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Abstract

Recent widely publicized data breaches have exposed the personal information of hundreds of mil-

lions of people. Some reports point to alarming increases in both the size and frequency of data

breaches, spurring institutions around the world to address what appears to be a worsening situ-

ation. But, is the problem actually growing worse? In this article, we study a popular public dataset

and develop Bayesian Generalized Linear Models to investigate trends in data breaches. Analysis

of the model shows that neither size nor frequency of data breaches has increased over the past

decade. We find that the increases that have attracted attention can be explained by the heavy-

tailed statistical distributions underlying the dataset. Specifically, we find that the size of data

breaches is well modeled by the log-normal family of distributions and that the daily frequency of

breaches is described by a negative binomial distribution. These distributions may provide clues to

the generative mechanisms that are responsible for the breaches. Additionally, our model predicts

the likelihood of breaches of a particular size in the future. For example, we find that between

15 September 2015 and 16 September 2016 there is only a 53.6% chance of a breach of 10 million

records or more in the USA. Regardless of any trend, data breaches are costly, and we combine

the model with two different cost models to project that in the next 3 years breaches could cost up

to $179 billion.
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Introduction

In February 2015, the second largest health insurer in the United States,

Anthem Inc., was attacked, and 80 million records containing personal

information were stolen [1]. A few months later, the US Office of

Personal Management announced that personal information, including

the background checks of 21.5 million federal employees was compro-

mised [2]. Ten months earlier, in September 2014, Home Depot’s cor-

porate network was penetrated and over 56 million credit card numbers

were acquired3, 4]. These incidents made national headlines, the latest

in a string of large-scale data breaches [5, 6, 7] that have spurred both

the US Congress [8] and the White House [9] to propose new disclosure

laws to address what appears to be a worsening situation.

Several studies provide evidence that the problem of electronic

data theft is growing. A recent report by TrendMicro concludes

that the frequency of data breaches has increased since 2009 [10].

A report published the same month by Gemalto, indicates that the

total number of breaches increased by 10% while the number of re-

cords breached in the first half of 2015 declined compared to 2014

[11]. A 2014 Symantec report noted that there was an increase in the

number of large data breaches, and a dramatic 5-fold increase in the

number of identities exposed over a single year [12]. In another study,

Redspin reported that the number of breaches in the health care indus-

try increased 29% from 2011 to 2012, and the total number of records

compromised increased 138% for 2012–2013 [13].

But, is the problem actually growing worse? Or if it is, how

much worse is it, and what are the trends? The data used to produce

these kinds of reports have very high variance, so simply reporting

average values, as in these earlier reports, can be misleading.
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Figure 1 plots breach sizes over the past 10 years using data ob-

tained from a popular dataset published by the Privacy Rights

Clearinghouse (PRC) [14]. In the figure, data breach sizes span eight

orders of magnitude, which means that the average value can be sig-

nificantly affected by just a few data points. For example, if we con-

sider the identical data, but plot it on a yearly basis, it appears that

breaches have increased in average size since 2013 (blue line on the

figure). However, this trend is not at all obvious if we consider the

data on a monthly or even quarterly basis, also shown in Fig. 1

(green and red lines). Thus, there is a need for statistically sound

data analyses to determine what, if any, trends exist, and where pos-

sible to make predictions about the future.

To address these issues, we adopt a statistical modeling approach

and apply it to the PRC data, showing that in this dataset neither the

size nor the frequency of breaches has increased over time. We use a

Bayesian approach, which allows us to construct accurate models

without overfitting (see “Bayesian Approach” subsection). Our ana-

lysis shows different trends for different subsets of the data. We con-

sider two distinct types of breaches: “malicious,” where attackers

actively target personal information, and “negligent,” which occur

when private information is exposed accidentally (e.g. misplacing a

laptop). In the dataset, both the size of malicious and negligent

breaches have remained constant over the last 10 years. Similarly,

the frequency has also remained constant (see “Modeling Breach

Size” and “Modeling Breach Frequency” subsections). While our

approach is simple, our univariate model does a remarkably good

job of reproducing the distribution of data breaches over time.

Beyond assessing trends, this approach enables us to determine the

likelihood of certain future events, at least in the USA (see “Prediction”

section). For example, the model predicts that in the next 3 years there

is 25.7% chance of another Anthem sized (80 million) breach, and

only a 4.0% chance of a Anthem and Home Depot sized breach occur-

ring within a year of each other. However, there is an 75.6% chance of

a breach of at least five million records in the next year. The probabil-

ities are relatively high for breaches of five million records because the

distributions that best describe the size of breaches in the dataset are

heavy-tailed, meaning that rare events are much more likely to occur

than would be expected for normal or exponential distributions.

Another contribution of our article is identifying the particular forms

of the underlying distributions, which may offer insight into the genera-

tive processes that lead to data breaches. For malicious breach sizes, we

find that the distribution is log-normal (see “Breach Size” subsection);

such distributions are known to emerge from multiplicative growth. In

fact, the size distribution of companies is best described by a log-normal

[15], so we speculate that as a company grows, the number of data re-

cords it holds grows proportionally, and breach sizes follow along. We

find that negligent breaches are better described by a log-skewnormal

distribution [16]. The log-skewnormal distribution is similar to log-

normal distribution except it allows for a further skew of the data to-

ward larger breaches. This skew may represent different underlying fea-

tures of breaches at different organizations. In contrast, the breach

frequency for both negligent and malicious breaches best fits a negative

binomial, which could be generated by a mixture of different types of

breaches, with each type occurring at a different but constant rate (see

“Breach Frequency” subsection). Future investigations could validate

the specific nature of the process which generates these distributions.

Some of our results seem counterintuitive given the current level

of concern about privacy and the damage that a data breach can

cause. However, some simple anecdotal observations about our data

lend credence to the results. The largest data breach in our data

occurred back in 2009 when cyber-criminals stole 130 million credit

card numbers from Heartland payment systems [17].

We used the publicly available dataset that we believe is the most

complete, but our models could easily be applied to additional data-

sets, e.g., datasets that are not yet in the public domain or those that

may arise if new disclosure laws are passed. Moreover, by establishing

a baseline, the models we describe could be extended in the future by

incorporating additional data on the nature of the breaches, which

could help identify promising areas for technical improvement. Such

analysis could also help policy makers make better decisions about

which problems are most pressing and how they should be addressed.

For example, cybersecurity today is often framed in terms of risk ana-

lysis and management [18, 19]. Accurately assessing risk, however, re-

quires quantitative measures of likelihood and cost. In this article, we

use available data and statistically sound models to provide precise es-

timates of the likelihood of data breaches. Using these estimates, we

then incorporate two different cost models (see “Predicting Future

Costs” subsection) to assess likely future risks. Depending on the cost

model, if trends continue we can expect the cumulative cost of data

breaches to be between $4 and $179 billion over the next 3 years.

Data

In this section, we describe the dataset obtained from the PRC and

examine the distribution of breach sizes and frequencies. We show that

the size distribution is well-fit by a log-normal or log-skewnormal dis-

tributions, whereas the daily frequency of breaches is well-fit by a

negative binomial. Finally, we show how these distributions are af-

fected when the data are divided into malicious and negligent breaches.

PRC
The PRC is a California nonprofit corporation focused on issues of

privacy [20]. The PRC has compiled a “Chronology of Data Breaches”

dataset (Available for public download from http://www.privacyrights.

org/data-breach, 12 August 2016, date last accessed) that, as of 15

September 2015, contains information on 4571 publicized data

breaches that have occurred in the USA since 2005. For each breach,

the dataset contains a number of variables including: the date the

breach was made public, the name of the entity responsible for the

data, the type of entity breached, a classification of the type of breach,

the total number of records breached, the location (city and state)

where the entity operates, information on the source of the data, and a

short description of the breach.

Of the 4571 breaches in the dataset, only those involving expos-

ure of sensitive information have associated record counts. We

Figure 1. Data breach sizes (records exposed) over a 10-year period. Data

taken from [14].
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restricted our analysis to this subset, which consists of 2253

breaches. There are two noteworthy limitations to these data. First,

the number of records listed in the dataset for each breach is only an

estimate of the number of individuals affected, and second, the data-

set contains only those breaches that have been publicly acknowl-

edged. However, the PRC dataset is the largest and most extensive

public dataset of its type. It is possible that many data breaches are

going unreported. Different surveys have indicated that anywhere

between 60% [21] and 89% [22] of security incidents go unre-

ported. However, these reports are based on informal surveys of se-

curity professionals, their accuracy cannot be confirmed

(“Discussion” section), and there is no obvious reason why their

size/frequency distributions should differ from PRC.

Breach size
We denote the distribution of breach sizes over the number of records

contained in individual breaches as S. For each individual breach i, we

denote the number of associated records as si. To determine the time-

independent distribution that best fits the data, we examined over 20

different distributions, e.g., log-normal, log-skewnormal, power-law,

generalized pareto, log-logistic, and log-gamma (Specifically, we tested

all of the distributions in the scipy stats package that have a domain

defined for values greater than 0 (http://docs.scipy.org/doc/scipy/refer

ence/stats.html#continuous-distributions, 12 August 2016, date last

accessed). In each case, we estimated the best fit parameters for the dis-

tribution using the maximum likelihood, and then performed a

Kolomogorov–Smirnov (KS) test to determine if the parameterized dis-

tribution and the data were statistically significantly different [23].

Figure 2 shows the fit to log-normal; the KS test gives P¼0.21, which

means that we cannot reject the null hypothesis that the data were gen-

erated by this distribution (In this case, higher values of P are better,

because they indicate that we are not rejecting the null hypothesis, i.e.

that the data are drawn from a log-normal.). For all other tested distri-

butions, P<0.05, which tells us that the data were unlikely to have

been generated from that distribution. Although the best fit is to the

log-normal, we can see in Fig. 2 that the data points in the tail (high

values of records) deviate from the best-fit line. We return to this issue

in “Discussion” section.

Log-normal distributions often arise from multiplicative growth

processes, where an entity’s growth is expressed as a percentage of its

current size, independent of its actual size [24]. Under this assumption

and at steady state, the distribution of entity sizes is known to be log-

normally distributed. For example, this process has been used to

model the size distribution of companies as measured by annual sales,

current employment, or total assets [15]. We speculate that a related

process is operating here, if the number of sensitive (customer) records

held by a company is proportional to its size, or the number of stored

records is increasingly multiplicatively over time.

Breach frequency
We are interested in studying how often breaches occur and whether

or not there are any trends in breach frequency. The dataset reports

the exact date at which each breach became publicly known. For the

majority of dates in the dataset, however, there were no publicly re-

ported data breaches, and on days when breaches did occur, there

were seldom more than two (Fig. 3).

We used a similar approach to the one we employed in “Breach

Size” subsection, except that we studied discrete distributions, be-

cause the range of daily frequencies is so small. We examined a num-

ber of discrete distributions, such as Poisson, binomial, zero-inflated

Poisson and negative binomial, and found that the best fit is

provided by a negative binomial. Figure 3 shows that the parameter-

ized negative binomial and the data do not differ significantly, ac-

cording to the KS test for discrete distributions [25], with P¼0.99.

If we assume that breaches occur independently and at a constant

rate, then we would expect the daily frequency to be a Poisson distri-

bution [26]. However, the data are more dispersed than can be ex-

plained by a Poisson, which has a very poor fit, with P ¼ 8� 10�10.

There are a number of random processes that generate a negative

binomial distribution [27]. The most likely candidate in this case is a

continuous mixture of Poisson distributions, which occurs when

events are generated by a Poisson process whose rate is itself a ran-

dom variable. In our case, breaches at different organizations, perpe-

trated by different groups could all have different rates, leading to

the negative binomial distribution we observe here. It is also possible

that breaches are announced on specific dates to reduce their impact

in the media. This could lead to a clustering of breach reports on

Fridays or before holidays.

Negligent and malicious breaches
Each breach in the PRC dataset is categorized into one of seven differ-

ent categories (plus the category “Unknown”). The seven categories

naturally divide into two groups. The first are breaches arising from

“negligence,” where records were not actively sought by an attacker

Figure 2. The distribution of breach sizes and the fit to a log-normal

distribution.

Figure 3. The distribution of the daily number of breaches and the fit to a

negative binomial.
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but were exposed accidentally, e.g., through the loss of laptops, or ac-

cidental public exposure of sensitive information. The second group

includes breaches arising from “malicious” activities that actively tar-

geted private information, e.g., attackers hacking into systems, an in-

sider using information for malicious purposes, or payment card

fraud. Table 1 contains information on the number of each type of

breach in the dataset, and our groupings. It is apparent that negligent

breaches occur nearly twice as often as malicious breaches.

We reapplied the data fitting analysis described earlier (“Breach

Size” and “Breach Frequency” subsections) separately to each of the

two groups. We find that even when the data are divided into negli-

gent and malicious categories, each category matches a negative bi-

nomial distribution for daily frequency, although with different

means. However, malicious and negligent breaches fit different dis-

tributions. Specifically, the sizes of malicious breaches are well fit by

a log-normal distribution, while negligent breaches are well fit by a

log-skewnormal distribution. Even though the lumped data (all cate-

gories aggregated) are log-normally distributed, it is possible that

the different distributions arise because this distribution is changing

over time, or that different processes are producing different breach

sizes. We provide evidence against the former hypothesis in the next

section.

Modeling data breach trends

Our earlier analysis does not allow for the possibility that the distri-

butions are changing over time. In this section, we describe how we

use Bayesian Generalized Linear Models (BLGMs) [28] to construct

models of trends in the PRC dataset. We then use Bayesian

Information Criteria (BIC) to determine the highest likelihood

model, while avoiding overfitting. We use the distributions derived

in “Data” section, as the basis for our time-dependent models.

Bayesian approach
We illustrate our approach by focusing on the sizes of negligent data

breaches, Sn. The basic strategy assumes an underlying type of distri-

bution for the data (e.g. sizes of negligent breaches), which we found

to be log-skewnormal in “Breach Size” subsection. Hence

Sn � Log SkewNormalðl; s; aÞ, where l is the location parameter, s
is the shape parameter (the inverse of the variance), and a is the

skew parameter.

To incorporate temporal variations, we model the location

parameter, l, as a polynomial function of time, t, i.e.

l ¼ b0 þ b1t þ � � � þ bdtd. Time is expressed as a decimal value in

years since 1 January 2005, with a resolution of 1 day, e.g. t¼1.2

would be 13 March 2006. We describe how to determine the degree

of the polynomial, d, later. The parameters, bi, for the polynomial,

together with the shape parameter and skew parameter (s and a re-

spectively), comprise the free variables of the model. For each free

parameter we need to define a prior distribution.

The choice of prior distributions is an important and active area

of research in Bayesian statistics. As suggested in the literature [28],

we used normally distributed priors for the polynomial parameters,

b0 � Nð log ðSnÞ; 1Þ and bi � Nð0; 1
Var½ti �Þ, a gamma-distributed

prior for the shape parameter, s � Gammað1; 1Þ, and a generalized

student’s T distribution for the skew parameter, a � Tð2:5; 0; pi2

4 Þ
[29]. These priors are “uninformative,” i.e. they assume the least

amount of information about the data. Although there are other

possible priors, our results did not vary significantly when tested

with other reasonable choices. Once the model is defined, we can

numerically determine the parameters using maximum-likelihood

estimation.

To assess the accuracy of the estimates, we determine confidence

intervals for the values of the parameters using a variant of Markov

Chain Monte Carlo (MCMC) sampling to ensure robust, fast sam-

ples [30]. MCMC is an efficient general method for sampling pos-

sible values for the parameters of the model.

The remaining unknown in the model is d, the degree of the

polynomial. We determine a model for each d 2 ½0; 6�, and choose

the model (and hence the polynomial) with the minimum BIC [31].

We compute the BIC as BIC ¼ �2Lþ k � logðnÞ, where L is the

likelihood of the model when the parameters are set to their MLE,

k is the number of parameters (the degree of the polynomial plus

any shape parameters), and n is the number of data points. The

BIC balances the likelihood of the model, which is increased by

adding parameters, with the number of parameters and size of

data, and hence prevents overfitting. This enables us to choose a

model that best fits changes in the data, rather than modeling stat-

istical noise. This is an important feature when the distributions

are heavy-tailed. Another common model selection tool is Akaike

Information Criteria (AIC), but we obtained the same results using

AIC.

To summarize, our modeling approach involves the following steps:

1. Define a BGLM similar to Equation (1), as shown in “Modeling

Breach Size” subsection.

2. Find the maximum likelihood estimates for the parameters of

the model (e.g. bi, s) for polynomial trends d up to degree 10.

3. Select the model that has the minimum BIC for the maximum

likelihood estimates of the parameters.

4. Sample from the distribution of free parameters (i.e. bi, s, a)

using MCMC to determine the confidence intervals for the

parameters.

Table 1. Types of data breaches as categorized by the PRC, grouped into negligent and malicious breaches

Breach type Description Count

Negligent breaches 1412

Portable device Lost, discarded or stolen, portable device or media. 627

Unintended disclosure Information posted in a publicly available place, mishandled, or sent to the wrong party. 456

Physical Lost, discarded, or stolen non-electronic records. 196

Stationary device Lost, discarded or stolen stationary device or media. 135

Malicious breaches 781

Hacking Electronic entry by an outside party. 469

Insider Someone with legitimate access intentionally breaches information. 282

Payment card fraud Fraud involving debit and credit cards that is not accomplished via hacking. 30

Unknown Other or unknown. 58
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5. Randomly sample the model to generate a distribution, and

compare that to the actual distribution, using the KS test.

We assume that size and frequency are conditionally independ-

ent in our model. That is, we assume that the distribution of breach

sizes does not change when multiple breaches are disclosed on the

same day. To verify this, we conducted a two sample KS test be-

tween the distribution of breach sizes on days when n breaches were

announced and when m breaches were announced, for all fn;mg
2 ½1; 7� with n 6¼ m. We found no statistically significant difference

in each combination of distributions (P>0.1) (recall as before a

larger P value indicates that there is not enough evidence to reject

the null hypothesis, i.e. the two sets of data are drawn from the

same distribution), providing evidence that this assumption is

reasonable.

Modeling breach size
As derived in “Bayesian Approach” subsection, the model for negli-

gent breach sizes is

Sn�Log SkewNormalðl; s; aÞ

l ¼ b0 þ b1t þ b2t2 þ � � � þ bdtd

b0�Nð log ðSnÞ;1Þ

bi�N 0;
1

Var½ti�

� �

s�Gammað1; 1Þ

a�T 2:5; 0;
p2

4

� �

(1)

For malicious breaches we fit a similar model, except using a

log-normal distribution

Sn�Log Normalðl; sÞ

l ¼ b0 þ b1t þ b2t2 þ � � � þ bdtd

b0�Nð log ðSnÞ;1Þ

bi�N 0;
1

Var½ti�

� �

s�Gammað1; 1Þ

(2)

The best fit model for both malicious and negligent breaches, as

determined by the minimum BIC, gives d¼0, which indicates that

the distribution of sizes is constant. Figure 4 shows the median val-

ues for models, plotted against the PRC data (We show median ra-

ther than the mean because it better represents the typical values in

heavy tailed distributions.). Maximum likelihood estimates for the

parameters are given in Table 2.

To summarize, we find that the distribution of negligent and

malicious breach sizes has remained constant with a median size of

383 and 3141, respectively, over the 10-year period represented by

the dataset. Random samples generated using Equation (1) and

the estimates found in Table 2, indicate that the predicted distribu-

tion of sizes by the model does not significantly differ from the

data, i.e. our model generates data that are indistinguishable

from the actual data. The KS test gives P¼0.55 for the fit to the

negligent breach sizes, and P¼0.11 for the fit to the malicious

breach sizes.

Modeling breach frequency
We use the same methodology to model the frequency of data

breaches, with a negative binomial as the basic distribution, as

determined in “Breach Frequency” subsection (We also test a

Poisson model, but found it had a higher BIC than a negative bino-

mial model.). The daily frequency, Bn of negligent breaches is given

by

Bn�NegativeBinomialðl; aÞ

log ðlÞ ¼ b0 þ b1t þ b2t2 þ � � � þ bktk

b0�Nð log ðDnÞ; 1Þ

bi�Nð0;Var½ti�Þ

a�Gammað1;1Þ

(3)

The same model is used for malicious breaches, replacing Bn

with Bm, the daily number of malicious breaches. We use a log link

function for the mean value of the negative binomial distribution,

which ensures that the mean value is always positive regardless of

the value of the polynomial [28].

For the daily frequencies of both negligent and malicious

breaches, the models with the lowest BIC are polynomials of degree

d¼0, indicating that the daily frequency of breaches has remained

constant over the past 10 years. The maximum likelihood estimates

and 95% confidence intervals are shown in Table 3. Random sam-

ples generated using the Equation (3) are not statistically signifi-

cantly different from the data for both negligent and malicious

breaches; which have P¼1.0 and P¼0.99, respectively, for the KS

test.

Modeling large breaches
It is possible that the models developed above are dominated by

smaller breaches, which have experienced little change over the last

10 years, while larger breaches are increasing in size or frequency.

We define “large” breaches as those involving 500 000 or more re-

cords. This threshold was chosen because it includes a large enough

sample size for us to fit reasonable models (93 malicious and 121

negligent breaches), but the threshold is high enough that the breach

would likely be reported widely in the press.

Using this definition, we find that large breach sizes fit a log-

normal distribution for both negligent and malicious breaches, and

that large breaches in both categories do not show a significant trend

over the past 10 years.

The frequency of large breaches, both malicious and negligent,

fits a Poisson distribution, rather than the negative binomial

observed for breaches of all sizes. This could indicate that different

processes are responsible for generating large versus small breaches.

Alternatively, it could simply be that the very low probability of a

large breach results in a distribution that is difficult to distinguish

from the negative binomial. In this case, we would expect the BIC of

the Poisson model to be lower because it has one less parameter

than the negative binomial. Regardless of whether the best model

mathematically is a negative binomial or Poisson, the trends for

large breaches are the same as the overall trends, with the frequency

of malicious and negligent large breaches remaining constant over

the 10 years covered by the dataset.

Alternative modeling approach
Alternative modeling approaches could be taken with the data.

ARIMA [32] and GARCH [33] models are frequently used to

model financial time series data and could potentially be applied to

breach size data or, with modification [34, 35], frequency data.

We tested these types of models on log-transformed data breach

size. We used the Box-Jenkins methodology [36] to identify the

correct order for the ARIMA and GARCH models and found that,

using this particular type of model, the parameters that best describe
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the data are ARIMAð0; 0; 0Þ and GARCH(0, 0). That is, a model that

does not include autoregressive components, differencing, or moving

average components in the conditional mean and no autoregressive

components in the residuals or their variance. Under a log transform-

ation, this model is very similar in form to Equation (2) when k¼0,

providing further evidence that the distribution of breach sizes has not

changed.

Prediction

The power of a good statistical model is that it can be used to esti-

mate the likelihood of future events. In this section, we discuss what

types of predictions models like ours can legitimately make, and

point out some of the ways in which naive interpretations of the

data can lead to erroneous conclusions. We then demonstrate how

the model can be used to quantify the likelihood of some of the large

breaches that were experienced in 2014, and we make some predic-

tions about the likelihood of large breaches in the future. Finally, we

project the possible cost of data breaches over the next 3 years.

Variance and prediction
Because the distributions of both the breach sizes and frequencies in

the PRC dataset are heavy-tailed, it is difficult for any model to

make precise predictions about the exact number of breaches or

their average size. This is different from a dataset that is, e.g., nor-

mally distributed, where, with sufficiently large sample size, one can

say with high probability that samples in the future will cluster

around the mean, and estimate the chances of samples falling out-

side one standard deviation from the mean. However, in the PRC

dataset, common statistics like the mean or the total number of re-

cords exposed are much less predictable. The data often vary wildly

from year to year, even if the process generating the breaches has

not changed at all. This phenomenon is common in many complex

systems, including many security-relevant datasets, e.g., [37].

We illustrate the effect of the high variability in Figs 5 and 6.

These figures show the result of measuring the total number of mali-

cious and negligent breaches and the total number of records con-

tained in those breaches annually for the historical data (black line)

and a single simulation using the models presented in “Modeling

Data Breach Trends” section (red line) (We use data through 2014

as it was the last complete year we have data. Our 2015 data only

runs to September.). Although our model indicates no trend in the

size or frequency of breaches, the distribution can generate large

year-to-year variations. These changes are often reported as though

they are significant, but our results suggest that they are likely arti-

facts of the heavy-tailed nature of the data.

For example, a number of industry reports, some using the PRC

dataset, have pointed to large changes in the size or number of data

breaches from year to year [38, 12]. One of the most alarmist is the

Symantec Threat Report which noted a 493% increase in the total

number of records exposed from 2012 to 2013, and a 62% increase

Figure 4. The size of data breaches from the PRC dataset, versus the maximum likelihood estimate of the median size.

Table 2. Maximum likelihood estimates and 95% confidence inter-

vals for models of breach size

Variable Estimate 95% Confidence Interval

Negligent

b0 6.186 [5.453, 8.111]

s 0.098 [0.075, 0.139]

a 0.959 [�0.11, 1.521]

Malicious

b0 8.052 [7.827, 8.282]

s 0.093 [0.084, 0.103]

Table 3. Maximum likelihood estimates and 95% confidence inter-

vals for models of daily breach counts

Variable Estimate 95% Confidence Interval

Negligent

eb0 0.364 [0.343, 0.388]

a 0.944 [0.762, 1.170]

Malicious

eb0 0.200 [0.191, 0.216]

a 1.897 [1.157, 3.107]

We report eb0 as this is the mean number of breaches of each type per day.
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in the number of breaches in the same time frame (These reports use a

combination of public and private data, so comparison of exact num-

bers is not feasible.). The 493% number includes the large Court

Ventures data breach, which was initially reported as revealing 200

million records, but later reports reduced that that number to 3.1 mil-

lion records [7]. Even with this correction, the report implies a 282%

increase in the total number of breached records. These increases

sound startling, and a naive interpretation might suggest that both the

number and size of data breaches are skyrocketing.

We can test for the likelihood of such extreme changes using our

model. To do so, we used the model to generate 10 000 samples of pos-

sible annual totals, both for the number of breaches and the number of

records, from 2005 to 2014. We find that a 62% year-to-year increase

in the total “number” of breaches is relatively common in simulation,

occurring 14.0% of the time. Similarly, an increase of 282% in total

“records” exposed occurs in 17.6% of year-to-year transitions. These

results suggest that the large changes identified in these reports are not

necessarily significant and could be natural variations arising from the

underlying observed distributions of data breaches.

Although our model cannot accurately predict the total number

or typical size of data breaches in any given year, it can assess the

likelihood of different sizes of breaches. That is, we can predict the

probability of a breach of a specific size within a given time-frame,

as we show in the next subsection.

“Predicting” the last year of breaches
To assess the likelihood of the breaches that occurred in 2014, we fit

the model using data from 2005 to the September of 2014, and used

it to “predict” the events of the last year. The MLEs of this smaller

dataset are virtually identical to those found for the whole range,

suggesting that the 2014 data are not significantly different from

those of the previous nine and a half years.

We used the models derived from the 2005 to September 2014

data to generate 50 000 simulations of breaches from 15 September

2014 through 15 September 2015. For each day in this simulated

timespan we generated a random number of breaches using

Equation (3), and then for each simulated breach we generated a

random breach size using Equation (1). We plot the cumulative

number of records breached in Fig. 7.

The mean cumulative number of breached records roughly

matches the actual cumulative number of records up to February of

2015, when the Anthem Breach exposed 80 million medical records.

In the next 6 months, Premera/Blue Cross experienced a breach of

11 million health care records, the US office of Personal

Management experienced a breach containing 21.5 million records,

and Ashley Madison experienced the exposure of 37 million user ac-

counts resulting in a significant increase in the total number of re-

cords lost. However, all of these breaches are well within the 95%

confidence interval of our model.

As discussed in “Modeling Data Breach Trends” subsection,

large data breaches are expected to occur occasionally due to the

heavy-tailed nature of the distribution from which they are drawn.

However, in our experiments with the model, breaches of the size of

the Anthem and Ashely Madison breach occurred in the same year

in only 1.08% of simulations, suggesting that the co-occurrence of

these two breach sizes was indeed rare. Although this event was un-

likely, it is unclear whether or not it represents a statistically signifi-

cant change in the overall pattern exhibited by the rest of the data.

Future breaches
We now use our model built on the past decade of data breaches to

simulate what breaches we might expect in the next 3 years in the

USA. With the current climate and concern over data breaches, there

will likely be changes in practices and policy that will change data

breach trends. However, this gives us an opportunity to examine

what might occur if the status quo is maintained. Once again we use

the same methodology, predicting from 15 September 2015, through

15 September 2018. We predict the probability of several different

sizes of breaches. The results can be seen in Figs 8 and 9.

Breaches of 1 000 000 records or more are almost certain

(99.32%) within the next year. However, in the next year the prob-

ability of exceptionally large breaches decreases quickly, with only a

9.77% chance of an Anthem sized breach in the next year.

However, in the next 3 years we can expect to have more large

breaches. This is especially clear in Fig. 9, which shows that we are

almost certain to see a breach of 10 million records or more in the

next 3 years (86.2%), but above that size the probability drops off

rapidly, e.g. a breach of size greater than 80 million has less than a

25.7% chance of occurring in the next 3 years.

Predictions like this could be relevant for policy makers inter-

ested in the problem of reducing data breaches. For example, the re-

sults suggest that it might be more sensible to address the problem

of smaller breaches that are almost certain to happen, than to focus

on the very large and infrequent headline-grabbing events.

Disclosure laws at the Federal level, that force small, local organiza-

tions to consistently report breaches, could be one way of doing this.

Figure 5. The number of malicious breaches reported each year throughout

the dataset, together with a single simulation sampled from our model.

Figure 6. The total number of records breached for each year of data along

with simulated total sizes of breaches.
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As with most efforts to model dynamic, real-world phenom-

ena, we expect the predictions to lose accuracy over time. So al-

though our predictions for the next 3 years could be off, we

expect the model to work better for the short term. As a demon-

stration, beginning 15 September 2015 we predict the probability

of various breach sizes in the next year and the next 3 years. The

exact probabilities are given in Table 4. Thus, we can say with

high probability (99.3%) that a breach of at least one million re-

cords will occur in the next year, and we do not expect to see a

breach equivalent to Anthem (9.77% chance). In the next year,

we expect only a 53.6% chance of a breach of 10 million records

or more.

Predicting future costs
We can estimate the total expected cost of breaches in the future by

incorporating data and other models related to cost. The Ponemon

Institute publishes annual costs of data breaches, and found an aver-

age $201 cost per record breached in 2014 [39]. Further analysis by

others argues that such a flat rate is not the most accurate model for

costs. Using nonpublic data, e.g., Jacobs showed that the cost of a

breach can be better estimated with a log-log model of the form [40]

log ðcÞ ¼ 7:68þ 0:7584 � log ðsÞ; (4)

where c is the cost of the breach in data, and s is the size of the

breach.

Figure 7. The cumulative number of breached records, both historically (shown in blue) and as predicted by our model. The simulated median (shown in red) is

computed over 50 000 independent simulations. The dashed lines represent the 95% confidence interval.

Figure 8. The predicted probability of breaches of various sizes over the next 3 years. Each line represents the probability of at least one breach of the size

denoted in the legend occurring before the date on the horizontal axis. We do not include smaller breach sizes, as they will almost certainly occur within the next

few months.
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In Equation (4) the cost of a breach grows less than linearly, re-

sulting in overall lower costs than those predicted by the Ponemon

model. Because the data used to create these models are not public,

it is hard to assess their validity, but they illustrate how any cost

model can be combined with our results to estimate the future costs

of data breaches. Combining these models with Equation (1) and

Equation (3) produces the predicted cumulative cost of data

breaches over the next 3 years, as shown in Fig. 10.

The flat rate cost model (Ponemon) suggests that in the next 3 years

we can expect anywhere between $8.90 billion and $179 billion in

losses associated with public data breaches. Jacob’s model gives a more

modest estimate of somewhere between $3.87 and $19.9 billion.

Related work

According to the PRC, over 90 reports and articles reference the

data used in our study [14]. However, only a few of those reports

perform quantitative analysis, and most do not investigate trends in

the size or frequency of data breaches. There are a few exceptions,

e.g., the Symantec Threat Report [12] and the TrendMicro report

[10] mentioned earlier. Gemalto reports data breach trends, but

does not use the PRC data [11]. Another example is a Verizon report

released in 2014 [38], which examines trends in the relative fre-

quency over time of various types of attacks and motivations.

However, the methodology for determining the trends is not

described, and the report makes no predictions about the future.

Many reports from security companies, such as those from

Trustwave [41], focus on classifying the various attack vectors,

without attempting to model trends.

Trends in data breaches have received little attention in the aca-

demic literature; one exception is Maillart et al.’s analysis of a

related dataset [42]. By focusing on the tail of the data their analysis

reveals a power-law, which is indistinguishable from the tail of the

log-normal distribution we found by considering the entire dataset.

Heavy-tailed datasets have also been studied in other domains using

similar methods, e.g., [43]. Earlier research investigated trends in

the relative frequency of various categories of breaches from 2005

to 2007 but found that the limited sample size prevented them from

making statements about the significance of their results [44]. More

recently, in 2010, Widup examined yearly trends in different types

of data breaches [45]. However, no statistical analysis was con-

ducted to estimate the underlying distribution or to separate out

normal variations from distinct trends. Some papers investigate pre-

dictions about future events. For example, Bagchi and Udo de-

veloped a general statistical model for predicting the cumulative

number of security incidents of a specific type [46], and Condon et

al. used a time series model to predict security incidents [47].

However, neither of these two studies focused specifically on data

breaches.

Numerous reports focus on the health care industry. The US

Department of Health and Human Services released a 2014 report

examining breaches of protected health information [48]. The report

includes basic counts of different types of breaches but does not

identify any clear trends. Redspin has published three annual reports

on data breaches in the healthcare industry [49, 50, 13]. In 2011,

they reported a 97% increase in the number of breaches from the

previous year, and a dramatic 525% increase in the number of total

records breached [49]. The following year, they report an increase in

the number of large breaches (22%) and a decrease in the number of

total records breached. These variations fit well with our observa-

tions of the heavy-tailed nature of the underlying data.

Some reports focusing on the cost of data breaches were

described in “Predicting Future Costs” subsection. Similar studies

focused on hospitals claim that breaches can cost organizations an

average of $2.4 million over the course of 2 years.

Other work has focused on the overall cost of security breaches.

Acquisti et al. found a negative impact on the stock value of compa-

nies experiencing privacy breaches [51]. Thomas et al. built a

branching activity model which measures the impact of information

security breaches beyond a breached organization [52]. Studies such

as these could be combined with our methodology to infer future

overall costs of breaches.

A number of other studies have examined the possible policy im-

plications of data breach notification laws. Picanso suggested a

framework for legislation of uniform data breach notifications [53].

Romanosky et al. analyzed the economic and legal ramifications of

lawsuits when consumer data is compromised [54]. Later,

Romanosky et al. created an abstract economic model to investigate

the effect of mandatory data breach disclosure laws [55]. Using

older parameter estimates, their model shows that if disclosure were

made mandatory, then costs would be higher for companies experi-

encing breaches and that companies would likely increase their in-

vestment in security infrastructure. Graves et al. use PRC data to

conclude that credit card companies should wait until fraud occurs

before reissuing credit cards in the wake of a breach [56].

Discussion

Our results suggest that publicly reported data breaches in the USA

have not increased significantly over the past 10 ears, either in

Figure 9. The predicted probabilities of breach size after 3 years.

Table 4. Chance of the occurrence of various size malicious

breaches by in the next year and 3 years

Breach size % Chance

(millions) One year Three years

1 99.3 100

5 75.6 98.2

10 53.6 88.9

21.5 31.6 67.0

37 20.1 48.3

80 9.77 25.7

130 5.82 16.2

The breach size is in millions of records.

Journal of Cybersecurity, 2016, Vol. 2, No. 1 11

Deleted Text: three 
Deleted Text: three 
Deleted Text: W
Deleted Text: for example
Deleted Text: 3
Deleted Text: 24
Deleted Text: 5
Deleted Text: 56
Deleted Text: 39
Deleted Text: 1
Deleted Text: -
Deleted Text: 20
Deleted Text: 60
Deleted Text: <italic>.</italic>
Deleted Text: 16
Deleted Text: .
Deleted Text: .
Deleted Text: 31
Deleted Text: 31
Deleted Text:  4.4
Deleted Text: two 
Deleted Text: 2
Deleted Text: 49
Deleted Text: 2
Deleted Text: .
Deleted Text: .
Deleted Text: ten y


frequency or in size. Because the distribution of breach sizes is

heavy-tailed, large (rare) events occur more frequently than intuition

would suggest. This helps to explain why many reports show mas-

sive year-to-year increases in both the aggregate number of records

exposed and the number of breaches [13, 38, 41, 12, 10, 11]. All of

these reports lump data into yearly bins, and this amount of aggre-

gation can often influence the apparent trends (Fig. 1).

The idea that breaches are not necessarily worsening may seem

counterintuitive. The Red Queen hypothesis in biology [57] provides

a possible explanation. It states that organisms not only compete

within their own species to gain reproductive advantage, but they

must also compete with other species, leading to an evolutionary

arms race. In our case, as security practices have improved, attacks

have become more sophisticated, possibly resulting in stasis for both

attackers or defenders. This hypothesis is consistent with observed

patterns in the dataset. Indeed, for breaches over 500 000 records

there was no increase in size or frequency of malicious data

breaches, suggesting that for large breaches such an arms race could

be occurring. Many large breaches have occurred over the past dec-

ade, but the largest was disclosed as far back as 2009 [6], and the se-

cond largest was even earlier, in 2007 [58]. Future work could

analyze these breaches in depth to determine whether more recent

breaches have required more sophisticated attacks.

Even if breaches are stable in size and frequency, their impact is

likely growing. The ability to monetize personal information, and

the increasing ease with which financial transactions are conducted

electronically could mean that the cost of data breaches will rise in

the future. To address this issue, we considered two different models

taken from the literature, which give wildly different projections.

Reconciling these two models is an important area of future work.

With improved cost models, however, integration with our models

to produce more accurate projections would be straightforward.

Our results are based on publicly available data. It may be that

the data are incomplete, and therefore our model is biased down-

wards, as some breaches will go unreported, but few reported

breaches will prove not to have occurred. As more data become

available, it will be straightforward to incorporate and update trend

analyses and predictions. Given new data, from private sources or

countries other than the USA, it would be important not only to

reanalyze trends, but also to revisit the underlying distributions.

Despite this caveat, we expect that the PRC data is reasonably com-

plete for the USA, because most US states already have disclosure

laws (48 out of 50 as of January 2015 [59]) that require organiza-

tions to report the compromise of sensitive customer information.

These laws vary in their requirements so it is possible that many

breaches still go unreported. Moreover, different sectors have differ-

ent reporting laws. For example, the US Department of Health and

Human Services requires hospitals to report breaches of medical in-

formation containing more than 500 records [60]. This may lead to

an over representation of medical breaches in the data. Future work

could use interrupted regression to test whether reporting laws

change the rate of reporting [61].

As we described earlier, the data are well-modeled by certain dis-

tributions, and these distributions could arise from underlying proc-

esses related to the breaches (“Data” section). However, Fig. 2

illustrates that there is some deviation in the tail, suggesting that the

log-normal fit is not exact for breaches that exceed 1 000 000 re-

cords. There are several possible explanations. It could simply be

statistical noise, which is a known consequence of the rarity of large

breaches. Alternatively, it could be that large breaches are generated

by a different process from smaller breaches, a hypothesis that we

rejected in “Modeling Large Breaches” subsection. Another possibil-

ity is that large breaches are more likely to be reported than smaller

ones, either because there is a higher likelihood that the breach is

noticed or because it is more likely that some of the records are cov-

ered by a disclosure law. The negative binomial distribution we ob-

serve in breach frequency could be the result of a mixture of

different random Poisson processes. For example, breaches from dif-

ferent organization types on different days of the week may be

Poisson distributed with different rates, resulting in the appearance

of a negative binomial.

More complex behavioral models unique to security may also

provide insight. Models which include processes such as data collec-

tion, organizational growth, the deployment of defenses, the capa-

bilities of attackers, and the notification process may produce the

distributions we see here. This is a rich area for future work.

Figure 10. Predicted cumulative cost of data breaches in the next 3 years using two different cost models.
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Different modeling paradigms such those which model large and

small breaches differently may result in better predictions. Models

which allow a continuous variation in the frequency of breaches of

different sizes may provide further insight [62]. It is also possible

that large breaches have become more common very recently, repre-

senting a discrete jump in the data, rather than the continuous

change used in our models here. Models which account for different

days of the week for the frequency of reporting and discrete changes

may provide a better explanation for the data.

This article focuses on identifying trends in the size and fre-

quency of data breaches over time, and predicting the likelihood of

future breaches. However, it may be possible to identify other fac-

tors that influence breaches, e.g., the size of an organization. Our

univariate approach here can serve as a basis for future investiga-

tions which incorporate more information on data breaches. For ex-

ample, it is reasonable to expect that the number of records that an

organization holds is related to its size, and that this factor alone

would affect expected breach size. We conducted a preliminary in-

vestigation of US universities with breaches in the PRC dataset but

found no significant correlation between university enrollments

(proxy for size of institution) at the time of the breach and the size

of the breach itself. This unanticipated result bears additional study.

In the future, we plan to identify features of organizations that are

predictive of the size and frequency of breaches they will experience,

with the goal of helping policy makers focus their attention where it

can have the most impact. For example, the presence of out of date

software or poor security training within an organization may con-

tribute to the likelihood of major data breaches.

Our model provides estimates of the probability of breaches of

specific sizes occurring in the past and the future through simula-

tion. Given its relative simplicity, it may be possible to construct

analytic solutions for these probabilities, and not have to rely on

simulation. However, in general we cannot expect all such models

to be tractable analytically.

Conclusion

It is popular today to frame the cybersecurity problem in terms of

risk analysis and management. For example, the US National

Institute of Standards (NIST) has developed and promulgated its

cybersecurity framework, which is based almost entirely on the con-

cept of risk assessment [18]. To evaluate these risks, however, re-

quires an accurate assessment of both cost and likelihood. In this

article, we focused on the likelihood component, showing how

widely available datasets can be used to develop more nuanced esti-

mates and predictions about data breaches than the typically alarm-

ist reports and headlines produced by security companies and the

popular press. As we have shown here, simply comparing last year’s

data with this year’s is unlikely to provide an accurate picture.

Our analysis of the PRC dataset shows that neither the size nor

the frequency of two broad classes of data breaches has increased

over the past decade. It is, of course, possible that the PRC dataset is

not representative of all breaches or that there has been a significant

transition in the underlying probabilities in the recent past which is

not yet reflected in our data. A third possible explanation for this

surprising result is that data privacy practices have improved at

roughly the same rate as attacker prowess—Red Queen effect [57].

Under this scenario, we are in an arms race, and can expect contin-

ual pressure to increase defenses just to stay even. It will take extra-

ordinary efforts if we are ever to get ahead.

In conclusion, data breaches pose an ongoing threat to personal

and financial security, and they are costly for the organizations that

hold large collections of personal data. In addition, because so much

of our daily lives is now conducted online, it is becoming easier for

criminals to monetize stolen information. This problem is especially

acute for individual citizens, who generally have no direct control

over the fate of their private information. Finding effective solutions

will require understanding the scope of the problem, how it is

changing over time, and identifying the underlying processes and

incentives.
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