal negative data repre-

sentation in a relational database paradigm. This internal representation will deter-

mine all other functional designs and implementations. For simplicity, I implemented

a straightforward internal representation, i.e., where each bit value is stored as a char-

acter field in a table, as shown in Table 4.1. This representation can be queried for

a match using the SQL query string below. The candidate string we want to match

is kept in a table called QueryDB and the negative database is in NDB1.
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SELECT true FROM QueryDB qdb

WHERE EXISTS (SELECT true FROM NDB1 ndb1

WHERE (qdb.b1 = ndb1.b1 OR qdb.b1 = ‘*’ OR ndb1.b1 = ‘*’)

AND (qdb.b2 = ndb1.b2 OR qdb.b2 = ‘*’ OR ndb1.b2 = ‘*’)

AND ...

AND (qdb.bl = ndb1.bl OR qdb.bl = ‘*’ OR ndb1.bl = ‘*’));

Since the negative representation for a typical positive database can be large,

the efficiency of the negative data representation should be considered. An alterna-

tive internal representation, shown in Appendix A, maintains the location of each

specified bit. This internal representation saves storage space since unspecified bits

information are not stored. Although showing promise, further research showed that

queries incur higher overhead in evaluating the unspecified bit values. More specif-

ically, since all unspecified bits are resolved dynamically, the queries takes much

longer. This slows down query executions to unacceptable levels (several minutes)

even for records less than 100 bits long. In addition, using this representation, nega-

tive databases with large variance in the number of specified bits cannot be handled

efficiently. As a result, in most cases, unspecified locations must be maintained any-

way. Therefore, we resorted to the keeping each ternary bit value as a column value.

Other representations should be considered in future research efforts. In any rep-

resentation, one must evaluate the tradeoffs of a more compact representation with

query execution time.

4.3.2 Database Schema

Previous work, using negative database, combine multiple fields as a single negative

record. Although certain bit positions are designated as different attributes, the

entire record is converted into the same negative format. If a single attribute required
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Figure 4.3: Example Entity-Relationship diagram.

strong protection, then the entire record must be transformed and maintained as

negative database. However, most applications do not require the entire record to

be protected. This only causes inefficient queries accessing specific attributes within

a record.

Figure 4.3 illustrates an example entity-relationship diagram for a customer

database containing the customer’s name and SSN . This customer entity has zero

or more credit cards. Each credit card entity has a number (CCN) and expiration

date, registered with the company. The sensitive values are a customer’s SSN and

associated CCNs.

In this example, the CCN− or SSN− attributes, are converted to a hard-to-

reverse SNDB. The non-sensitive data, Name and ExpDate, can be maintained in its

original positive format. Alternatively, we can separate the non-sensitive attributes

and convert them to an easy-to-reverse negative database using the Prefix algorithm

[38] or NegConvert from Figure 5.4. Then, we would be able to reverse them easily. I

selected to combine both positive and negative representation using a single system.

The relationships among records and fields can be maintained by assigning posi-

tive identifiers, such as PostgreSQL object identifiers (OIDs), to each entity. These

identifiers are system generated assigned to each table in the database. Therefore,

negative attributes, i.e., CCN− shown in Figure 4.3, can be associated with the

CreditCard entity using CreditCard’s primary identifier (not shown), along with the
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corresponding ExpDate.

This schema can be used to satisfy the scenario described earlier. Suppose Alice

has a list of clients and their credit cards. She wants to know if Bob also has some of

her clients without revealing any of her clients information. She sends the CCN−’s

in SNDB format to Bob along with some empty SNDBs. Bob queries each one

using a positive list of CCNs and returns the identifiers of SNDBs that produced

a match. From this result, Alice can tell which of her clients are also on Bob’s list.

4.3.3 Design and Implementation

The current NDBMS implementation provides a framework to conduct tests and

analyze negative database operations, especially with respect to privacy preserving

applications. Average users, familiar with relational databases and SQL commands,

are able use negative databases with minimal learning.

Interface and Preprocessor

Users interact with the NDBMS through a user application such as a graphical

or web user interface. Queries are submitted through the interface in Structured

Query Language (SQL) format. Upon receipt of the SQL statement, the Prepro-

cessor parses the SQL statement and determines how to service the statement. The

parsing process converts the ASCII values, into its binary equivalent and stores it in

a temporary query table in the same internal negative format. From here, the SQL

query may take one of two paths or both paths, through the Procedural Logic block

and/or the Metadata Manager block. If the query can be serviced using metadata

alone, i.e., database size, then the query is serviced solely by the Metadata Manager.

The current user interface is the existing user interface provided by PostgreSQL.
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A graphical user interface called pgAdmin or a terminal interface are provided to

conduct SQL queries. Query results are displayed on a terminal screen, saved onto

a new table or file. Future implementation will provide a dedicated, platform inde-

pendent user interface, such as a web or Java based front end. The interface should

allow users to select whether or not the current attribute should be in the positive

or negative format.

Currently, the Preprocessor uses several steps in order to save data into the nega-

tive format. A new value, say a credit card number, is converted into its binary repre-

sentation and a singleton NDB is generated using existing code implemented by E.S.

Ackley. It is available for download at http://cs.unm.edu/~forrest/projects/

ndb. Then, a preprocessor implemented in C, parses a file in negative database bi-

nary format for inputting into a relational table format previously created. Future

implementation will convert the positive text value and convert it into a negative

database format for input into a new negative table automatically. Once the data is

in a negative table format, queries can be levied against it.

Procedural Logic

One path a query may take is through the Procedural Logic block. It executes the

necessary functions to service the incoming SQL query. Any change to contents of the

database must go through this path. In addition, any queries that cannot be answered

solely by the metadata goes through this path. The Procedural Logic also can

make changes to the metadata by communicating with the Metadata Manager. Any

change to the actual data contained or the structure of the database induces changes

to the metadata. Preliminary tests showed that it is possible to implement basic

NDB operations (Negative Pattern Generate, Insert and Delete) using an RDBMS.

The relational operations described in Chapter 3, except for Negative Project and

Negative Set Difference, were implemented using PostgreSQL’s PG/PLSQL. In
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addition, procedures for conducting membership queries are implemented. Future

work should evaluate using a separate procedural language that can interface with

PostgreSQL.

Metadata Manager

The other path a query may take is to go directly to the Metadata Manager. Certain

basic queries that can be answered by the metadata need not consult the rest of the

system. These queries are interested only about the metadata information, such as

number or names of NDBs, size of an NDB, etc. These metadata information are

maintained by the existing RDBMS. If additional metadata is required, then new

metadata tables can be created and stored in a privileged area of the repository.

Currently, metadata maintained are those generated by PostgreSQL. No addi-

tional metadata specific to negative database format, i.e., number of unspecified

bits, are maintained.

Repository

Positive and negative data are stored in the repository. It is a repository that provides

automated record level identification using auto-incremented fields. It also provides

negative data identification using object identifiers at table level. The repository is

used to maintain consistency and help eliminate redundancy within the NDBMS.

Negative databases can be very large, the chosen RDBMS must be able to perform

incremental loading of data from extremely large tables.

Figure 4.4 shows a steady linear growth in the length of time that membership

queries are executed. The average query execution time are similar for data that

matched and not matched in a negative database. Matching records takes more time
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Figure 4.4: Average query times for finding a match between a single record and
singleton negative database (of different lengths).

since it could not immediately reject the query, i.e., the rest of the bits (fields) are

verified.

4.4 NDBMS Analysis

Current negative database implementations rely on individual files as a means of per-

sistent storage. There is no systematic ability to maintain a database schema. Thus,

attribute labeling and entity relationships must be done explicitly by each user. An

NDBMS can provide this capability automatically. A centralized data management

can take advantage of availability of all data from a single perspective. A well de-

signed schema will reduce data redundancies and inconsistencies [33]. Storing data

in a central DBMS also allows designers to better establish and enforce standards

for data format, naming conventions, and database schema. Another advantage of

a DBMS is it promotes data independence from applications that use the data.

Multiple applications can access the same data as required.

Simple applications do not necessarily need to use a DBMS. It will increase the

overall database size, as shown in Figure 4.5, and may add unnecessary complexity
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Figure 4.5: Comparison of negative database storage size as a text file and as a table
in NDBMS.

to programs. Due to overhead associated with the RDBMS, i.e., metadata and

internal bookkeeping data, the resulting negative tables are consistently larger in

size than its text file equivalent.

Davida et al., studied several cryptographic techniques used to encrypt databases

[34]. He described characteristics that database encryption systems should possess

to ensure a practical database management system. We compare our NDBMS to

their guidelines.

• Encryption system does not need to be theoretically secure...systems based on classi-

cally hard problems are sufficient. A negative database, due to its correspondence to

a SAT formula, satisfy this criteria directly. Although not cryptographically secure,

reversing NDBs is NP-Hard, in general. Therefore, it is important to be able to

generate consistently hard-to-reverse NDBs. An algorithm to create hard-to-reverse

SNDBs was presented in [45].
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• Encryption and decryption must not degrade performance to unacceptable levels,

especially decryption, which is done more often during query execution. Most privacy

enhancing operations deal with comparing encrypted values, similar to membership

queries. When using NDBs, membership queries remain efficient with respect to the

input size, an example is shown in Figure 4.4.

• Encrypted data must not have significantly greater storage volume than unen-

crypted data. Negative databases will have less storage than its positive data only

when the positive data is very large. Therefore, for single positive data, the size of the

NDB created will be much larger, see Figure 4.5. Thus, hard-to-reverse, singleton

NDBs violate this guideline.

• Encryption must occur at the record level of a database. Since the position of a

record is likely to change during its lifetime, there should be no need to decrypt n− 1

records to get to the nth record. We propose to obfuscate data values at the attribute

(not record) level. Our scheme facilitates other relational operations, i.e., Negative

Project. Also, we are able to integrate both positive and negative representation

within a single record. The positive data can help index the records to narrow down

the search space. If an entire record and its individual attributes are obfuscated

using NDBs, then each one will need to be queried individually. This will add to

the query execution time.

• An encrypted record must not contain a series of individually encrypted fields.

Such a scheme can lead to pattern matching and substitution attacks. As stated

above, our scheme obfuscates at field (attribute) level, but maintains other fields in

the positive. Each field is secured according to the hardness of individual SNDBs

created. As an added protection, after a set amount of query access, we can trigger

a Morph operation [38] to change the elements of a specific NDB, without changing

the positive data represented.
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• Encryption should support logical view presentation depending on different user

privileges. Our proposed database schema enables a logical of view of the database

using an entity-relationship diagram, such as the example shown in Figure 4.3. By

building on top of a relational DBMS, the system similarly control access to each

table based on user privileges imposed by the database administrator.

• Reads and writes to the database must be allowed without any special con-

straints. When using our NDBMS, reads and writes would occur as normal with

the exception of calling customized procedures for the relational operations, rather

than traditional SQL queries. By using an existing RDBMS, many of the underly-

ing system operations, i.e., transaction management, remains unchanged.

• The systems should be able to detect and reject data using false encryption key,

even without knowing what the data contain. Since our scheme does not use keys,

this is not applicable to the proposed NDBMS architecture.

As outlined above, integrating the negative and positive representation in a sin-

gle system meets many of the criteria given by Davida et al. for using encryption in

database systems. Our NDBMS design meets many of their recommended guide-

lines making it practical for use by a wider community.

4.5 Conclusion

This chapter describes a database management system for negative representation

of information. Having an efficient protocol that can be used for privacy preserving

applications will encourage collaborations among entities that need to share data

but who are unwilling to compromise data privacy. In addition, negative databases

provide an alternative solution to a class of problems previously reserved for cryp-

tography.
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We described an extensible NDBMS built upon an existing RDBMS. An

NDBMS, general enough to accommodate both negative and positive relational

data, will encourage the adoption of negative databases. Moreover, an easy-to-use

and extensible infrastructure for working with negative data will encourage users to

confidently share their private data. The benefit of an automated management sys-

tem is clear from the user and administrator perspective. In addition, better research

can be conducted using negative databases once negative operations are available and

automatically managed by an NDBMS. Thus, it allows researchers to concentrate

on higher level problems, such as efficient protocols for privacy preserving applica-

tions using negative databases. Without the availability of tools to help ease user

interaction with negative databases, their use will be relegated to academia or a few

truly interested parties.

This initial NDBMS implementation can perform the relational algebra opera-

tions efficiently (other than the Negative Project and Negative Set Difference). We

implemented a preprocessor to import a NDB file into a relational table. The imple-

mentation was used to study the additional storage required for storing an SNDB

file in a relational table. In addition, average membership query execution times for

large NDBs were studied and resulted in acceptable levels.

In the future, we would like to implement the procedural logic algorithms using

a single programming language, such as C, Java, etc. Any future implementation

should strive to service queries more efficiently and store NDBs compactly. New

internal representations and associated functionalities should be compared to current

implementation. In addition, future research should incorporate native RDBMS

optimization functionalities, i.e., indexing, to improve overall performance.
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Chapter 5

Efficient Representations for

Set-Sharing Analysis

5.1 Introduction

This chapter discusses how concepts from negative databases (NDB) can help per-

form efficient set-sharing analysis in abstract interpretation of logic programs [27].

Abstract interpretation approximates the semantics of a program by making gener-

alizations and is commonly used during static program analysis. The goal of static

analysis, e.g., set-sharing analysis, is to conservatively and efficiently estimate the

dynamic behavior of a program without executing it. Results from the analysis can

be used for debugging and compiler level optimizations. However, due to the large

number of variable combinations that must be evaluated during set-sharing analysis,

an intractable number of sharings may occur. Due to memory constraints and/or

long computation time during analysis, compromises are commonly made between

precision of the analysis and its tractability. Therefore, any steps toward a more

compact set-sharing representation and efficient, yet precise, analysis are desired.
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This optimal solution increases the size of solvable set-sharing problem instances.

In close collaboration with J. Navas and E.S. Ackley, we studied two set-sharing

representations. Navas initially posed the possibility of using negative database

concepts to represent set-sharings in complement form. With the help of Ackley and

her code implementations, I developed the majority of the algorithms and proofs. We

showed that it was not only possible to use the negative representation but is more

efficient than its positive binary string representation. Our collaborative efforts were

the key to success to this research. Note that a large part of this chapter is excerpted

from a paper accepted at the International Conference on Logic Programming 2008

[108].

Our primary goal was to develop a more efficient representation to accommodate

larger problem instances. We show that our representations, ternary and negative

ternary, perform precise set-sharing analysis using abstract unification more effi-

ciently than strictly binary set-sharing representation. In the future, our work may

be used to solve efficiently other combinatorial problems amenable to our proposed

representations.

5.2 Preliminaries

In abstract interpretation of logic programs, sharing analysis has received consider-

able attention. Two or more variables in a logic program are said to share if in some

execution of the program they are bound to terms that contain a common variable.

A variable in a logic program is said to be ground if it is bound to a term that does

not contain free variables. Set-Sharing is an important type of combined sharing and

groundness analysis. It was originally introduced by Jacobs and Langen [61, 70] and

its abstract values are sets of sets of variables that keep track, in a compact way,

sharing patterns among variables.
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Example 5.2.1 Set-Sharing encoded by set of sets of variables. Let V =

{X1, X2, X3, X4} be a set of variables of interest. The abstraction in set-sharing of

a substitution such as θ = {X1 7→ f(U1, U2, V1, V2, W1), X2 7→ g(V1, V2, W1), X3 7→

g(W1, W1), X4 7→ a} will be {{X1}, {X1, X2}, {X1, X2, X3}}. Sharing group {X1}

in the abstraction represents the occurrence of run-time variables U1 and U2 in the

concrete substitution, {X1, X2} represents V1 and V2, and {X1, X2, X3} represents

W1. Note that X4 does not appear in the sharing groups because X4 is ground. Note

also that the number of (occurrences of) run-time variables shared is abstracted away.

Sharing has been used to infer several interesting properties and perform opti-

mization and verification of programs at compile-time, most notably but not limited

to: occurs-check reduction (e.g., [104]), automatic parallelization (e.g., [91, 90, 17]),

and finite-tree analysis (e.g., [5]). The accuracy of Set-Sharing has been improved

by extending it with other kinds of information, the most relevant being freeness

and linearity information [89, 61, 90, 24, 58], and also information about term struc-

ture [90, 68, 12, 88]. Sharing in combination with other abstract domains has also

been studied [23, 47, 25]. The significance of Set-Sharing is that it keeps track of

sharing among sets of variables more accurately than other abstract domains such as

Pair-Sharing [104] due to better groundness propagation and other factors that are

relevant in some of its applications [16]. In addition, Set-Sharing has attracted much

attention [22, 25, 6, 16] because its algebraic properties allow elegant encodings into

other efficient implementations (e.g., Reduced Ordered Binary Decision Diagrams,

ROBDDs [14]). In [91, 90], the first comparatively efficient algorithms were pre-

sented for performing the basic operations needed for implementing set sharing-based

analyses.

However, Set-Sharing has a key computational disadvantage: the abstract uni-

fication (amgu, for short) implies potentially exponential growth in the number of

sharing groups due to the up-closure (also called star-union) operation which is the
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heart of that operation. Considerable attention has been given in the literature to

reducing the impact of the complexity of this operation. In [113], Zaffanella et

al. extended the Set-Sharing domain for inferring pair-sharing from a set of sets of

variables to a pair of sets of sets of variables in order to support widening. The key

concept is that the set of sets in the first component (called clique) is reinterpreted

as representing all sharing groups that are contained within it. Although significant

efficiency gains are achieved, this approach loses precision with respect to the orig-

inal Set-Sharing. A similar approach is followed in [92] but for inferring set-sharing

in a top-down framework. Other relevant work was presented in [78] in which the

up-closure operation was delayed and full sharing information was recovered lazily.

However, this interesting approach shares some of the disadvantages of Zaffanella’s

widening. Therefore, the authors refined the idea in [77] reformulating the amgu

in terms of the closure under union operation, collapsing those closures to reduce

the total number of closures and applying them to smaller descriptions without loss

of accuracy. In [25], the authors show that Jacobs and Langen’s sharing domain

is isomorphic to the dual negative of Pos [4], denoted by coPos. This insight im-

proved the understanding of sharing analysis, and led to an elegant expression of the

combination with groundness dependency analysis based on the reduced product of

Sharing and Pos. In addition, this work pointed out the possible implementation of

coPos through ROBDDs leading to more efficient implementations of Set-Sharing

analyses.

In this research, we present a different approach in order to mitigate the com-

putational inefficiencies of the set-sharing domain. We propose two representations

that compress efficiently the number of elements into fewer elements enabling more

efficient abstract operations without any loss of accuracy. The first representation,

tSH, compacts the sharing relationships by eliminating redundancies among them.

The second, tNSH, leverages the complement (or negative) sharing relationships of

the original sharing set. Intuitively, let shV be a sharing set over the set of variables
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of interest V , then tNSH keeps track of ℘(V) \ shV . This new capability of tNSH

dramatically reduces the number of elements to represent as the cardinality of the

original set grows toward 2|V|. It is important to notice that our work is not based

on [25]. Although they define the dual negated positive Boolean functions, coPos

does not represent the entire complement of the positive set. Moreover, they do

not use coPos as a means of compacting relationships but as a way of represent-

ing Sharing through Boolean functions. We also represent Sharing through Boolean

functions, but that is where the similarity ends.

In the remainder of this chapter, Section 5.3 first describes Jacobs and Langen’s

set-sharing domain, bSH, adapted for handling binary strings. Section 5.4 presents

tSH, a more compact representation of bSH using ternary strings. Section 5.5 in-

troduces a novel representation, tNSH, the complement (or negative) of the original

set-sharing. Finally, experimental evaluations of these representations are shown

Section 5.6, and a conclusion is given Section 5.7.

5.3 Set-Sharing Encoded by Binary Strings

The following presentation is based on the notation used by [113, 25] for abstract

unification operations which are rather intuitive. However, for compactness, we

represent the set-sharing domain as a set of strings rather than a set of sets of

variables.

Definition 5.3.1 (Binary sharing domain, bSH). Let alphabet Σ = {0, 1}, V

be a fixed and finite set of variables of interest in arbitrary order, and Σl the finite

set of all strings over Σ with length l, 0 ≤ l ≤ |V|. Let bSH l = ℘0(Σl) be the proper

power set (i.e., ℘(Σl) \ {∅} ) that contains all possible combinations over Σ with

length l. Then, the binary sharing domain is defined as bSH =
⋃

0≤l≤|V|
bSH l.
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Note that the bSH domain includes all sets of binary strings of length not greater

than |V|. However, given a particular instance bsh ∈ bSH, the following property

always holds: ∀si, sj ∈ bsh, length(si) = length(sj). We will denote binary sets with

the same length l through the regular expression {0, 1}l.

5.3.1 Notation

Let F and P be sets of ranked (i.e., with a given arity) functors of interest, e.g., the

function symbols and the predicate symbols of a program. Term is used to denote

the set of terms constructed from V and F ∪P. Although somehow unorthodox, this

allows for simply writing g ∈ Term whether g is a term or a predicate atom, since

all operations apply equally well to both classes of syntactic objects. t̂ is denoted

by the binary representation of the set of variables of t ∈ Term according to a

particular order among variables. For two elements r, t ∈ Term, r̂t represents the

binary representation of the set of variables of r and t in order. Since t̂ always will

be used through a bitwise operation with some string of length l, the length of t̂

must be l. If not, t̂ is adjusted with 0’s in those positions associated with variables

represented in the string but not in t.

5.3.2 Abstract Operations

The following definitions are adapted from the standard definitions for the sharing

domain [61] to accommodate our binary string representation:

Definition 5.3.2 (Binary relevant sharing rel(bsh, t) and irrelevant sharing

irrel(bsh, t)). Given t ∈ Term, the set of binary strings in bsh ∈ bSH l of length l that

are relevant with respect to t is obtained by a function rel(bsh, t) : bSH l × Term→

bSH l defined as:
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rel(bsh, t) = {s | s ∈ bsh, (s
∧

t̂) 6= 0l}

where
∧

represents the bitwise-and operation and 0l is the all-zero string of length

l. Consequently, the set of binary strings in bsh ∈ bSH l that are irrelevant with

respect to t is a function irrel(bsh, t) : bSH l × Term → bSH l where irrel(bsh, t) is

the complement of rel(bsh, t), i.e., bsh \ rel(bsh, t).

Similarly, for two elements r ∈ Term and t ∈ Term, r̂t represents the binary

representation of the union of the variables in r and t.

Definition 5.3.3 (Binary cross-union, ×∪ ). Given bsh1, bsh2 ∈ bSH l, their

cross-union is a function ×∪ : bSH l × bSH l → bSH l defined as

bsh1 ×∪ bsh2 = {s | s = s1

∨
s2, s1 ∈ bsh1, s2 ∈ bsh2}

where
∨

represents the bitwise-or operation.

Definition 5.3.4 (Binary up-closure, (.)∗). Let l be the length of strings in

bsh ∈ bSH l, then the up-closure of bsh, denoted bsh∗ is a function (.)∗ : bSH l →

bSH l that represents the smallest superset of bsh such that s1

∨
s2 ∈ bsh∗ whenever

s1, s2 ∈ bsh∗:

bsh∗ = {s | ∃n ≥ 1 ∃t1, . . . , tn ∈ bsh, s = t1
∨

. . .
∨

tn}

Definition 5.3.5 (Binary abstract unification, amgu). The abstract unification

is a function amgu : V × Term× bSH l → bSH l defined as

amgu(x, t, bsh) = irrel(bsh, x = t) ∪ (rel(bsh, x)×∪ rel(bsh, t))∗
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Example 5.3.1 (Binary abstract unification). Let V = {X1, X2, X3, X4} be the

set of variables of interest and let sh = {{X1}, {X2}, {X3}, {X4}} be a sharing set.

Assume the following order among variables: X1 ≺ X2 ≺ X3 ≺ X4. Then, we can

easily encode each sharing group sg ∈ sh into a binary string s such that s[i] = 1,

(1 ≤ i ≤ |sg|) if and only if the i-th variable of V appears in sg. In this example,

sh is encoded as the following set of binary strings bsh = {1000, 0100, 0010, 0001}.

Consider the analysis of X1 = f(X2, X3):

A = rel(bsh, X1) = {1000}

B = rel(bsh, f(X2, X3)) = {0100, 0010}

A×∪B = {1100, 1010}

(A×∪B)∗ = {1100, 1010, 1110}

C = irrel(bsh, X1 = f(X2, X3)) = {0001}

amgu(X1, f(X2, X3), bsh) = C ∪ (A×∪B)∗ = {0001, 1100, 1010, 1110}

The design of the analysis must be completed by defining the following abstract

operations that are required by an analysis engine: init (initial abstract state),

equivalence (between two abstract substitutions), join (defined as the union), and

project.

Definition 5.3.6 (Binary projection, bsh|t). The binary projection is a function

bsh|t: bSH l×Term→ bSHk (k ≤ l) that removes the i-th positions from all strings

(of length l) in bsh ∈ bSH l, if and only if the i-th positions of t̂ (denoted by t̂[i]) is

0, and it is defined as

bsh|t = {s′ | s ∈ bsh, s′ = π(s, t)}

where π(s, t) is the binary string projection defined as
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π(s, t) =


ε, if s = ε, the empty string

π(s′, t), if s = s′ai and t̂[i] = 0

π(s′, t)ai, if s = s′ai and t̂[i] = 1

and s′ai is the concatenation of character a to string s′ at position i.

Example 5.3.2 Let V be the same set of variables of interest with the same order

than in Example 5.3.1. Assume a set of sharing groups sh = {{X1, X2}, {X1, X3},

{X2, X3}, {X1, X2, X3}, {X4}} encoded as bsh = {1100, 1010, 0110, 1110, 0001}. Then,

the projection of bsh over the term t = f(X1, X2, X3) is bsh|t = {110, 101, 011, 111}.

Notice that since an all-zero string is meaningless in a set-sharing representation, it

is dropped from the result.

Definition 5.3.7 (Binary initial state, init). The initial state is init : V →

bSH |V| describes an empty substitution resulting in {0|V|}.

Definition 5.3.8 (Binary equivalence, =). Given bsh1, bsh2 ∈ bSH l, they are

equivalent if and only if (∀s1 ∈ bsh1,∃s2 ∈ bsh2, s1 = s2) ∧ (∀s2 ∈ bsh2,∃s1 ∈

bsh1, s2 = s1).

Definition 5.3.9 (Binary join, t). Given bsh1, bsh2 ∈ bSH l, the join function

t : bSH l × bSH l → ℘(bSH l) is defined as bsh1 t bsh2 = bsh1 ∪ bsh2.
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5.4 Ternary Set-Sharing

This section presents a more compact representation for the sharing domain defined

above to accommodate a larger number of variables for analysis. We extend the

binary string representation discussed above to use a ternary alphabet Σ = {0, 1, ∗},

where the ∗ symbol denotes both 0 and 1 bit values. This representation effectively

compresses the number of elements in the set into fewer strings without changing

the semantics of its representation. To handle the ternary alphabet, we redefine the

binary operations covered in Section 5.3.

Definition 5.4.1 (Ternary Sharing Domain, tSH). Let alphabet Σ∗ = {0, 1, ∗},

V be a fixed and finite set of variables of interest in an arbitrary order as in Def. 5.3.1,

and Σl
∗ the finite set of all strings over Σ∗ with length l, 0 ≤ l ≤ |V|. Then,

tSH l = ℘0(Σl
∗) and hence, the ternary sharing domain is defined as tSH =

⋃
0≤l≤|V|

tSH l.

Prior to defining how to transform the binary string representation into the corre-

sponding ternary string representation, we introduce two core definitions, Definitions

5.4.2 and 5.4.3, for comparing ternary strings. These operations are essential for the

conversion and ternary set operations. In addition, they are used to eliminate redun-

dant strings within a set and may be used to check for equivalence of two ternary

sets containing different strings.

Definition 5.4.2 (Match, M ). Given two ternary strings, x, y ∈ Σl
∗, of length l,

match is a function M : Σl
∗ × Σl

∗ → B, such that ∀i 1 ≤ i ≤ l,

x M y =

 true, if (x[i] = y[i]) ∨ (x[i] = ∗) ∨ (y[i] = ∗)

false, otherwise
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Definition 5.4.3 (Subsumed By ×⊆ and Subsumed In ×j). Given two ternary

strings s1, s2 ∈ Σl
∗, ×⊆ : Σl

∗ × Σl
∗ → B is a function such that s1

×⊆s2 if and only if

every string matched by s1 is also matched by s2. More formally, s1
×⊆s2 ⇐⇒ ∀s ∈

tSH l, if s1 M s then s2 M s. For convenience, we augment this definition to

deal with sets of strings. Given a ternary string s ∈ Σl
∗ and a ternary sharing set,

tsh ∈ tSH l, ×j : Σl
∗ × tSH l → B is a function such that s ×jtsh if and only if there

exists some element s′ ∈ tsh such that s ×⊆s′.

One important distinction between the two definitions above is that two strings

may match but neither may subsume the other. For example, 1*1 M *01, but

1*1 ×/⊆ *01 and 0*1 ×/⊆ 1*1. Match and subsumption checks between two strings

of length l takes O(l). Verifying if a string is subsumed by some string in a set tsh

takes O(|tsh|l).

The original NDB concept presented in [41] produced a set of records (or strings)

representing the input in a random, obfuscated fashion such that it is difficult to ex-

tract information from the database. Thus, negative pattern generate and supporting

operations were developed to maximize obscurity of a negative set of records. Re-

dundancy among the records was accepted at the expense of the resulting set being

far from minimal in size.

Figure 5.1 gives the pseudo code for an algorithm which converts a set of binary

strings into a set of compact, equivalent ternary strings. The function Convert evalu-

ates each input string and attempts to introduce ∗ symbols using PatternGenerate

based on the k value, while eliminating redundant strings using ManagedGrowth.

The overall time complexity of Convert is O(|bsh|αl), where bsh is the input set of

l-length binary strings and α equals to the maximum size of the intermediate result

times l. The largest size the resulting set will grow is the size of the binary set,

O(|bsh|).
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0 Convert(bsh, k)
1 tsh← ∅
2 foreach s ∈ bsh
3 y ← PatternGenerate(tsh, s, k)
4 tsh← ManagedGrowth(tsh, y)
5 return tsh

10 PatternGenerate(tsh, x, k)
11 m← Specified(x)
12 i← 0
13 x′ ← x
14 l← length(x)
15 while m > k and i < l
16 Let bi be the value of x′ at position i
17 if bi = 0 or bi = 1 then

18 x′ ← x′ with position i replaced by bi

19 if x′ ×j tsh then
20 x′ ← x′ with position i replaced by ∗
21 else
22 x′ ← x′ with position i replaced by bi

23 m← Specified(x′)
24 i← i + 1
25 return x′

30 ManagedGrowth(tsh, y)
31 Sy = {s | s ∈ tsh, s ×⊆y}
32 if Sy = ∅ then
33 if y ×/j tsh then
34 append y to tsh
35 else
36 remove Sy from tsh
37 append y to tsh
38 return tsh

Figure 5.1: A deterministic algorithm for converting a set of binary strings bsh into
a set of ternary strings tsh, where k is the desired minimum number of specified bits
(non-∗) to remain.

5.4.1 Pattern Generate

This version of pattern generate removes all randomization and deterministically

create ternary strings (or records). PatternGenerate, see Figure 5.1, begins by

evaluating the input string bit-by-bit to determine where the ∗ symbol can be in-

troduced. PatternGenerate was adapted from the randomized version defined by

Esponda in [41]. In our version, since no privacy or security properties are required,

all randomizations were eliminated. The algorithm iterates while the number of

specified bits are greater than the desired minimum k (and the end of the string has

not been reached). The number of ∗ symbols introduced depends on the sharing
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set represented and k, the desired minimum number of specified bits, 0 ≤ k ≤ l

(the string length). Thus, for a given set of strings of length l, parameter k controls

the compression of the set. For k = l (all bits specified), there is no compression

and tsh = bsh. For a non-empty bsh, k = 1 introduces the maximum number of ∗

symbols. For now, we will assume that k = 1, and some experimental results shown

by Figure 5.7 will show the best overall k value for a given l is near l/2.

The Specified function returns the number of specified bits (0 or 1) in x. At

each step, if the i-th bit (bi) is specified, then a new string is created with the original

values, except with bi is substituted (· symbol) by the opposite value, bi. If this new

string is subsumed by tsh, then a ∗ can be substituted at bi. Otherwise, bi is reset

to its original value. The new string x′ with more ∗’s is returned. PatternGenerate

has a worst case time complexity for input tsh with strings of length l of O(αl),

where α = |tsh| · l.

5.4.2 Manage Growth

To better control the size of the resulting sharing sets, it is crucial to disallow dupli-

cates or redundant strings when adding strings to the sharing set. ManagedGrowth,

see Figure 5.1, ensures that the candidate string y is not redundant to existing ones

in the set tsh, and it also checks if y subsumes other strings in tsh. In other words, if

no redundant string exists, then y is appended to tsh only if y itself is not redundant

to an existing string in tsh. Otherwise, y replaces all the redundant strings in tsh.

Employing ManagedGrowth decreases the size of intermediate working sets and

the final result set. For example, as shown by Table 5.4.1, after adding the second

record 001 with managed growth resulted in only two records (1**, *1*). However,

some partial redundancy remains to maintain the semantic correctness of the rep-

resentation. From the example, the both strings, 1** and *1*, represent the string
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Input Unmanaged Managed ∆Size

000 1** 1** 0
*1* *1*
**1 **1

001 1** 1** -2
*1* *1*
1*1
*11

010 1** 1** -2
*11 *11
1*1
11*

011 1** 1** -3
1*1
11*
111

100 1*1 1*1 -1
11* 11*
111

101 11* 11* -1
111

110 111 111 0
111 0

Table 5.1: Set size is reduced by not allowing redundant, equivalent strings. The
Unmanaged column shows the number of strings without controlling the growth as
compared to the Managed column (size differences shown in ∆Size column).

111. Removing either one will result in an incorrect representation. This is more

significantly illustrated in Figure 5.7 where k = 1. In this case with l = 12, many

partial redundancies exists and results in output sizes larger than 2l. ManagedGrowth

has a worst case time complexity for input tsh with strings of length l of O(α), where

α = |tsh| · l.

Figure 5.2 illustrates the result of using Convert to transform 28 binary to ternary

strings, in random order, with k = 4 minimum specified bits (for 30 experiments).

The graph shows that the size of the ternary representation is consistently less than
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Figure 5.2: Average size comparisons of binary (bSH) and ternary (tSH) string
formats.

the binary. This size difference helps attain favorable results with respect to result

size and completion time of abstract unification, see Section 5.6.

5.4.3 Example of Conversion from bSH to tSH

Example 5.4.1 (Conversion from bSH to tSH). Let V be the set of variables

of interest with the same order as Example 5.3.1. Assume the following sharing set

of binary strings bsh = {1000, 1001, 0100, 0101, 0010, 0001}. Then, a ternary string

representation produced by applying Convert is tsh ={100*, 0010, 010*, *001}.

Notice there remains a certain level of redundancy in the representation, a subject

that will be discussed further in Section 5.6.

The example above begins with Convert(bsh,k = 1). Since tsh = ∅ initially

99



Chapter 5. Efficient Representations for Set-Sharing Analysis

(line 1), the first string 1000 is appended to tsh, so tsh = {1000}. Next, 1001

from bsh is evaluated. In PatternGenerate, with x′ at iteration i (denoted as x′i),

i = 3, and b3 = 1 (x′3 = 1000), we test if the ith position of x can be replaced

with a ∗ (line 15-24). In this case, since x′3
×j tsh (line 19), x′3 = 100* is returned

(line 25). Next, ManagedGrowth evaluates 100* and since it subsumes 1000 (Sy =

{1000}), 100* replaces 1000 leaving tsh = {100*} (line 38). The process continues

with PatternGenerate({100*},0100) (line 3). In PatternGenerate, since x′0
×/j tsh,

x′1
×/jtsh, x′2

×/jtsh, and x′3
×/jtsh, we reset each ith bit to its original value (line 22) and

x′ = x = 0100 is returned. Next, ManagedGrowth({100*},0100) is called and since

0100 is not redundant to any string in tsh, it is simply appended resulting in tsh =

{100*,0100}. The process continues with PatternGenerate({100*,0100},0101). In

PatternGenerate, when x′3 = 0100 and since x′3
×jtsh, then x′3 = 010* is returned.

ManagedGrowth( {100*, 0100}, 010*) is called next and since 010* subsumes 0100

∈ tsh, 0100 is replaced resulting in tsh ={100*,010*} (line 38). The process continues

similarly, for the remaining input strings in bsh obtaining the final result of tsh =

{100*, 0010, 010*, *001}.

A useful standalone operation to further decrease the size of the ternary set is

0 Compress(sh, k, c)
1 repeat c times
2 sh′ ← sh
3 foreach s ∈ sh′

4 sh′′ ← sh′ \ {s}
5 y ← PatternGenerate(sh′′, s, k)
6 if y ×/jsh′′ then
7 append y to sh′′

8 sh′ ← sh′′

9 if |sh| = |sh′| then
10 return sh′

11 return sh

Figure 5.3: Compress algorithm to remove redundancies in a sharing set.
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Compress, which eliminates redundant strings in the set. It is useful after abstract

unification operation or as warranted. Compress, as shown in Figure 5.3, iterates

through the set and attempts to add ∗ symbols (using a low k value) for each string in

the set. It uses PatternGenerate to introduce ∗ symbols while eliminating redundant

strings using ManagedGrowth . The process continues for some constant c times or

until no improvement (decrease in size) from the previous iteration occurs. Compress

has a worst case time complexity, for input sharing set sh containing l-length strings,

of O(α|sh|), where α = |sh| · l.

5.4.4 Ternary Set-Sharing Operations

Each of the binary string operations from Section 5.3 is redefined to account for the

∗ symbol in a ternary string. Note that since the ternary representation extends the

binary alphabet (i.e., binary is a subset of the ternary alphabet), ternary operations

can also operate over strictly binary strings. For simplicity, certain operators are

overloaded to denote operations involving both binary and ternary strings.

Definition 5.4.4 (Ternary-or
∨

and Ternary-and
∧

). Given two ternary strings,

x, y ∈ Σl
∗ of length l, ternary-or and ternary-and are two bitwise functions defined

as
∨

,
∧

: Σl
∗ × Σl

∗ → Σl
∗ such that z = x

∨
y and w = x

∧
y, ∀i 1 ≤ i ≤ l, where:

z[i] =


∗ if (x[i] = ∗ ∧ y[i] = ∗)

0 if (x[i] = 0 ∧ y[i] = 0)

1 otherwise w[i] =



∗ if (x[i] = ∗ ∧ y[i] = ∗)

1 if (x[i] = 1 ∧ y[i] = 1)

∨ (x[i] = 1 ∧ y[i] = ∗)

∨ (x[i] = ∗ ∧ y[i] = 1)

0 otherwise

Definition 5.4.5 (Ternary set intersection, ∩). Given tsh1, tsh2 ∈ tSH l, ∩ :
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tSH l × tSH l → tSH l is defined as

tsh1 ∩ tsh2 = {r | r = s1
∧

s2, s1 M s2, s1 ∈ tsh1, s2 ∈ tsh2}

For convenience, we define two binary patterns, 0-mask and 1-mask, in order

to simplify operations defined below. The former takes an l-length binary string s

and returns a set with a single string having a 0 where s[i] = 1 and ∗’s elsewhere,

∀i 1 ≤ i ≤ l. The latter takes also an l-length binary string s, but returns a set

of strings with a 1 where s[i] = 1 and ∗’s elsewhere, ∀i 1 ≤ i ≤ l. For instance,

0-mask(0110) and 1-mask(0110) return {∗00∗} and {∗1 ∗ ∗, ∗ ∗ 1∗}, respectively.

Definition 5.4.6 (Ternary relevant sharing rel(tsh, t) and irrelevant sharing

irrel(tsh, t)). Given t ∈ Term with length l and tsh ∈ tSH l with strings of length l,

the set of strings in tsh that are relevant with respect to t is obtained by a function

rel(tsh, t) : tSH l × Term→ tSH l defined as

rel(tsh, t) = tsh ∩ 1-mask(t̂)

In addition, irrel(tsh, t) is defined as

irrel(tsh, t) = (tsh ∩ 1-mask(t̂)) ∩ 0-mask(t̂)

Ternary cross-union,×∪ , and ternary up-closure, (.)∗, operations are as defined

in Definition 5.3.3 and in Definition 5.3.4, respectively, except the binary version of

the bitwise-or operator is replaced with its ternary counterpart defined in Definition

5.4.4 in order to account for the ∗ symbol. In addition, the ternary abstract uni-

fication (amgu) is defined exactly as the binary version, Definition 5.3.5, using the

corresponding ternary definitions.
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Example 5.4.2 (Ternary abstract unification). Let tsh = {100*, 010*, 0010,

*001} as in Example 5.4.1. Consider again the analysis of X1 = f(X2, X3), the result

is:

A = rel(tsh,X1) = {100∗}

B = rel(tsh, f(X2, X3)) = {010∗, 0010}

A×∪B = {110∗, 101∗}

(A×∪B)∗ = {110∗, 101∗, 111∗}

C = irrel(tsh,X1 = f(X2, X3)) = {0001}

amgu(X1, f(X2, X3), tsh) = C ∪ (A×∪B)∗ = {0001, 110∗, 101∗, 111∗}

Ternary projection, tsh|t, is defined similarly as binary projection, see Def. 5.3.6.

However, the projection domain and range is extended to accommodate the ∗ symbol.

So, the function definition remains the same except that ternary string projection is

now defined as a function π(s, t): Σl
∗ × Term→ Σk

∗, k ≤ l. For example, let tsh =

{100*, 010*, 0010, *001} as in Example 5.4.1. Then, the projection of tsh over the

term t = f(X1, X2, X3) is tsh|t = {100, 010, 001}. Once again, note that since an

all-zero string is meaningless in a set-sharing representation, it is not included here.

Definition 5.4.7 (Ternary initial state, init). The initial state init : V × I+ →

tSH |V| describes an initial substitution given a set of variables of interest. Assuming

the binary initial state operation defined as initbSH : V → bSH |V|, the ternary initial

state can be defined using the Convert algorithm in Fig. 5.1 as:

init(V , k) = Convert(initbSH(V), k)

Definition 5.4.8 (Ternary equivalence, ≡). Given tsh1, tsh2 ∈ tSH l, the sets

are equivalent if and only (∀t1 ∈ tsh1, ∀s1
×⊆t1, s1

×jtsh2) ∧ (∀t2 ∈ tsh2, ∀s2
×⊆t2,

103



Chapter 5. Efficient Representations for Set-Sharing Analysis

s2
×j tsh1). Note that two ternary sets may represent the same sharing set even

though they contain different ternary strings.

To compare two ternary sets for equivalence, we cannot simply check for equality

of elements of the sets. Two ternary sets containing different strings may represent

the same sharing set, e.g., {101, *11} ≡ {1*1, *11}. Therefore, each strings subsumed

by all strings in one set must be represented in the other. In the worst case, this

may involved resolving all ∗ symbols and checking for equality, leading to O(2l−k)

operation, with strings of length l and k specified bits.

Finally, the ternary join is defined as its binary counterpart, i.e., set union.

Definition 5.4.9 (Ternary join, t). Given tsh1, tsh2 ∈ tSH, the join function

t : tSH × tSH → ℘(tSH) is defined as the set union of the two sets, tsh1 t tsh2 =

tsh1 ∪ tsh2.

This section presented an extension to the binary string representation using a

ternary alphabet. This extension effectively compressed any set-sharing problem

instance allowing completion of abstract unification over larger number of variables

of interest, see Section 5.6. In addition, a conversion algorithm was introduced and

associated operators were redefined to accommodate the new representation.

5.5 Negative Ternary Set-Sharing

In this section, further enhancement to the ternary representation presented in the

previous section is described. The main idea is that in certain cases, a more compact

representation of sharing relationships among variables can be captured equivalently
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by working with the complement (or negative) set of the original sharing set. A

ternary string t can either be in or not in the set tsh ∈ tSH. This mutual exclusivity

together with the finiteness of V allows for checking t’s membership in tsh by asking

if t is in tsh, or, equivalently, if t is not in its complement, tsh. Given a set of l-bit

binary strings, its complement or negative set contains all the l-bit ternary strings

not in the original set. Therefore, if the cardinality of a set is greater than half of

the maximum size, i.e., > 2|V|−1, then the size of its complement will be less than

2|V|−1. It is this size differential that we exploit. In Set-Sharing analysis, as we

consider programs with larger numbers of variables of interest, the potential number

of sharing groups grows exponentially, toward 2|V|, whereas the number of sharing

groups not in the sharing set decreases toward 0.

The idea of a negative set representation and its associated algorithms extends the

work by Esponda et al. in [41, 46]. In that work, a negative set is generated from the

original set in a similar manner to the conversion algorithms shown in Figures 5.1

and 5.4. However, they produce a negative set with unspecified bits in random

positions and with less emphasis on managing the growth of the resulting set. The

technique was originally introduced as a means of generating Boolean satisfiability

(SAT) formulas where, by leveraging the difficulty of finding solutions to hard SAT

instances, the contents of the original set are obscured without using encryption [41].

In addition, these hard-to-reverse negative sets are still able to answer membership

queries efficiently while remaining intractable to reverse (i.e., to obtain the contents

of the original set). In this application, this important security property is not

required, however, and it uses the negative approach simply to address the efficiency

issues faced by the traditional Set-Sharing domain.

The conversion to the negative set can be accomplished using the two algorithms

shown in Figure 5.4. These algorithms consist of two operations that insert and

delete strings from a ternary set. Insert adds ternary strings with a number of
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specified bits based on the k parameter. If the number of specified bits m for a

given string x is less than k, then k −m unspecified bits are selected and all 2k−m

specified string combinations are added to the result (filtered for redundancies by

ManagedGrowth). Otherwise m ≥ k, there are more specified bits than k and the

algorithm attempts to compress the set by introducing ∗’s using PatternGenerate

and filtered by ManagedGrowth. Example 5.5.1 illustrates this process with a concrete

example. The worst case time complexity for Insert is O(2δ· O(ManagedGrowth)),

where δ = k−m if m < k, 0 otherwise. So, Insert takes O(2δ ·α), where α = |tnsh|·l.

The worst case space complexity of Insert is O(2δ|tnsh|).

The Delete operation removes all strings matching x and saves it in a set Dx. It

also uses Insert to re-add strings that were matched by x but not subsumed by x.

This step is critical in maintaining the correctness of the representation since strings

in this “deleted cache” Dx may represent other strings not represented by x. For

each bit location specified in x and not specified in string y ∈ Dx, Delete creates

candidate string y′ by setting that bit location to the opposite bit value specified

in x. Then, each y′ is added into the result set using Insert. The worst case time

complexity for Delete is O(|tnsh|l + (|tnsh|l· O(Insert)) = O(α(α2δ + 1)), where

α = |tnsh| · l. The worst case space complexity for Delete is O(2δ(l−m)), where m

is the smallest number of specified bits in the entire set.

To convert a positive (binary or ternary) set sh to its negative (complement)

representation, two options are provided. First, NegConvert uses the Delete opera-

tion to remove postive strings in the input set sh from U , the set of all l-bit strings

U = {∗l}. Then, it calls Insert to return U \ sh which results in all strings not

in the original input—its complement. The worst case space and time complexity

for NegConvert is based on whether the conversion is from positive to negative or

negative to positive and the input size times O(Delete), see Table 5.2.

Alternatively, NegConvertMissing may be used to convert a positive set to its
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negative representation. NegConvertMissing initially computes the missing strings

from the input. Then, each missing string is inserted into an initially empty result set.

This conversion results in a negative set representing all strings not in the original

input. The overall time complexity of NegConvertMissing depends on the time it

takes to find all the missing strings, denoted as β, plus the number of missing strings

|bnsh| times O(Insert) resulting in O(β + |bnsh|(α2δ)) (see Table 5.2). The worst

case space complexity for NegConvertMissing depends on the number of missing

strings computed times new strings created resulting in O(|bnsh|2δ).

Table 5.2 shows that both algorithms have slightly different complexities. The

more efficient conversion algorithm depends on the size of the input. For small num-

ber of variables, it may be more advantageous to find all the strings missing from the

input by iterating through the entire power set (a low β value) and then transforming

them using NegConvertMissing. However, for larger positive sets (smaller negative

sets) with longer string lengths, it may be more efficient to use NegConvert.

As hinted above, NegConvert can be used to efficiently convert a negative set to

its complement—its positive ternary representation. This functionality has enabled,

in most cases, a more efficient computation of cross-union in the negative represen-

tation. Cross-union, an NP-Hard operation (see Theorem 9), required establishing

all positive string represented by reversing the negative set. To recover the posi-

tive binary representation from the negative set requires exponential time, O(2l−m).

However, by converting to the ternary representation, fully resolving to the binary

representation is avoided resulting in a more efficient abstract unification, see results

in Figure 5.9. However, in the worst case, as shown by Table 5.2, the conversion

process remains exponential.

Note that the resulting negative set uses the same ternary alphabet described

in Definition 5.4.1 for the ternary sharing domain. For clarity, the negative ternary

set-sharing domain is denoted as tNSH even though tNSH ≡ tSH.
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0 NegConvert(sh, k)
1 tnsh← U
2 foreach t ∈ sh
3 tnsh← Delete(tnsh, t, k)
4 return tnsh

0 NegConvertMissing(bsh, k)
1 tnsh← ∅
2 bnsh← U \ bsh
3 foreach t ∈ bnsh
4 tnsh← Insert(tnsh, t, k)
5 return tnsh

10 Delete(tnsh, x, k)
11 Dx ← ∀t ∈ tnsh, x M t
12 tnsh′ ← tnsh with Dx removed
13 foreach y ∈ Dx

14 foreach unspecified bit position qi of y
15 if bi (the ith bit of x) is specified, then

16 y′ ← y with position qi replaced by bi

17 tnsh′ ← Insert(tnsh′, y′, k)
18 return tnsh′

20 Insert(tnsh, x, k)
21 m← Specified(x)
22 if m < k then
23 P ← select (k −m) unspecified bit positions in x
24 VP ← every possible bit assignment of length |P |
25 foreach v ∈ VP

26 y ← x with positions P replaced by v
27 tnsh′ ← ManagedGrowth(tnsh, y)
28 else
29 y ← PatternGenerate(tnsh, x, k)
30 tnsh′ ← ManagedGrowth(tnsh, y)
31 return tnsh′

Figure 5.4: NegConvert, NegConvertMissing, Delete and Insert algorithms used
to transform positive to negative representation; k is the desired number of specified
bits (non-*’s) to remain.

5.5.1 Deleted Cache Size

With regards to managing the growth of the negative set, studying the deleted cache

size helps determine the potential number of new records that will be created when

adding a new positive string (which must be deleted from the negative set). The

number of unspecified bits, ∗, establishes the potential number of strings to be added
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Figure 5.5: Size of resulting sets (left label) increases as the number of ∗ symbols are
introduced due to increased number of candidate records, shown by the Deleted cache
size (right label), matching the string to be removed. Note: k determines minimum
number of specified bits per record; larger k results in less ∗’s in each record.

as shown in the Delete algorithm in Figure 5.4. The deleted cache size, Dx, is large

when there exists many ∗’s in the negative set. Each ∗ symbol in each matched

record in the cache generates an additional new record in the resulting set. Figure

5.5 illustrates that as the number specified bits increase, the number of negative

strings decrease. However, the minimum number of specified bits, k, should not

equal the length of each record because no compression would take place. Thus,

there is a trade off between maximizing the compression level of the current working

set and the potential for a large increase in subsequent working sets.

Through several experimentation with different string lengths and k value, the

best range of values for k is l/2 ≤ k < l, see Figure 5.7.
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Figure 5.6: Size comparisons with Sorted and Unsorted input

5.5.2 Sorting

An important research result illustrates how sorting the input binary set dramatically

reduces the number of elements in the set during conversions. Inserting strings that

are a small Hamming distance away from previous strings reduces the intermediate

size of the result set. Since our algorithms are deterministic, the size of the final result

set depends primarily on the input to be converted. Although the final result is the

same for the same input set (sorted or not), the size of the intermediate working sets

are significantly reduced when the input is sorted. Figure 5.6 shows that as the size

of the input grows, sorting does improve the intermediate working set even though

both unsorted and sorted versions converge to the same result set.

We discovered that different types of sorting produce varying improvements. For

bSH, sorting numerically by binary value results in a smaller size than an unsorted

input. However, the Hamming distance at points where the binary bits carry to the

next significant digit occurs result in less than optimum conversion. For example,
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strings 011 and 100 has a Hamming distance of 3, whereas 011 and 010 only has

a distance of 1. Two strings with a distance of one can be compressed onto a

single string by replacing the bits where they differ by a ∗. The best compression

was achieved by sorting using Gray codes [97]. Gray coding sorts strings such that

adjacent strings have the minimum Hamming distance possible, without regard to

binary value or alphanumeric ordering.

5.5.3 Example of Conversion from bSH to tNSH

Example 5.5.1 (Conversion from bSH to tNSH). Consider the same sharing

set as in Example 5.4.1: bsh = {1000, 1001, 0100, 0010, 0101, 0001}. A negative

ternary string representation is generated by applying the NegConvert algorithm to

obtain {0000, 11**, 1*1*, *11*, **11}. Since a string of all 0’s is meaningless in a

set-sharing representation, it is removed from the set. Thus, tnsh = {11**, 1*1*,

*11*, **11}.

For Example 5.5.1, the first string 1000 is deleted from U = {∗ ∗ ∗∗}. So, Dx =

{∗ ∗ ∗∗} (line 11) and tnsh′ = ∅ (line 12). For each ith bit of x, a new y′i /M x

is evaluated for insertion into the result set. So, Insert (∅, y′0 = 0***, k = 1)

is called (line 17). Since Specified(y′) ≥ k and tnsh′ = ∅, the result returned is

tnsh′ ={0***} (line 27-30). For all other unspecified positions (line 14) of y, a new

string is created with a bit value opposite to xi’s value, (bi). So, Insert ({0***},

y′1 = *1**, k = 1) is called next and y′1 is appended to tnsh′. The process continues

with y′2 and y′3 resulting in tnsh = {0***, *1**, **1*, ***1}.

Next, 1001 from bsh is deleted (line 2) resulting in Dx ={***1} and tnsh′ =

{0***, *1**, **1*} (line 11,12). Then, Insert ({0***, *1**, **1*}, y′ = 0**1,

k = 1) is called. Since 0**1 ×jtnsh′, then tnsh′ remains unchanged. The process

continues with y′1 =*1*1, y′2 =**11 being subsumed by tnsh′; so the result returned
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is tnsh = {0***, *1**, **1*}. Next, 0100 is deleted resulting in tnsh = {00**, 0**1,

11**, *1*1, **1*}. Next, 0010 is deleted resulting in tnsh = {000*, 0**1, 11**, 1*1*,

*11*, *1*1, **11}. Next, 0101 is deleted resulting in tnsh = {000*, 00*1, 11**, 1*1*,

*11*, **11}. Finally, 0001 is deleted resulting in tnsh = {0000, 11**, 1*1*, *11*,

**11}. Removing the string with all 0s, we get the final tnsh = {11**, 1*1*, *11*,

**11}. Notice that tnsh = U \ (bsh ∪ {0000}).

Alternatively, NegConvertMissing may be used to convert in the following way.

first the missing strings must be calculated from the given set. For Example 5.5.1,

the missing strings are {0011, 0110, 0111, 1010, 1011, 1100, 1101, 1110, 1111}. The

NegConvertMissing begins with the first string 0011 and tnsh = ∅ resulting in

tnsh ={0011}.

Then, Insert ({0011}, y′ = 0110, k = 1) resulting in tnsh ={0011, 0110}. Next,

Insert ({0011, 0110}, y′ = 0111, k = 1) resulting in tnsh ={011*, 0*11}. Next,

Insert ({011*, 0*11}, y′ = 1010, k = 1) resulting in tnsh ={011*, 0*11, 1010}.

Next, Insert ({011*, 0*11, 1010}, y′ = 1011, k = 1) resulting in tnsh ={011*, 0*11,

101*, *011}. Next, Insert ({011*, 0*11, 101*, *011}, y′ = 1100, k = 1) resulting

in tnsh ={011*, 0*11, 101*, 1100, *011}. Next, Insert ({011*, 0*11, 101*, 1100,

*011}, y′ = 1101, k = 1) resulting in tnsh ={011*, 0*11, 101*, 110*, *011}. Next,

Insert ({011*, 0*11, 101*, 110*, *011}, y′ = 1110, k = 1) resulting in tnsh ={011*,

0*11, 101*, 110*, *011, *110}. Finally, Insert ({011*, 0*11, 101*, 110*, *011,

*110}, y′ = 1111, k = 1) resulting in tnsh ={11**, 1*1*, *11*, **11}.

Notice that the final result of both conversion algorithms are equivalent. Table

5.2 illustrates different transformations and their results for a given input and convert

operation. Rows 2 and 4 show that both NegConvert and NegConvertMissing can

convert a positive representation into its corresponding negative set. Depending on

the size of the original input we may prefer one transformation over another. If the

input size is relatively small, less than 50% of the maximum size, then NegConvert
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Input Convert Operation Result Description Time Complexity Size Complexity
bsh Convert tsh bSH to tSH O(|bsh|αl) O(|bsh|)

bsh/tsh NegConvert tnsh pos to neg O(|bsh|α(α2δ + 1)) O(|tnsh|(l − m)2δ)

tnsh NegConvert tsh neg to pos O(|tnsh|α(α2δ + 1)) O(|tsh|(l − m)2δ)

bsh NegConvertMissing tnsh pos to neg O(β + |bnsh|(α2δ)) O(|bnsh|2δ)

Table 5.2: Summary of conversions: l-length strings; α = |Result| · l; if m < k then
δ = k −m else δ = 0, where m = minimum specified bits in entire set, k = number
of specified bits desired; bnsh = U \ bsh; β = O(2l) time to find bnsh.

is often more efficient than NegConvertMissing. Alternatively, we may initially find

the missing strings from the input set and incrementally Insert each one into an

empty negative set.

Consider the same set of variables and order among them as in Example 5.5.1

but with a slightly different set of sharing groups encoded as bsh = {1000, 1100,

1110} or tsh = {1*00, 1110}. The negative ternary string representation produced

by NegConvert is tnsh ={00**, 01**, 0*1*, 0**1, 1**1, *01*}. This example shows

that the number of elements, or size, of the negative result, |tnsh| = 6 > |bsh| = 3

and |tsh| = 2. However, in Example 5.5.1 when |bsh| = 6, |tnsh| = 4 < |bsh|. This

is because when |bsh| is less than 2|V|−1, i.e., |bsh| = 3 < 23, then its complement

set must represent (2|V| − |bsh|) = 13 elements. Depending on the strings in the

positive set, the size of the negative result may indeed be greater. This is a good

illustration of how selecting the appropriate set-sharing representation will affect the

size of the converted result. Thus, the size of the original sharing set at specific

program points will be used by the analysis to produce the most compact working

set. In Section 5.6, we show that the smaller the size of the representation, the faster

amgu completes execution and the smaller the resulting set generated. The negative

sharing set representation allows us to represent more variables of interest enabling

larger problem instances to be evaluated.
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5.5.4 Negative Ternary Set-Sharing Operations

Operations are now defined for negative ternary representation in order to perform

abstract unification and the other abstract operations required by our engine to use

the negative representation.

Definition 5.5.1 (Negative relevant sharing rel(tnsh, t) and irrelevant shar-

ing irrel(tnsh, t)) Given t ∈ Term and tnsh ∈ tNSH l with strings of length l, the

set of strings in tnsh that are negative relevant with respect to t is obtained by a

function rel(tnsh, t) : tNSH l × Term→ tNSH l defined as:

rel(tnsh, t) = tnsh ∩ 0-mask(t̂),

where ∩ is the negative intersection of two negative sets, as defined in Section 3.2.6.

In addition, irrel(tnsh, t) is defined as:

irrel(tnsh, t) = tnsh ∩ 1-mask(t̂).

Because the negative representation is the complement, it is not only more com-

pact for large positive set-sharing instances, but also, and perhaps more importantly,

it enables us to use inverse operations that are more memory and computationally

efficient than in the positive representation. However, the negative representation

does have its limitations. Certain operations that are straightforward in the positive

representation are NP-Hard in the negative representation [41, 46]. A key observa-

tion given in [41] is that there is a mapping from Boolean formulas to the negative

set-sharing domain such that finding which strings are not represented is equiva-

lent to finding satisfying assignments to the corresponding Boolean formula. This

is known to be an NP-Hard problem. As mentioned before, this fact is exploited

in [41] for privacy enhancing applications. The mapping is defined as follows.
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Let tnsh = {11**, 1*1*, *11*, **11} be the same sharing set as in Example 5.5.1.

Its equivalent Boolean formula φ ≡ not [(x1 and x2) or (x1 and x3) or (x2 and x3)

or (x3 and x4)] is defined over the set of variables {x1, x2, x3, x4}. The formula φ

is mapped into a negative set-sharing instance where each clause corresponds to a

string and each variable in the clause is represented as a 0 if it appears negated,

as a 1 if it appears un-negated, and as a * if it does not appear in the clause. By

applying DeMorgan’s law, we can convert φ to an equivalent formula in conjunctive

normal form. Then, it is easy to see that a satisfying assignment of the formula such

as {x1 = true, x2 = false, x3 = false, x4 = true} corresponding to the string 1001

is not represented in the negative set-sharing instance.

Theorem 9 A polynomial time algorithm for computing negative cross-union,×∪ ,

implies P=NP.

To show that negative cross-union, ×∪ , is NP-Complete we first restate the defi-

nition of Non-Empty Self Recognition (NESR) shown to be NP-Complete in [41].

Then, we use NESR to show that there is no polynomial time algorithm for com-

puting negative cross-union unless P = NP .

(Non-Empty Self Recognition, NESR).

INPUT: A negative set tnsh of length l strings over the alphabet {0, 1, ∗}.

QUESTION: Does tnsh represent an empty positive set bsh? In other words, does

there exists a string in {0, 1}l not matched in tnsh?

The following is a proof for Theorem 9:

Proof 5.5.1 Given a negative set tnsh of length l, assume a polynomial time al-

gorithm M that takes as input negative sets tnsh1 and tnsh2 and outputs tnsh′ =
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tnsh1 ×∪ tnsh2, where tnsh′ represents the result of the positive cross-union of the

two positive sets represented by tnsh1 and tnsh2.

We construct a polynomial time algorithm for NESR: given any instance of

NESR with input tnsh. First, generate a positive set sh with two strings s1 and s2

of length l each having alternating 1’s and 0’s, e.g., if l = 4, then sh = {0101, 1010}.

Convert sh to its negative set representation, nsh, using a polynomial time algorithm,

i.e., letting k = log2(l) or the Prefix algorithm, see [41]. Verify that s1 and s2 appear

in tnsh: if either one is missing from tnsh, then answer “No” (tnsh is not empty, at

a minimum it represents the missing string). Otherwise, both s1 and s2 appear in

tnsh, but there may be some other string(s) missing from tnsh (tnsh is not empty).

LetM compute tnsh′ = tnsh ×∪ nsh. Now, check if both s1 and s2 appear in tnsh′:

if both are missing from tnsh′, then answer “Yes” (tnsh is empty); otherwise, answer

“No”.

Note that if tnsh represented an empty positive set, then its negative cross-union

with another set nsh will yield a representation of the same set nsh. In other words,

if tnsh is empty and since s1 and s2 were missing from nsh, then s1 and s2 will also

be missing from the result tnsh′. On the other hand, if tnsh is not empty (represents

some string(s), other than s1 and s2, in the positive), then negative cross-union

(ternary bitwise-or operation) with one of the two strings will produce a different

string to s1 or s2 resulting in either s1 or s2 appearing in tnsh′. Thus, M can be

used to solve NESR efficiently. Since NESR is NP-Complete, then we have shown

P=NP .

Due to the interdependent nature of the relationship between the elements of a

negative set, it is unclear how a precise negative cross-union can be accomplished

without going through a positive representation. Therefore, we accomplish the nega-

tive cross-union by first identifying the represented positive strings and then applying

cross-union accordingly.
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Rather than iterating through all possible strings in U and performing cross-

union on strings not in tnsh, we achieve a more efficient negative cross-union, ×∪ ,

by converting tnsh to tsh first, i.e., using NegConvert from Table 5.2 and perform-

ing ternary cross-union on strings t ∈ tsh. In this way, the ternary representation

continues to provide a compressed representation of the sharing set. Note that the

negative up-closure operation, ∗, suffers the same drawback as cross-union. There-

fore, we handle it in the same way as the negative cross-union.

To further illustrate differences in operating between the positive and negative

representation, the following example shows that the result of a ternary cross-union

of elements from negative sets is not equivalent to the ternary cross-union of the

equivalent positive sets.

Example 5.5.2 Let tnsh1 = {01*, 10*}, or {010, 011, 100, 101} fully specified,

and tnsh2 = {010}. Their positive ternary cross-union tnsh = tnsh1 ×∪ tnsh2 =

{010, 011, 110, 111}. However, if we take the complement of tnsh1 and tnsh2,

tsh1 = {001, 110, 111} and tsh2 = {001, 011, 100, 101, 110, 111}, respectively, then

tsh = tsh1 ×∪ tsh2 = {001, 011, 101, 110, 111}. The complement of tsh ={010, 100}

which is not equivalent to tnsh = {010, 011, 110, 111}. The correct negative cross-

union operation should have returned tnsh′ = tnsh1 ×∪ tnsh2 = {001, 011, 101, 110,

111}.

A canonical negative set, in its entirety, represents all the strings not in the

positive. For example, let tnsh be a negative set with two negative elements of length

4, tnsh = ∗00∗, ∗11∗. Notice that tnsh contains all the 4-bit strings with “00” and

“11” in the middle two positions, i.e., 0000, 0001, 1000, 1001, 0110, 0111, 1110, 1111.

However, it represents all 4-bit positive strings except those with “00” or “11” in the

middle two positions, i.e., 0010, 0011, 1010, 1011, 0100, 0101, 1100, 1101. This is

U \ tnsh = bsh. If we append another negative string, say “1***”, all strings with
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a “1” in the first position, to the negative set, we obtain tnsh′ = ∗00∗, ∗11∗, 1 ∗ ∗∗.

Now tnsh′ contains not only the strings with “00” and “11” in the middle two

positions (like tnsh), but also those with a “1” in the first position, i.e., tnsh ∪ {1000,

1001, 1010, 1011, 1100, 1101, 1110, 1111}. Consequently, tnsh′ represents all 4-bit

positive strings except those with “00” or “11” in the middle two positions AND a “1”

in the first position, i.e., 0011, 0100, 0010, 0101. Notice that 1010, 1011, 1100, 1101

were eliminated from the representation. Each non-redundant negative string added

reduces the positive strings represented. Thus, the entire negative set is necessary to

represent even just one positive element. Due to its relationship with SAT problems

[41], we can consider the negative set as equivalent to a Boolean formula that can be

solved to reveal the positive strings represented which is, in general, a hard problem.

Due to the conjunctive nature of the relationship between the elements of a neg-

ative set, it is unclear how a precise negative cross-union can be accomplished with-

out going through a positive representation. Therefore, we accomplish the negative

cross-union by first identifying the represented positive strings and then applying

cross-union accordingly.

Bitwise operations are used throughout the negative algorithms to compress,

expand, and perform set operations on negative sets while preserving the precise

positive sets they represent. As shown by the conversion algorithms, new strings are

added to or removed from a negative representation with the Delete and Insert

operations, and these strings are known a priori.

Since cross-union may create new strings as well as eliminate existing ones, neg-

ative cross-union would need to modify the negative set to both Delete existing

negative strings to represent any newly created positive strings, as well as Insert

strings not currently represented to remove them from the positive. Since a sin-

gle negative string only guarantees that a particular group of subsumed strings are

not in the positive, the entire negative set (taken as a whole) is required to repre-
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sent the positive strings. Therefore, we can only accomplish negative cross-union

by first identifying all the positive strings represented and performing cross-union

accordingly.

In general, bitwise operations that may introduce new strings in the positive set

cannot be applied directly to the elements in a negative representation to achieve

an equivalent result in the positive representation. Since the negative representation

contains all elements not in the set, a single element in the negative set does not

guarantee that a specific positive string is represented. Furthermore, a single negative

element only guarantees that this particular string is not in the positive. Since

ternary-or creates an entirely new string, we cannot determine if the new negative

string is actually in the positive result. Therefore, the entire negative set is required

to determine which positive strings the bitwise operator should be applied to.

Definition 5.5.2 (Negative abstract unification, amgu). The negative abstract

unification is a function amgu : V × Term× tNSH l → tNSH l defined as

amgu(x, t, tnsh) = irrel(tnsh, x = t) ∪ (rel(tnsh, x) ×∪ rel(tnsh, t))
∗
,

where ∪ is the negative set union as defined in Section 3.2.2.

Example 5.5.3 (Negative abstract unification). Let tnsh = {11**, 1*1*, *11*,

**11} be the same sharing set as in Example 5.5.1. Consider the analysis of X1 =

f(X2, X3):
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A = rel(tnsh, X1) = {11 ∗ ∗, 1 ∗ 1∗, ∗11∗, ∗ ∗ 11, 0 ∗ ∗∗}

B = rel(tnsh, f(X2, X3)) = {11 ∗ ∗, 1 ∗ 1∗, ∗11∗, ∗ ∗ 11, ∗00∗}

A×∪B = {00 ∗ ∗, 01 ∗ ∗, 0 ∗ 0∗, ∗00∗}

(A×∪B)∗ = {01 ∗ ∗, 0 ∗ 1∗, 100∗}

C = irrel(tnsh, X1 = f(X2, X3)) = {11 ∗ ∗, 1 ∗ 1∗, ∗11∗, ∗ ∗ 11, 1 ∗ ∗∗,

∗ 1 ∗ ∗, ∗ ∗ 1∗}

= {1 ∗ ∗∗, ∗1 ∗ ∗, ∗ ∗ 1∗}

amgu(X1, f(X2, X3), tnsh) = C ∪ (A×∪B)∗ = {01 ∗ ∗, 0 ∗ 1∗, 0 ∗ ∗0, 100∗}

Definition 5.5.3 (Negative projection, tnsh|t). The negative projection is a

function tnsh|t: tNSH l × Term → tNSHk (k ≤ l) that selects elements of tnsh

projected onto the binary representation of t ∈ Term and is defined as

tnsh|t = π(tnsh, Υt),

where Υt is equal to all ith-bit positions of t̂ where t̂[i] = 1 and π is the negative

project operation, as defined in Section 3.2.7.

Example 5.5.4 (Negative projection). Let tnsh = {11**, 1*1*, *11*, **11} be

the same sharing set as in Example 5.5.1. The negative projection of tnsh over the

term t = f(X1, X2, X3) is tnsh|t = {11*, 1*1, *11}. String **1 is not in the result

because it represents the following strings when fully specified {001, 011, 101, 111}

and not all these strings are in the complement, e.g., 001 is in the positive result of

the same projection over bsh.

Definition 5.5.4 (Negative initial state, init). The negative initial state init :

V × I+ → tNSH |V| describes an initial substitution given a set of variables of in-

terest. Assuming as in Definition 5.4.7 the binary initial state operation initbSH :
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bsh tnsh1 tsh1 tnsh2 tsh2

0011 000* 0100 000* 0100
0100 0*01 1**1 0*01 0*11
0111 1**0 **11 101* 11*1
1001 *0*0 1**0 1*01
1011 **10 *0*0 *111
1101 **10
1111

Table 5.3: tnsh1 and tnsh2 contain different strings but represent the same bsh. Also,
their respective complements, tsh1 and tsh2, differ in the elements they contain but
represent the same bsh.

V → bSH |V|, the negative initial state can be defined using either NegConvert or

NegConvertMissing described in Fig. 5.4 and denoted both by Convert as follows:

init(V , k) = Convert(initbSH(V), k)

Definition 5.5.5 (Negative set equivalence, ≡). Given tnsh1, tnsh2 ∈ tNSH l,

they are equivalent if and only if (∀t1 ∈ tnsh1,∀s1
×⊆ t1, s1

×/j tnsh2) ∧ (∀t2 ∈

tnsh2,∀s2
×⊆t2, s2

×/j tnsh1).

As one can see from the example in Table 5.3, more than one negative set, tnsh1

and tnsh2, can represent the same postive set, bsh. This presents further complica-

tions in comparing negative sets for equivalency.

Definition 5.5.6 (Negative join, t). Given tnsh1, tnsh2 ∈ tNSH l, the negative

join function t : tNSH l× tNSH l → ℘0(tNSH l) is defined as the negative set union

of the two sets, i.e., tnsh1 ∪ tnsh2.

This section presented an alternative representation to positive set-sharing in-

stances, namely using its complement. Taking advantage of the smaller complement
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size further improved the results from the positive ternary representation allowing for

completion of abstract unification more efficiently, see Section 5.6. New conversion

algorithms were described and associated operators were redefined to accommodate

this new “negative” representation. The next section compares the results gathered

from multiple experiments using all three sharing set representations.

5.6 Experimental Results

A proof-of-concept implementation was developed in order to measure experimentally

the relative efficiency in terms of running time and memory usage obtained with the

two new representations described earlier, tSH and tNSH. The prototype uses

Patricia tries [86] to handle efficiently binary and ternary strings, and is connected

to a naive bottom-up fixpoint analyzer.

Our first objective is to study the implications of the conversions in the repre-

sentation for analysis. Note that although both tSH and tNSH do not imply a loss

of precision, the sizes of the resulting representations and their conversion times can

vary significantly from one to another. An essential issue is to determine experimen-

tally the best overall k parameter for the conversion algorithms. Second, we study

the core abstract operation of the traditional set-sharing, amgu, under two different

metrics. One is the running time to perform the abstract unification. The other

metric expresses the memory usage through the size of the representation in terms

of number of strings during key steps in the unification. All experiments have been

conducted on an IntelR CoreTM Duo CPU T2350 at 1.86GHz with 1GB of RAM

running Ubuntu 7.04, and were performed with 12-bit strings since we consider this

value large enough to show all the relevant features of our approach. In general,

within some upper bound, the more variables considered the better the expected

efficiency.
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Figure 5.7: Size comparisons, average (µ), for binary (bSH), ternary (tSH), and
negative ternary (tNSH) with l = 12 for k = 1, 4, 7, and 10.

The first experiment determines the best k value suitable for the conversion algo-

rithms, shown in Figs. 5.1 and 5.4. We proceed by submitting a set of 12-bit strings

in random order using different k values. We evaluate size for the smallest output

(see Fig. 5.7) for a given k value. As expected, bSH (x = y line) results in no

compression; tSH slowly increases with increasing input size, remaining below bSH

(for k = 7 and k = 10) due to the compression provided by the ∗ symbol and by

having little redundancy; tNSH, the complement set, starts larger than bSH but

quickly tapers off as the input size increases past 50% of |U|. Since the k parameter

helps determine the minimum number of specified bits in the set, there is a direct

relationship between the k parameter and the size of the output due to compression

by the ∗ symbol. A smaller k value, i.e., k = 1, introduces the maximum number of

∗ symbols in the set. However, for a given input, a small k value does not necessarily
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result in the best compression factor (see k = 1 of Fig. 5.7). This result may be

counter-intuitive, but it is due to the potentially larger number of unmatched strings

that must be re-inserted back into the set determined by all the strings that must be

represented by the converted result, see line 13-17 of Fig. 5.4. In addition, a small k

value may result in a set with more ternary strings than the number of binary strings

represented. This occurs when multiple ternary strings, none of which subsumes any

other, represent the same binary string. This redundancy in the ternary representa-

tion is not prevented by ManagedGrowth, and is apparent in Fig. 5.7 when |tSH| and

|tNSH| exceed the maximum size of binary sharing relationships (i.e., 4096). One

way to reduce the number of redundant strings is to sort the binary input by Ham-

ming distance before conversion. In the subsequent tests, sorting was performed to

maximize compression. We have found empirically that a k setting near (or slightly

larger than) l/2 is the best overall value considering both the result size and time

complexity. We use k = 7 in the following experiments. It is interesting to note that

a k value of log2(l) results in polynomial time conversion of the input (see the Com-

plexity column of Table 5.2) but it may not result in the maximum compression of

the set (see k = 4 of Fig. 5.7). Therefore, k may be adjusted to produce results based

on acceptable performance level depending on which parameter is more important

to the user, the level of compression (memory constraints) or execution time.

Our second experiment shows the comparison in terms of memory usage (Fig. 5.8,

left) and running time (Fig. 5.8, right) of the conversion algorithms for transforming

an initial set of binary strings, bSH, into its corresponding set of ternary strings,

tSH, or its complement (negative), tNSH. We generated random sets of binary

strings (over 30 runs) using k = 7 and we converted the set of binary strings using

the Convert algorithm described in Fig. 5.1 for tSH, and NegConvertMissing in

Fig. 5.4 for tNSH. We also reduced the number of redundant strings by sorting them

using the Hamming distance before conversion. The plot on the left shows that the

number of positive ternary strings,|tSH|, used for encoding the input binary strings

124



Chapter 5. Efficient Representations for Set-Sharing Analysis

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  500  1000  1500  2000  2500  3000  3500  4000

N
u

m
b

er
 o

f 
S

tr
in

g
s 

Number of Binary Strings

bSH
tSH

tNSH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

T
im

e 
(n

o
rm

al
iz

ed
)

Number of Binary Strings

bSH
tSH

tNSH

Figure 5.8: Memory usage (avg. # of strings) and time normalized for conversions
with k = 7.

always remains below |bSH|, and this number increases slowly with increasing input

size. It important to notice that for large values of |bSH|, tSH compacts worse

than expected and the compression factor is lower. The main cause is the use of the

parameter k = 7 that implies only the use of 5 or less ∗ symbols for compression.

Conversely, the number of negative sharing relationships, |tNSH|, is greater than

|bSH| and |tSH| up to between 40% and 50%, respectively. However, when the load

exceeds those thresholds tNSH compresses much better than its alternatives. For

instance, for the maximum number of binary sharing relationships, tNSH compresses

them to only one negative string. On the other hand, the rightmost plot shows the

average time consumed over 30 runs for both conversion algorithms. Again, tNSH

scales better than the positive ternary solution, tSH, after a threshold established

around 50% of the maximum number of binary sharing relationships.

The proof-of-concept implementation is not really optimized, since our objective

is to study the relative performance between the three representations, and thus

times are normalized to the range [0, 1]. We argue that the comparisons we submit

between representations are fair since the three cases have been implemented with

similar efficiency, and useful since the absolute performance of the base representation
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Figure 5.9: Memory usage (avg. # of strings) and time normalized for amgu over
30 runs with k = 7.

is well understood.

Finally, our third experiment shows also the efficiency in terms of the memory

usage (in Fig. 5.9, left) and running time (in Fig. 5.9, right) when performing the

abstract unification for k = 7. Several characteristics of the abstract unification

influence the memory usage and its performance. Given an arbitrary set of variables

of interest V (|V| = 12), we constructed x ∈ V by selecting one variable and t ∈ Term

as a term consisting of a subset of the remaining variables, i.e., V \ {x}. We tested

with different values of t. Another important aspect is the input sharing set, bSH.

Again, we reduced the influence of this factor by generating randomly 30 different

sets.

In the leftmost plot, the x-axis illustrates the number of input binary strings

considered during the amgu. In the case of the positive and negative ternary amgu,

the input binary strings were first converted to their corresponding compressed rep-

resentations. The y-axis shows the number of strings after the unification. The plot

shows that exceeding a threshold lower than 500 in the number of input binary shar-

ing relationships, both tSH and tNSH yield a significant smaller number of strings
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than the binary solution after unification. Moreover, when the number of the input

binary strings is smaller than 50% of its maximum value, tSH compresses more ef-

ficiently than tNSH. However, if this value is exceeded then this trend is reversed:

the negative encoding yields a better compression as the cardinality of the original

set grows toward 2|V|.

The rightmost plot shows the size of the random binary input sets in the x-axis,

and the average time consumed for performing the abstract unification in its y-axis,

normalized again from 0 to 1. This graph shows that the execution times behave

similarly to the memory usage during abstract unification. Both tSH and tNSH

run much faster than bSH. The differences are significant (a factor of 10) for most

x-values, reaching a factor of 1000 for large values of |bSH|. When the load exceeds

a 50 − 60%-threshold, tNSH scales better than tSH by a factor of 10. The main

difference with respect to the memory usage depicted in the leftmost plot is that for

a smaller load, tSH runs as fast as tNSH during unification. The main reason is

that the ternary relevant and irrelevant sharing operations are less efficient than their

negative counterparts: intersection is an expensive operation in the positive ternary

representation whereas the negative intersection is very efficient (positive union).

5.7 Conclusions and future work

This chapter presented a novel approach to Set-Sharing that leverages the comple-

ment or negative sharing relationships of the original sharing set, without any loss of

accuracy. In this work, the negative representation is based on ternary strings. We

also showed that the same ternary representation can be used as a positive encoding

to efficiently compact the original binary sharing set. This functionality provides the

option of working with whichever set sharing representation is more efficient for a

given problem instance.
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The capabilities of our negative approach to compress sharing relationships are

orthogonal to the use of the ternary representation. Hence, the negative relationships

may be encoded by any other representation such as, e.g., Binary Decision Diagrams.

Concretely, Zero-suppressed Binary Decision Diagrams (ZBDDs) [60] are particularly

interesting because ZBDDs were designed to represent sets of combinations (i.e., sets

of sets). In addition, this approach may be also applicable to similar sharing-related

analyses in object-oriented languages, see [81].

Our experimental evaluation has shown that our approach can reduce significantly

the memory usage of the sharing relationships and the running time of the abstract

operations, including the abstract unification. Our experiments also show how to

set up key parameters in our algorithms in order to control the desired compression

and time complexities. We have shown that we can obtain a reasonable compression

in polynomial time by tuning appropriately those parameters. Thus, we believe our

results can contribute to the practical, scalable application of Set-Sharing.

In this research, we go beyond data security applications of negative databases to

research ways to reduce the representation of large combinatorial problem instances,

e.g., set-sharing analysis. Solving problems with large instances, near the power set

of the number of variables, is generally limited by memory and/or execution time.

In this application, negative representation has enabled larger set-sharing problem

instances to be analyzed. Furthermore, other combinatorial problems amenable to

the negative ternary representation may benefit from this research.

128



Chapter 6

Conclusion

This dissertation explored ways to leverage positive and negative representations

of information within the same application. We examined ways to combine both

representations to exploit their beneficial properties for use as alternative constructs

to ensure data privacy and to solve efficiently larger combinatorial problems.

Chapter 2 introduced the concept of negative databases and provided background

information necessary to better understand the materials used in the dissertation.

Chapter 3 set the foundation for working with and defining relational operations

over negative databases. By defining a negative relational algebra, we improved our

understanding of how to manipulate negative databases and can better determine

which types of queries are efficient.

Although possessing different properties, a set and its complement contain the

same amount of information. Negative databases exploit this characteristic by con-

stantly maintaining a compact representation of the complement set. Queries can be

answered by either a positive or negative database by complementing the results ac-

cordingly. However, with the negative representation, the positive data represented is

not apparent and can be difficult to retrieve. This basic concept enables the privacy
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protection of sensitive data as an alternative to cryptographic approaches. In the

future, more elegant and efficient relational algorithms and implementation should

be explored, along with more advanced database operations.

With the increased dependence on databases, i.e., in electronic commerce, health

care management, combined with the costly spread of electronic-based fraud and

identity theft, data privacy has become a major concern for companies and individ-

uals alike. Chapter 4 presented an extensible architecture for a negative database

management system that can help manage databases storing sensitive data. We

take advantage of years of existing research and experience with relational database

systems by defining a negative database management system on top of an existing

relational database management system. However, we separated functionalities into

modules that can be extended or replaced by future enhancements or better imple-

mentations. We proposed an architecture that empowers users to selective choose

sensitive fields for conversion into hard-to-reverse, singleton negative databases. For

efficiency and ease-of-use, non-sensitive data were left in their native positive format.

Today, relational databases are quite common. If given a choice, users will prefer

known and easy-to-use systems. I believe that we need a similar system for negative

databases to facilitate working with them and to increase its user population. To

better utilize negative databases for applications such as private sharing and private

matching, we must first be able to understand how to effectively manage negative

data in a systematic manner. The NDBMS I propose is a step towards this direction.

Future research should explore different internal representations and how they affect

the efficiency of storage and query servicing. In addition, other procedural logic

implementation should be investigated, e.g., using C, Java, etc., with the goal of

implementing a more efficient system.

Chapter 5 presented the bulk of my dissertation research effort using the nega-

tive representation of information in a new problem domain. We defined set-sharing
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operations over negative data that are precise and more efficient. To this end, we

exploited the size of the complement set to represent large set-sharings. We pro-

posed three different representation of set-sharing sets to include binary, ternary and

negative ternary sharing. We showed that the negative ternary set-sharing is most

efficient of the three representation for large input sets. Future work can improve

upon current algorithms and compare our implementations against other Boolean

function representations, i.e., reduced-ordered binary decision diagrams.

This dissertation focused on leveraging both positive and negative representations

of information to enhance data privacy and to represent large positive sets. In the

future, we hope that ideas from negative databases can be applied to more diverse

problem areas. For example, sensor networks may benefit from the obfuscated data

storage format. Sensor nodes requiring data protection may not use encryption due

to resource limitations. In addition, negative database concepts may help in the area

of program or circuit obfuscation to protect intellectual property. These applications

strive to change the internal program or circuit structures while maintaining the same

input/output semantics. Negative databases’ ability to morph, while preserving the

same the positive set represented may prove useful to this application. Finally, other

intractable problems conducive to the negative database representation may benefit

from our research findings.
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Appendix A

NDBMS Data Model

The following is an alternative way to organize the internal representation of negative

data in a relational database management system (RDBMS). This was a prelim-

inary study that illustrated a way to represent a negative database in a relational

table. Chapter 4 uses a different internal representation selected for its clarity and

simplicity.

This internal representation saves storage space since unspecified bit information

are not stored. Although showing promise, further research showed that more con-

voluted query servicing is required to prevent checking unspecified bit values. More

specifically, unspecified bits must be resolved during query execution. In addition,

negative data with large variances in the number of specified bits cannot be handled

efficiently. As a result, in most cases, unspecified bit information was maintained

anyway. Therefore, further study is required to take advantage of this or similar

representations.
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BitOnesTable BitZerosTable
BitPos Tuple BitPos Tuple

11 34 5 34
14 34 7 34
21 34 2 35
5 35 7 35
11 35
21 35

Table A.1: One way to represent the specified bit values of NDB records. In this
example, records 34 and 35 are shown.

A.1 Negative Databases using RDBMS

The following describes one way to incorporate NDBs into RDBMS. Initially, sev-

eral design and implementation approaches were developed to store negative data

and to service a basic membership query. This study addressed possible ways to

perform a membership query and updates using an RDBMS while storing negative

data. It was evident that membership query was going to be frequently used; there-

fore, it must be efficient. A string is an element of the positive DB only if it does

not appear in the NDB, which can mean an exhaustive search operation to find a

string match. However, before a query can be serviced efficiently, the negative data

and how it is stored must be addressed.

A promising approach is to represent each specified bit in the NDB in two separate

tables: one to signify where a tuple has a “1” in a specified bit position and another

table to signify where a tuple has a “0” in a specified position. In Table A.1, only

the specified bits of records 34 and 35 are maintained. To save storage space only

the specified bits (not the ∗’s) are maintained. However, a record identifier is used to

specify which record that bit value belongs to. Using specified bit information from

both the incoming query string x and NDB, the number of possible matches can be

narrowed. Then, to service a membership query, we must either iterate through the

133



Appendix A. NDBMS Data Model

remaining possible NDB candidate tuples and look for a match, or even better, use

the full power of the DBMS to perform a structured query language (SQL) query.

This approach starts with a new tuple representation of an NDB bit string.

Each record or tuple is given an identifier (an auto-incremented integer). Then, each

specified position is kept in a corresponding table. So, as shown in Table A.1, tuples

34 and 35 have a “1” specified in positions 11, 14, 21 and a “0” specified in position 5

and 7. Therefore, tuple 34 is the bit string “****0*0***1**1******1***” and tuple

35 “*0**1*0***1*********1***”. By keeping only the specified bit information, a

significant amount in storage space is saved, specifically (l−m)r bits, where l is the

record length, m is the number of specified bits, and r is the number of records.

A.1.1 Membership Query in an RDBMS

Membership query of a record x is serviced by comparing x with tuples in the NDB—

a match means that x is not in DB. However, before we can take advantage of SQL,

the incoming query string x must also be represented in a similar table format.

A procedure transforms the query string into two tables: one for all the position

with specified 1’s and one for all the specified 0’s. We know these tables belong

to string x, therefore, we only need to maintain the position numbers (no need for

tuple identifiers). Tuple identifiers may be required if we want to use another NDB

as the source of query strings, such as in trying to compute the set intersection

of two NDBs. For example, as shown in Table A.2, string x is the 24-bit string

“100111001001111010001011.”

It is interesting to note that for each new representation above, the original

record can always be recreated. A membership query can be serviced by counting

the number of times a specific tuples matched an incoming string x. For a fully

specified bit string x (no ∗ symbols), if all 5 specified bits of a certain NDB tuple
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OnesTable ZerosTable
BitPos BitPos

1 2
4 3
5 7
6 8
9 10
12 11
13 16
14 18
15 19
17 20
21 22
23
24

Table A.2: A way to represent specified bit values of an incoming record used in a
query. In this example, 24-bit string “100111001001111010001011” is shown.

matched, then string x matches that specific NDB tuple. Since all the ∗’s will

match any bit in string x, there is no need to check for a match or even store this

information.

An example query used by this approach for the above representation is the

following:

SELECT ndb.id, ndb.data, ndb.mbits FROM

(

-- count number of 1’s that matched

SELECT bot.tuple, count(*) AS cnt

FROM onestable ot, bitonestable bot

WHERE ot.position = bot.position

GROUP BY bot.tuple

UNION
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-- count number of 0’s that matched

SELECT bzt.tuple, count(*) AS cnt

FROM zerostable zt, bitzerostable bzt

WHERE zt.position = bzt.position

GROUP BY bzt.tuple

)

AS temp, oldndb AS ndb

WHERE temp.tuple = ndb.id

GROUP BY ndb.id

HAVING sum(cnt) $>=$ ndb.mbits;

This seems like a complicated way to perform a membership query, but a proto-

type implementation returned an answer within a second to query with a 24-bit string

against a 175 record negative database. Other matching algorithms may be faster

depending on the data representation used to store the negative bit information.

A.1.2 Basic Negative Database Operators

Three basic operations were implemented using MySQL 5.0 and its native procedural

language. They were implemented according to the algorithms described in [38].

These operations are essential for establishing and maintaining a negative database.

They include Negative Pattern Generate, Insert and Delete.

Negative Pattern Generate (NPG) is the heart of the negative database creation

process. It takes a negative database and a string x defined over {0, 1, ∗} and outputs

a randomly generated string that matches x. So, no string in the positive DB matches

the output of NPG. In addition, the number of specified bits can be specified and

stored as metadata. For example, if all the tuples in the NDB have 5 or 6 specified

bits, then the resulting output of this procedure is a bit string with 5 or 6 specified
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bits that matches x and nothing else in the positive DB. If the number of specified

bits in x is already 5 or 6 (or less), then x is returned.

The Insert procedure adds a set of strings into the existing NDB without intro-

ducing other unwanted strings. The randomization of selected bit positions plays a

major part in ensuring that the resulting set having less discernible patterns are gen-

erated for subsequent inserts. If patterns can be discerned, then an adversary may

deduce other strings in the NDB and possibly reverse engineer the process to re-

trieve the positive database. Given a string x with m unspecified bits, the procedures

generates 2r possible strings, 0 < r < m.

The Delete procedure removes all strings that match x from the given NDB.

To ensure that only those strings that match x are removed, other strings may be

inserted into the NDB. Specifically, strings that subsume x but also match other

strings in NDB must be replaced. These new strings will specify a random number

of previously unspecified bits. A important concern is that this procedure may cause

the NDB to grow in size (exponential to number of ∗’s).

This preliminary study revealed that it is possible to store a negative data rep-

resentation in a table format and perform membership queries on negative represen-

tations using an RDBMS.

137



References

[1] D. Achlioptas, C. Gomes, H. Kautz, and B. Selman, Generating satisfiable
problem instances, Proceedings of AAAI-00 and IAAI-00 (Menlo Park, CA),
AAAI Press, Jul 2000, pp. 256–261.

[2] C. Aggarwal, On k-anonymity and the curse of dimensionality, In proceedings
31st International Conference on Very Large Databases (VLDB’05), 2005.

[3] R. Agrawal, A.Evfimiesvski, and R. Srikant, Information Sharing Across Pri-
vate Databases, Proceedings of PODS, 2003.

[4] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard, Boolean func-
tions for dependency analysis: Algebraic properties and efficient representation,
Static Analysis Symposium, SAS’94 (Namur, Belgium) (Springer-Verlag, ed.),
LNCS, no. 864, September 1994, pp. 266–280.

[5] R. Bagnara, R. Gori, P. M. Hill, and E. Zaffanella, Finite-tree analysis for
constraint logic-based languages, Information and Computation 193 (2004),
no. 2, 84–116.

[6] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella, Set-sharing is redun-
dant for pair-sharing, Theoretical Computer Science 277 (2002), no. 1-2, 3–46.

[7] Alberto Belussi, Elisa Bertino, and Barbara Catania, An Extended Algebra for
Constraint Databases, IEEE Trans. on Knowl. and Data Eng. 10 (1998), no. 5,
686–705.

[8] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, Public Key En-
cryption with Keyword Search, Proceedings of Eurocrypt, 2004.

[9] Boolean Satisfability Research Group at Princeton, zChaff,
http://ee.princeton.edu/chaff/zchaff.php, 2004.

138



References

[10] L. Bordeaux, Y. Hamadi, and L. Zhang, Propositional satisfiability and con-
straint programming: A comparative survey, Tech. report, Microsoft Research
(MSR), 2005.

[11] R. Brinkman, L. Feng, J. Doumen, P. H. Hartel, and W. Jonker, Efficient Tree
Ssearch in Encrypted Data, Information Systems Security Journal 13 (2004),
14–21.

[12] M. Bruynooghe, M. Codish, and A. Mulkers, Abstract unification for a com-
posite domain deriving sharing and freeness properties of program variables,
Verification and Analysis of Logic Languages (F.S. de Boer and M. Gabbrielli,
eds.), 1994, pp. 213–230.

[13] R. E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE
Transactions on Computers C-35 (1986), 677–691.

[14] Randal E. Bryant, Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams, ACM Computing Surveys 24 (1992), no. 3, 293–318.

[15] R.E. Bryant and Y.-A. Chen, Verification or Arithmetic Functions with Binary
Moment Diagrams, Tech. Report CMU-CS-94-160, Carnegie Mellon University,
Pittsburgh, 1994.
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