
Genetic Algorithms for Finding Polynomial
Orderings

Jürgen Giesl1, Fernando Esponda2, and Stephanie Forrest2

1 LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany,
giesl@informatik.rwth-aachen.de

2 Computer Science Department, University of New Mexico,
Albuquerque, NM 87131, USA

{fesponda|forrest}@cs.unm.edu

Abstract. Polynomial orderings are a well-known method to prove ter-
mination of term rewriting systems. However, for an automation of this
method, the crucial point is to find suitable coefficients by machine. We
present a novel approach for solving this problem by applying genetic
algorithms.

1 Introduction

One essential property of many programs is their termination, that is, do they
terminate or not? To study termination problems, many researchers consider
term rewriting systems, since this is essentially the most fundamental and basic
functional programming language.

1.1 Term Rewriting Systems

A term rewriting system (TRS) is a set of equations between terms. However,
these equations are oriented and therefore, one writes an arrow → instead of
the equality symbol =. These oriented equations are called rules. As an example
consider the following simple TRS consisting of two rules:

plus(x, 0)→ x

plus(x, s(y))→ s(plus(x, y))

The rules of a TRS can be used to evaluate or to compute expressions. For
example, the first rule states that every term starting with plus whose second
argument is 0 can be replaced by its first argument. The evaluation of terms
works by replacing subterms by new subterms according to the rules.

The TRS above implements an addition algorithm for natural numbers. Here,
numbers are represented by the function symbols 0 and s, where s stands for the
successor function. So the number 0 corresponds to the term 0, the number 1 is
represented as the term s(0), the number 2 is represented as s(s(0)), etc.

Formally, a term s rewrites to a term t w.r.t. a TRS R (denoted s →R t) iff
there exists a subterm of s which is an instance of the left-hand side of a rule

and if t results from s by replacing this subterm by the corresponding instance
of the right-hand side of this rule. For a detailed introduction to term rewriting
systems see e.g. [2].

In this way, the above TRS can be used for computations. For example, in
order to compute “1 + 2” we would have to evaluate the term plus(s(0), s(s(0))).
We obtain

plus(s(0), s(s(0)))→R s(plus(s(0), s(0)))→R s(s(plus(s(0)), 0))→R s(s(s(0))).

Hence, the result of “1 + 2” is 3.
A term rewriting system R is terminating if there does not exist any infinite

rewrite sequence. While in general this problem is undecidable, several meth-
ods for proving termination have been developed. For an overview on classical
methods see for example [7, 15] and for recent, more powerful developments see
[1]. In the following, we will only investigate whether all rewrite sequences of
ground terms (i.e., terms without variables) are finite. It is well known (and
straightforward) that this is already enough for proving termination.

1.2 Polynomial Orderings

One of the classical approaches for termination proofs is the use of polynomial or-
derings [12]. Several methods for generating polynomial orderings automatically
have been suggested, which also led to the implementation of several systems for
this task [4, 5, 8, 11, 14] . Methods for generating polynomial orderings are also
very useful in more modern and powerful termination techniques, where such
orderings can be used as “base orderings” (see [1, 5]).

The classical approach to termination proofs is to find a suitable ordering
such that terms always decrease w.r.t. this ordering whenever a rewrite rule is
applied. In other words, one has to find an ordering � such that s →R t implies
s � t for all ground terms s and t. If this ordering is well founded (i.e., if there
exist no infinite decreasing sequences t0 � t1 � t2 � . . . w.r.t. this ordering),
then this is sufficient to prove termination of R.

In order to find such an ordering, it is of course impractical to investigate all
possible (infinitely many) rewrite sequences. Instead, one should rather look at
the rules and find an ordering such that the left-hand side of each rule is greater
than the corresponding right-hand side (for all instantiations of the variables
with ground terms). In this case, we say the ordering is compatible with the
TRS. In our example, this means that we have to find an ordering � satisfying

plus(t, 0) � t

plus(t1, s(t2)) � s(plus(t1, t2))

for all ground terms t, t1, t2.
However, in order to ensure that with every rewrite step the terms become

smaller w.r.t. � we have to demand something more. Since rewrite steps can be
applied on subterms, we must demand that the ordering � is monotonic, i.e.

s � t must imply f(. . . s . . .) � f(. . . t . . .)

2

for all function symbols f .
One idea of defining such orderings is the following: We define a mapping

POL which maps ground terms to natural numbers. For example, we could
define POL inductively as follows:

POL(0) = 0
POL(s(t)) = POL(t) + 1

POL(plus(t1, t2)) = POL(t1) + 2 ∗ POL(t2) + 1

Since the number corresponding to a term is composed from the numbers cor-
responding to its subterms by using a polynomial function, such a mapping is
called a polynomial interpretation. The corresponding polynomial ordering �POL

is simply defined by comparing terms according to the numbers they are mapped
to, i.e., s �POL t iff POL(s) > POL(t) (where “>” is the usual greater-relation
on naturals).

Obviously, every polynomial ordering is well founded, since t0 �POL t1 �POL

. . . would mean that there is an infinite decreasing sequence of natural numbers
(which is impossible). Hence, if a polynomial ordering is monotonic and com-
patible with the TRS, then termination is proved. It will turn out that our
polynomial ordering indeed satisfies these two requirements for the plus-TRS.
Hence, this TRS is terminating.

In order to find out whether our polynomial ordering is compatible with our
TRS, one has to check the following constraints for all ground terms t, t1, t2:

POL(plus(t, 0)) > POL(t)
POL(plus(t1, s(t2))) > POL(s(plus(t1, t2)))

In other words, this means

POL(t) + 2 ∗ 0 + 1 > POL(t)
POL(t1) + 2 ∗ (POL(t2) + 1) + 1 > POL(t1) + 2 ∗ POL(t2) + 1 + 1

which is obviously true. Monotonicity of our polynomial ordering is also straight-
forward from the fact that making POL(t) greater also increases the value of
POL(s(t)) and that making POL(t1) or POL(t2) greater increases the value of
POL(plus(t1, t2)).

1.3 Generating Polynomial Orderings

Of course, in general the question is how can one find suitable polynomial order-
ings automatically for any given TRS. We follow the approach of [8] to transform
this problem into a constraint satisfaction problem 1 , which in turn refines an
earlier suggestion from [12].

1 This approach is more powerful and much simpler than the ones of [4, 14], see [8, 11].

3

For each TRS R our aim is to synthesize a polynomial interpretation POL
such that �POL is compatible withR. For that purpose one has to determine the
inductive definition of POL for terms built with the different function symbols.

Of course, first one has to choose the degrees of the polynomial functions
used to compose the numbers corresponding to the subterms in order to obtain
the number corresponding to the whole term. If we decide on polynomials of
degree 1 (i.e., linear polynomials), then any such polynomial interpretation has
the form

POL(0) = n

POL(s(t)) = s1 ∗ POL(t) + s0

POL(plus(t1, t2)) = p1 ∗ POL(t1) + p2 ∗ POL(t2) + p0

The question is how to find suitable coefficients n, s0, s1, p0, p1, p2 such that the
resulting polynomial ordering is monotonic and compatible with the TRS.

Compatibility with the TRS means

POL(plus(t, 0)) > POL(t)
POL(plus(t1, s(t2))) > POL(s(plus(t1, t2)))

or in other words

p1 ∗ POL(t) + p2 ∗ n+ p0 > POL(t)
p1 ∗ POL(t1) + p2 ∗ (s1 ∗ POL(t2) + s0) + p0 >

s1 ∗ (p1 ∗ POL(t1) + p2 ∗ POL(t2) + p0) + s0

for all ground terms t, t1, t2. Of course, this can be re-formulated as

(p1 − 1) ∗ POL(t) + p2 ∗ n+ p0 > 0 (1)
(1− s1) ∗ p0 + (p2 − 1) ∗ s0 + (1− s1) ∗ p1 ∗ POL(t1) > 0 (2)

for all ground terms t, t1, t2.
In order to simplify these constraints further later on, we will introduce a

new variable µ and we will add constraints which make sure that µ is smaller
than or equal to the minimal number that a ground term is ever mapped to.

n − µ ≥ 0 (3)
s1 ∗ POL(t) + s0 − µ ≥ 0 (4)

p1 ∗ POL(t1) + p2 ∗ POL(t2) + p0 − µ ≥ 0 (5)

Now we can simplify the constraints (1) - (5) in the following way. We
know that for any ground term t, POL(t) is a number greater than or equal
to µ. Hence, instead of demanding (1) for all numbers POL(t) corresponding to
ground terms, it is sufficient to demand that (1) holds if POL(t) is replaced by
µ and that the polynomial on the left-hand side of (1) is not decreasing when

4

POL(t) is increasing. In other words, the partial derivative of this polynomial
w.r.t. POL(t) should be non-negative. Hence, (1) can be replaced by

(p1 − 1) ∗ µ+ p2 ∗ n+ p0 > 0 (6)
p1 − 1 ≥ 0 (7)

Note that these constraints are much simpler than (1). In (1) we had to find coef-
ficients p0, p1, p2, n such that the constraint is satisfied for all numbers POL(t).
In contrast, for (6) and (7) we simply have to find coefficients p0, p1, p2, n, µ
satisfying these two inequalities. Thus, for a particular choice of p0, p1, p2, n, µ
it is straightforward to check whether (6) and (7) are satisfied, whereas it is
not straightforward (and in fact, undecidable in general) to check whether (1) is
satisfied.

By applying the same transformation on (2) - (5) we obtain the additional
constraints

(1− s1) ∗ p0 + (p2 − 1) ∗ s0 + (1− s1) ∗ p1 ∗ µ > 0 (8)
(1− s1) ∗ p1 ≥ 0 (9)

n − µ ≥ 0 (10)
(s1 − 1) ∗ µ+ s0 ≥ 0 (11)

s1 ≥ 0 (12)
(p1 + p2 − 1) ∗ µ+ p0 ≥ 0 (13)

p1 ≥ 0 (14)
p2 ≥ 0 (15)

Obviously, the constraints (12), (14), and (15) are always satisfied if we restrict
ourselves to natural numbers. But in fact, this method also allows the use of
integer coefficients (and there is an extension in [8] where one can even use real
coefficients).

In order to guarantee monotonicity, one simply has to demand that the partial
derivatives of POL(s(t)) w.r.t. POL(t) and of POL(plus(t1, t2)) w.r.t. POL(t1)
and POL(t2) are greater than 0.

s1 > 0 (16)
p1 > 0 (17)
p2 > 0 (18)

In this way, one has the following transformation procedure: Given a TRS
and given the desired degree of the polynomial interpretation one can automat-
ically generate a set of constraints containing the “variable coefficients” of the
polynomial interpretation. If there exist numbers satisfying these constraints,
then the TRS is terminating.

In our example one has to find numbers n, s0, s1, p0, p1, p2, µ satisfying the
constraints (6) - (18). For example, the following numbers would be a solution:

n = 0

5

s0 = 1
s1 = 1
p0 = 1
p1 = 1
p2 = 2
µ = 0

In fact, with this choice we would obtain the polynomial interpretation from the
beginning of this section.

For further details on this transformation procedure we refer to [8]. This
procedure has been implemented in the POLO system for automated termination
proofs of TRSs [10].

2 Using Genetic Algorithms to find Polynomial Orderings

All previous techniques for synthesizing polynomial orderings first generate in-
equalities from the TRS under consideration which ensure compatibility and
then they perform certain algebraic transformations (like the one sketched in
the previous section). But finally one has to search for a suitable choice of co-
efficients satisfying the resulting constraints. Here, in most cases, the previous
systems only used a trial-and-error approach by simply trying combinations of
the numbers 0, 1, and 2. (In [8, 10] one can alternatively also use a simplified
variant of Collins’ decision algorithm [6], but this turns out to be too inefficient
in many cases.)

The aim of the present paper is to develop a more sophisticated approach
which is more powerful than just trying the numbers 0, 1, and 2 and more efficient
than using decision procedures from computer algebra. For that purpose we make
use of genetic algorithms [17][18].

2.1 The Problem and its Representation

Essentially, the problem sketched in the previous section can be re-stated as
follows. We have a set of inequalities (or constraints)

P1[n1, . . . , nk] ≥ 0
...

Pm[n1, . . . , nk] ≥ 0,

where Pi[n1, . . . , nk] is a polynomial with integer coefficients over the variables
n1, . . . , nk. (Strict inequalities Pi[n1, . . . , nk] > 0 can easily be turned into non-
strict inequalities by replacing them by Pi[n1, . . . , nk] − 1 ≥ 0.) The goal is to
find integer numbers n1, . . . , nk such that these inequalities are valid. However,
since there are hardly any TRSs whose termination proofs require the use of

6

non-negative coefficients, in order to decrease the search space, we will restrict
ourselves only to solutions where n1, . . . , nk are non-negative. (As mentioned
before, a variant of this problem can also be formulated where n1, . . . , nk are
allowed to be real numbers.)

The aim here is not to find a particularly “good” solution, but to find any
solution satisfying the constraints. As soon as one solution is found, one can stop
the search process.

At the beginning of the search procedure, the user has to fix the possible
range of the numbers n1, . . . , nk. As mentioned in the previous section, most
implementations only search for solutions in the interval [0, 2]. In our approach,
the user is allowed to choose any interval [0, 2q − 1]. Then a particular solution
n1, . . . , nk is represented as a bit string of q ∗ k bits. The first q bits represent
the value of n1, the second q bits represent the value of n2, etc.

For the success of genetic algorithms, it is important that bit positions with a
strong logical connection occur near to each other in the representation chosen.
Obviously, the q bits representing the value of some ni are strongly inter-related,
and indeed they occur next to each other in our representation. But moreover,
the coefficients of the polynomial interpretation of one particular function also
have a strong relation to each other. For instance, in the plus-example of the
previous section, the values of p0, p1, and p2 are strongly related to each other
(more strongly than they are to n or to s0 and s1). Thus, in the representation,
coefficients of one function should be represented adjacent to each other. Finally,
function symbols which occur in the same rule (or the same inequality) also have
more connection to each other than function symbols which do not. Thus, if one
would add two more rules

append(nil, y)→ y

append(add(n, x), y)→ add(n, append(x, y))

to the plus-TRS, then the coefficients corresponding to the function symbols 0,
s, and plus, should be adjacent and the coefficients corresponding to nil, add, and
append should be adjacent, too. In other words, if possible, then one should keep
the coefficients of those function symbols near to each other which occur in the
same parts of the TRS.

2.2 The Fitness Function and the Genetic Algorithm

The crucial point in developing a successful genetic algorithm is the choice of a
suitable fitness function. In other words, given a particular sequence of numbers
n1, . . . , nk (represented as a bit string), one has to find a measure to decide how
“good” this sequence is.

We define the fitness f(n1, . . . , nk) of such a sequence by adding up the
values of those polynomials Pi[n1, . . . , nk] which are still below 0. Thus, the
fitness function is always less than or equal to 0. As soon as it is 0, we have
reached a solution and the algorithm stops.

7

By defining the fitness function in this way, only inequalities which are still
violated contribute to the fitness function. However, a solution where the in-
equalities are only violated a little is considered better than a solution where the
polynomials Pi[n1, . . . , nk] are extremely small negative numbers. In this way,
individuals which are only “a little bit false” can point into the direction of a
valid solution.

It is important not to take those polynomials Pi[n1, . . . , nk] into account
which are already positive. The reason is that otherwise, the algorithm would
generate sequences n1, . . . , nk where a few Pi[n1, . . . , nk] are extremely high, but
where others are still negative. Now our genetic algorithm works as follows:

1. Initialization: Generate the initial population randomly(i.e., a set of arbi-
trary q ∗ k bit strings).

2. Evaluation: Compute the fitness of each individual.

3. Selection: For this application we used binary tourney selection which works
as follows: Pick a pair of individuals from the population at random, keep
the one with higher fitness, replace them in the population and then select
its partner for crossover in a similar way (binary tourney selection).

4. Crossover: Perform crossover between selected individuals using one point
crossover and ensuring that the crossover point falls between the represen-
tation of nj and nj+1.

5. Mutation: Flip some bits in the population with low probability.

6. Repeat: If the fitness of some individual is 0 or a maximum number of
evaluations has been reached, then stop. Otherwise, go to Step 2.

2.3 Experimental Results

We tested the GA on a set of examples taken from [10]. The GA was run with
crossover and mutation probabilities of 0.8 and 0.03 respectively. Each experi-
ment consists of 60 runs using a population of 10 individuals for a maximum of
100 generations, yielding a total of 1000 function evaluations per run. Addition-
ally, we include the results obtained using the Generate & Test (G&T) method
and the incomplete Collins algorithm as implemented in the POLO system [10],
as well as those from a random mutation hill climber [9] executing for 1000 steps.
Table 1 reports the number of successful runs that obtained satisfactory values
for the polynomial’s coefficients as well as the mean and standard deviations of
the number of evaluations per experiment. Note that the Generate & Test and
Collins algorithms yield the same results each time they are run. The constraints
for each TRS where generated using the simple-mixed polynomial option of the
POLO package.

8

TRS GA RMHC G&T Collins
s-runs x σ s-runs x σ s-runs s-runs range var

Boolean Ring 37 577.50 400.59 43 374.26 402.70 60 60 [0,2] 25

Associativity 60 10.0 0.0 58 35.71 180.61 60 60 [0,2] 7

Reverse 36 589.33 374.61 28 570.13 464.40 60 60 [0,2] 17

Symb.Differentiatn 60 237.66 178.21 4 938.06 233.68 0 0 [0,2] 23

Fibonacci Group 4 976.16 98.15 0 1000.0 0.0 0 0 [0,4] 10

Taussky Group 60 71.0 89.49 38 406.35 456.62 0 0 [0,2] 17

Table 1.Number of successes (s-runs) out of 60 runs, the average number of evaluations
and standard deviation for each experiment, the range of possible variable assignment
values, and the number of variables in each set of constraints.

3 Discussion

The GA seems to be a plausible approach for solving the polynomial orderings
problem. The stochastic nature of the GA is immediately apparent from the fact
that not all runs for a particular experiment proved successful. In some cases
there is a major incidence of success form the other three methods, however, only
the GA got answers for all the TRSs, suggesting that it is a more robust approach
for trying to solve this kind of constraint satisfaction problem. Nevertheless, it
is important to point out that the examples presented in this paper are not of
particular difficulty and it would be worthwhile to test the performance of the
GA on harder instances, which in turn may require the use of more sophisticated
operators and bigger population sizes.

A Examples

This appendix contains a collection of examples for termination proofs with
polynomial orderings.

A.1 plus

The first example is the running example plus from the text.

plus(x, 0)→ x

plus(x, s(y))→ s(plus(x, y))

As explained in the text, for its termination proof one has to find numbers
n, s0, s1, p0, p1, p2, µ satisfying the following constraints:

(p1 − 1) ∗ µ+ p2 ∗ n+ p0 − 1 ≥ 0
p1 − 1 ≥ 0

9

(1− s1) ∗ p0 + (p2 − 1) ∗ s0 + (1− s1) ∗ p1 ∗ µ − 1 ≥ 0
(1− s1) ∗ p1 ≥ 0

n − µ ≥ 0
(s1 − 1) ∗ µ+ s0 ≥ 0

s1 ≥ 0
(p1 + p2 − 1) ∗ µ+ p0 ≥ 0

p1 ≥ 0
p2 ≥ 0

s1 − 1 ≥ 0
p2 − 1 ≥ 0

A solution is

n = 0
s0 = 1
s1 = 1
p0 = 1
p1 = 1
p2 = 2
µ = 0

This corresponds to the polynomial interpretation

POL(0) = 0
POL(s(t)) = POL(t) + 1

POL(plus(t1, t2)) = POL(t1) + 2 ∗ POL(t2) + 1.

A.2 Endomorphism and Associativity

The next example is from [3] and [4]2.

comp(comp(x, y), z)→ comp(x, comp(y, z)) (19)
comp(map(x),map(y))→ map(comp(x, y)) (20)

comp(map(x), comp(map(y), z))→ comp(map(comp(x, y)), z) (21)

2 This example comes from the area of functional programming. The intended mean-
ing of comp is composition, variables represent functions and map is a mapcar -like
operator (whose result is a function).

10

Here, we use an approach with a simple-mixed polynomial interpretation,3 as
recommended by Steinbach [13]. More precisely, we search for a polynomial in-
terpretation of the following form:

POL(map(t)) = m0 +m1POL(t)
POL(comp(t1, t2)) = c0 + c1POL(t1) + c2POL(t2) + c3POL(t1)POL(t2)

To ensure compatibility of the polynomial ordering with the TRS, initially
we obtain the following inequalities for all ground terms t1, t2, t3:

(c1 − c2)c0

+(c2
1 − c1 − c0c3)POL(t1)

+(c2 − c2
2 + c0c3)POL(t3)

+(c1 − c2)c3POL(t1)POL(t3) > 0
(1− m1)c0 + (c1 + c2 − 1)m0 + c3m

2
0

+c3m0m1POL(t1) + c3m0m1POL(t2) + (m2
1 − m1)c3POL(t1)POL(t2) > 0

c0c2 + (c1c2 + c0c3)m0 + (c3m
2
0 − c0m1)c1

+(c1 − c2
1 + c0c3 + c1c3m0)m1POL(t1)

+c1c3m0m1POL(t2)
+(c2

2 + (2c2c3 − c3)m0 + c2
3m

2
0 − c2 − c0c3m1)POL(t3)

+(m2
1 − m1)c1c3POL(t1)POL(t2)

+(c2c3 + c2
3m0 − c1c3)m1POL(t1)POL(t3)

+c2
3m0m1POL(t2)POL(t3)

+(m2
1 − m1)c2

3POL(t1)POL(t2)POL(t3) > 0

By applying the transformation from [8], we finally obtain the following con-
straints:

(c1 − c2)c0

+(c2
1 − c1 + c2 − c2

2)µ
+(c1 − c2)c3µ

2 − 1 ≥ 0 (22)
c2
1 − c1 − c0c3

+(c1 − c2)c3µ ≥ 0 (23)
(c1 − c2)c3 ≥ 0 (24)

c2 − c2
2 + c0c3

+(c1 − c2)c3µ ≥ 0 (25)
3 A non-unary polynomial p is simple-mixed iff all its exponents are not greater than
1 (i.e., 2xy − 5xyz is simple-mixed while 3x2y is not). A unary polynomial p is
simple-mixed if it has the form p0 + p1x or p0 + p2x

2. In [13], Steinbach conducted
320 experiments with TRSs from the literature and noticed that 96 % of those TRSs
which are compatible with a polynomial ordering are compatible with a simple-mixed
polynomial ordering.

11

(1− m1)c0 + (c1 + c2 − 1)m0 + c3m
2
0

+2c3m0m1µ+ (m2
1 − m1)c3µ

2 − 1 ≥ 0 (26)
c3m0m1 + (m2

1 − m1)c3µ ≥ 0 (27)
(m2

1 − m1)c3 ≥ 0 (28)
c0c2 + (c1c2 + c0c3)m0 + (c3m

2
0 − c0m1)c1

+((c1 − c2
1 + 2c1c3m0)m1 + c2

2 + (2c2c3 − c3)m0 + c2
3m

2
0 − c2)µ

+((m2
1 − 2m1)c1c3 + (c2c3 + 2c2

3m0)m1)µ2

+(m2
1 − m1)c2

3µ
3 − 1 ≥ 0 (29)

(c1 − c2
1 + c0c3 + c1c3m0)m1

+((m2
1 − 2m1)c1c3 + (c2c3 + c2

3m0)m1)µ
+(m2

1 − m1)c2
3µ

2 ≥ 0 (30)
(m2

1 − m1)c1c3 + (m2
1 − m1)c2

3µ ≥ 0 (31)
(m2

1 − m1)c2
3 ≥ 0 (32)

(c2c3 + c2
3m0 − c1c3)m1

+(m2
1 − m1)c2

3µ ≥ 0 (33)
c1c3m0m1

+((m2
1 − m1)c1c3 + c2

3m0m1)µ
+(m2

1 − m1)c2
3µ

2 ≥ 0 (34)
c2
3m0m1 + (m2

1 − m1)c2
3µ ≥ 0 (35)

c2
2 + (2c2c3 − c3)m0 + c2

3m
2
0 − c2 − c0c3m1

+(c2c3 + 2c2
3m0 − c1c3)m1µ

+(m2
1 − m1)c2

3µ
2 ≥ 0 (36)

m0 + (m1 − 1)µ ≥ 0 (37)
m1 ≥ 0 (38)

c0 + (c1 + c2 − 1)µ+ c3µ
2 ≥ 0 (39)

c1 + c3µ ≥ 0 (40)
c3 ≥ 0 (41)

c2 + c3µ ≥ 0 (42)
m1 − 1 ≥ 0 (43)

c1 + c3µ − 1 ≥ 0 (44)
c2 + c3µ − 1 ≥ 0 (45)

Hence, we have to find a sequence m0,m1, c0, c1, c2, c3, µ such that the above
24 inequalities are satisfied. (Of course, one could first simplify this set of in-
equalities, since, e.g., (43) implies (38), etc.) A solution is

m0 = 0
m1 = 2
c0 = 0

12

c1 = 1
c2 = 0
c3 = 1
µ = 2

This corresponds to the following polynomial interpretation:

POL(map(t)) = 2POL(t)
POL(comp(t1, t2)) = POL(t1) + POL(t1)POL(t2)

A.3 reverse

The next example is from [13, Ex. 8.5]. It contains both the iterative and the
“standard recursive” version of the reverse function on lists.

append(nil, y)→ y,

append(add(x, y), z)→ add(x, append(y, z)),
append(append(x, y), z)→ append(x, append(y, z)),

reverse(nil)→ nil,

reverse(add(x, y))→ append(reverse(y), add(x, nil)),
reviter(nil, y)→ y,

reviter(add(x, y), z)→ reviter(y, add(x, z)),
append(reverse(x), y)→ reviter(x, y),

reverse(x)→ reviter(x, nil)

Again, we use a simple-mixed polynomial interpretation. In order to avoid
the choice with unary polynomials, here we use an arbitrary polynomial of degree
2 for reverse.

POL(nil) = n

POL(add(t1, t2)) = a0 + a1POL(t1) + a2POL(t2) + a3POL(t1)POL(t2)
POL(append(t1, t2)) = p0 + p1POL(t1) + p2POL(t2) + p3POL(t1)POL(t2)

POL(reverse(t)) = r0 + r1POL(t) + r2POL(t)2

POL(reviter(t1, t2)) = i0 + i1POL(t1) + i2POL(t2) + i3POL(t1)POL(t2)

For compatibility, the polynomial ordering has to satisfy the following in-
equalities for all ground terms t1, t2, t3:

p0 + p1n+ (p2 − 1)POL(t1) + p3nPOL(t2) > 0
(1− a2)p0 + (p1 − 1)a0

+((p1 − 1)a1 − p0a3)POL(t1)
+((1− a2)p2 + a0p3)POL(t3)

13

+(a1p3 − a3p2)POL(t1)POL(t3) > 0
(p1 − p2)p0

+(p2
1 − p1 − p0p3)POL(t1)

+(p2 + p0p3 − p2
2)POL(t3)

+(p1 − p2)p3POL(t1)POL(t3) > 0
r0 + (r1 − 1)n+ r2

2n > 0
(1− p1)r0 + a0r1 + a2

0r2 − (a0 + a2n)(p2 + p3r0)
+((r1 + 2a0r2)a1 − (a1 + a3n)(p2 + p3r0))POL(t1)
+((a2 − (a0 + a2n)p3 − p1)r1 + 2r2a0a2)POL(t2)

+((a3 − (a1 + a3n)p3)r1 + 2(a0a3 + a1a2)r2)POL(t1)POL(t2)
+r2a

2
1POL(t1)2

+(a2
2 − p1 − (a0 + a2n)p3)r2POL(t2)2

+2r2a1a3POL(t1)2POL(t2)
+(2a2a3 − (a1 + a3n)p3)r2POL(t1)POL(t2)2

+r2a
2
3POL(t1)2POL(t2)2 > 0

i0 + i1n+ (i2 − 1)POL(t2) + i3nPOL(t2) > 0
(i1 − i2)a0

+(i1 − i2)a1POL(t1)
+(i1a2 − i3a0)POL(t2)

+((1− a2)i2 + i3a0)POL(t3)
+(i1a3 − i3a1)POL(t1)POL(t2)
+(i3a1 − i2a3)POL(t1)POL(t3) > 0

p0 + p1r0 − i0

+(p1r1 − i1)POL(t1)
+(p2 + p3r0 − i2)POL(t2)

+p1r2POL(t1)2

+(p3r1 − i3)POL(t1)POL(t2)
+p3r2POL(t1)2POL(t2) > 0

r0 − i0 − i2n+ (r1 − i1 − i3n)POL(t1) + r2POL(t1)2 > 0

By applying the transformation from [8], we finally obtain the following con-
straints:

p0 + p1n+ (p2 − 1 + p3n)µ − 1 ≥ 0 (46)
p2 − 1 + p3n ≥ 0 (47)

(1− a2)p0 + (p1 − 1)a0

+((p1 − 1)a1 − p0a3 + (1− a2)p2 + a0p3)µ
+(a1p3 − a3p2)µ2 − 1 ≥ 0 (48)

14

(p1 − 1)a1 − p0a3 + (a1p3 − a3p2)µ ≥ 0 (49)
(1− a2)p2 + a0p3 + (a1p3 − a3p2)µ ≥ 0 (50)

a1p3 − a3p2 ≥ 0 (51)
(p1 − p2)p0 + (p2

1 − p1 + p2 − p2
2)µ

+(p1 − p2)p3µ
2 − 1 ≥ 0 (52)

p2
1 − p1 − p0p3 + (p1 − p2)p3µ ≥ 0 (53)

p2 + p0p3 − p2
2 + (p1 − p2)p3µ ≥ 0 (54)

(p1 − p2)p3 ≥ 0 (55)
r0 + (r1 − 1)n+ r2

2n − 1 ≥ 0 (56)
(1− p1)r0 + a0r1 + a2

0r2 − (a0 + a2n)(p2 + p3r0)
+((r1 + 2a0r2)a1 − (a1 + a3n)(p2 + p3r0)
+(a2 − (a0 + a2n)p3 − p1)r1 + 2r2a0a2)µ

+((a3 − (a1 + a3n)p3)r1 + 2(a0a3 + a1a2)r2

+r2a
2
1 + (a

2
2 − p1 − (a0 + a2n)p3)r2)µ2

+(2r2a1a3 + (2a2a3 − (a1 + a3n)p3)r2)µ3

+r2a
2
3µ

4 − 1 ≥ 0 (57)
(r1 + 2a0r2)a1 − (a1 + a3n)(p2 + p3r0)

+((a3 − (a1 + a3n)p3)r1 + 2(a0a3 + a1a2)r2 + 2r2a
2
1)µ

+(4r2a1a3 + (2a2a3 − (a1 + a3n)p3)r2)µ2

+2r2a
2
3µ

3 ≥ 0 (58)
r2a

2
1 + 2r2a1a3µ+ r2a

2
3µ

2 ≥ 0 (59)
r2a1a3 + r2a

2
3µ ≥ 0 (60)

r2a
2
3 ≥ 0 (61)

(a3 − (a1 + a3n)p3)r1 + 2(a0a3 + a1a2)r2

+(4r2a1a3 + 2(2a2a3 − (a1 + a3n)p3)r2)µ
+4r2a

2
3µ

2 ≥ 0 (62)
(2a2a3 − (a1 + a3n)p3)r2 + 2r2a

2
3µ ≥ 0 (63)

(a2 − (a0 + a2n)p3 − p1)r1 + 2r2a0a2

+((a3 − (a1 + a3n)p3)r1 + 2(a0a3 + a1a2)r2

+2(a2
2 − p1 − (a0 + a2n)p3)r2)µ

+(2r2a1a3 + 2(2a2a3 − (a1 + a3n)p3)r2)µ2

+2r2a
2
3µ

3 ≥ 0 (64)
(a2

2 − p1 − (a0 + a2n)p3)r2

+(2a2a3 − (a1 + a3n)p3)r2µ

+r2a
2
3µ

2 ≥ 0 (65)
i0 + i1n+ (i2 − 1 + i3n)µ − 1 ≥ 0 (66)

15

i2 − 1 + i3n ≥ 0 (67)
(i1 − i2)a0

+((i1 − i2)a1 + i1a2 + (1− a2)i2)µ
+(i1a3 − i2a3)µ2 − 1 ≥ 0 (68)

(i1 − i2)a1

+(i1a3 − i2a3)µ ≥ 0 (69)
i1a3 − i3a1 ≥ 0 (70)
i3a1 − i2a3 ≥ 0 (71)

i1a2 − i3a0 + (i1a3 − i3a1)µ ≥ 0 (72)
(1− a2)i2 + i3a0 + (i3a1 − i2a3)µ ≥ 0 (73)

p0 + p1r0 − i0

+(p1r1 − i1 + p2 + p3r0 − i2)µ
+(p1r2 + p3r1 − i3)µ2

+p3r2µ
3 − 1 ≥ 0 (74)

p1r1 − i1

+(2p1r2 + p3r1 − i3)µ
+2p3r2µ

2 ≥ 0 (75)
2p1r2 + 2p3r2µ ≥ 0 (76)

p3r2 ≥ 0 (77)
p3r1 − i3 + 2p3r2µ ≥ 0 (78)

p2 + p3r0 − i2

+(p3r1 − i3)µ
+p3r2µ

2 ≥ 0 (79)
r0 − i0 − i2n+ (r1 − i1 − i3n)µ+ r2µ

2 − 1 ≥ 0 (80)
r1 − i1 − i3n+ 2r2µ ≥ 0 (81)

r2 ≥ 0 (82)
n − µ ≥ 0 (83)

a0 + (a1 + a2 − 1)µ+ a3µ
2 ≥ 0 (84)

a1 + a3µ ≥ 0 (85)
a3 ≥ 0 (86)

a2 + a3µ ≥ 0 (87)
p0 + (p1 + p2 − 1)µ+ p3µ

2 ≥ 0 (88)
p1 + p3µ ≥ 0 (89)

p3 ≥ 0 (90)
p2 + p3µ ≥ 0 (91)

r0 + (r1 − 1)µ+ r2µ
2 ≥ 0 (92)

16

r1 + 2r2µ ≥ 0 (93)
i0 + (i1 + i2 − 1)µ+ i3µ

2 ≥ 0 (94)
i1 + i3µ ≥ 0 (95)

i3 ≥ 0 (96)
i2 + i3µ ≥ 0 (97)

a1 + a3µ − 1 ≥ 0 (98)
a2 + a3µ − 1 ≥ 0 (99)
p1 + p3µ − 1 ≥ 0 (100)
p2 + p3µ − 1 ≥ 0 (101)

r1 + 2r2µ − 1 ≥ 0 (102)
i1 + i3µ − 1 ≥ 0 (103)
i2 + i3µ − 1 ≥ 0 (104)

Hence, we have to find a sequence n, a0, a1, a2, a3, p0, p1, p2, p3, r0, r1, r2, i0, i1, i2, i3, µ
such that the above 59 inequalities are satisfied. A solution is

n = 2
a0 = 2
a1 = 2
a2 = 2
a3 = 2
p0 = 0
p1 = 2
p2 = 0
p3 = 1
r0 = 2
r1 = 0
r2 = 2
i0 = 0
i1 = 2
i2 = 0
i3 = 1
µ = 2

This corresponds to the following polynomial interpretation:

POL(nil) = 2
POL(add(t1, t2)) = 2 + 2POL(t1) + 2POL(t2) + 2POL(t1)POL(t2)

POL(append(t1, t2)) = 2POL(t1) + POL(t1)POL(t2)

17

POL(reverse(t)) = 2 + 2POL(t)2

POL(reviter(t1, t2)) = 2POL(t1) + POL(t1)POL(t2)

References

1. T. Arts and J. Giesl. Termination of Term Rewriting using Dependency Pairs.
Theoretical Computer Science, 236:133-178, 2000.

2. F. Baader and T. Nipkow. Term Rewriting and All That, Cambridge University
Press, 1998.

3. F. Bellegarde. Rewriting Systems on FP Expressions that reduce the Number of
Sequences they yield. Symposium on LISP and Functional Programming, ACM,
Austin, Texas, 1984.

4. A. Ben Cherifa and P. Lescanne. Termination of Rewriting Systems by Polyno-
mial Interpretations and its Implementation. Science of Computer Programming,
9(2):137-159, 1987.

5. CiME 2. Pre-release available at http://www.lri.fr/˜demons/cime-2.0.html, 1999.
6. G. E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Alge-
braic Decomposition. Proceedings of the 2nd GI Conference on Automata Theory
and Formal Languages, 1975.

7. N. Dershowitz. Termination of Rewriting. Journal of Symbolic Computation,
3(1,2):69-116, 1987.

8. J. Giesl. Generating Polynomial Orderings for Termination Proofs. Proceedings
of the 6th International Conference on Rewriting Techniques and Applications,
RTA-95, LNCS 914, Springer-Verlag, pp. 426-431, 1995. Extended version available
as Technical Report 95/23, Darmstadt University of Technology, Germany, 1995.
http://www.inferenzsysteme.informatik.tu-darmstadt.de/˜giesl

9. M. Mitchell, J.H. Holland and S. Forrest. Relative building-block fitness and the
building block hypothesis. In D. Whitley, Foundations of Genetic Algorithms 2,
109-126. San Mateo, CA:Morgan Kaufmann, 1993.

10. J. Giesl. POLO – A System for Termination Proofs Using Polynomial Order-
ings. Technical Report 95/24, Darmstadt University of Technology, Germany, 1995.
http://www.inferenzsysteme.informatik.tu-darmstadt.de/˜giesl

11. H. Hong and D. Jakus. Testing Positiveness of Polynomials. Journal of Automated
Reasoning, 21:23-38, 1998.

12. D. S. Lankford. On Proving Term Rewriting Systems are Noetherian. Technical
Report Memo MTP-3, Louisiana Technical University, Ruston, LA, 1979.

13. J. Steinbach. Termination Proofs of Rewriting Systems — Heuristics for Gener-
ating Polynomial Orderings. SEKI-Report SR-91-14, University of Kaiserslautern,
Germany, 1991.

14. J. Steinbach. Generating Polynomial Orderings. Information Processing Letters,
49:85-93, 1994.

15. J. Steinbach. Simplification Orderings: History of Results. Fundamenta Informat-
icae, 24:47-87, 1995.

16. A. Tarski. A Decision Method for Elementary Algebra and Geometry. University
of California Press, Berkeley, 1951.

17. J.H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, 1975.

18. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

18

