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Abstract

It has been 100 years since the birth of Alan Turing and more than sixty years since he published
in Mind his seminal paper, Computing Machinery and Intelligence. In this paper Turing asked a
number of questions, including whether computers could ever be said to have the power of
“thinking”. Turing also set up a number of criteria - including his imitation game - under which a
human could “judge” whether software on a computer could be said to be “intelligent”. Turing’s
paper, as well as his important mathematical and computational insights of the 1930s and 1940s
led to his popular acclaim as the “Farther of Artificial Intelligence”. In the sixty years since his

paper was published, no computational system has fully satisfied Turing’s challenge.

In this paper we focus on a different question, ignored in, but inspired by, Turing’s paper: What is
the nature of intelligence and how might it actually be implemented on a computational device?
After sixty years of both directly and indirectly addressing this question, the Artificial Intelligence
community has produced few answers. Nonetheless, the Al Community has constructed a large
number of important artifacts, as well as several philosophical stances able to shed light on the
nature of intelligence. This paper addresses the issue of how formal representational schemes
illuminate the nature of intelligence, and further, how an intelligent agent can understand the
nature of its own intelligence; this is often called the problem of epistemological access. The result

of this access is an epistemic stance.
I propose to consider the question, “Can computers think?”...
Alan Turing, Computing Machinery and Intelligence, Mind, 1950.

Theories are like nets: he who casts, captures...

Wittgenstein, Philosophical Investigations, 1953
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1. Introduction: The Imitation Game

Turing proposed to answer his “Can computers think” question by introducing a gedanken
experiment called the imitation game. In the imitation game a human, the “interrogator”,
asks questions of two different entities, one a human and the other a computer. The
interrogator is isolated from the two respondents so that he/she does not know whether
the human or computer is answering. Turing, in the language of the 1940s, comments that
“the ideal arrangement is to have a teleprinter communicating between the two rooms”,
ensuring the anonymity of the responses. The task of the interrogator is to determine
whether he/she is communicating with the computer or the human at any time during the
question answering session. If the interrogator is unable to determine who is responding to
questions, Turing contends that the computer has to be seen as “thinking”, or, more directly,

to possess intelligence.

The historical timing of Turing’s paper is very instructive. It appeared before computers
were challenged to understand natural human languages, play chess, recognize visual
scenes, or control robots in deep space. Turing and others (Turing 1936, Church 1941, Post
1943) had already formally specified what it meant to compute, and had by that time
hypothesized limits on what was computable. This sufficient model for any computation is
often called the Church/Turing hypothesis (Turing 1936). However, the radio-tube-based-
behemoths of Turing’s time were used mainly to work out the trajectories of ordinance and
to break complex ciphers. It is important to realize then - given the very limited nature of
actual tasks addressed at that time by computers - that the most important result of
Turing’s imitation game was to challenge humans to consider whether or not thinking and
intelligence are uniquely human skills. The task of Turing’s imitation game was an
important attempt to separate the attributed skills of “thinking” and “intelligence” from

their human embodiment.

Of course, no informed critic would contend that electronic computers, at least as presently
configured, are universally intelligent — they simply do a large number of specific but
complex tasks - delivering medical recommendations, guiding surgeries, playing chess or
backgammon, learning relationships in large quantities of data, and so on - as well as, and
often much better than, their human counterparts performing these same tasks. In these

limited situations, computers have passed Turing’s test.



[t is interesting to note, also, that many in the research community are still trying to
play/win this challenge of building a general purpose intelligence that can pass the Turing
test in any area that a human might challenge it. This can be seen as useful, of course, for it
requires the computer and program designer to address the more complete and complex
notion of building a general-purpose intelligence. Perhaps the program closest to achieving
this goal is IBM’s Watson, the winner of the Jeopardy television challenge of February 2011

http://en.wikipedia.org/wiki/Watson (computer), www 9/9/12. Commercially available

programs addressing the quest for general intelligence include web bots, such as Apple’s
Siri. The Turing test challenge remains an annual event, and the interested reader may visit

the url http://en.wikipedia.org/wiki/Turing_test#Loebner_Prize, www 9/9/12, for details.

In fact, the Al community still uses forms of the imitation game to test whether their
programs are ready for actual use. When the computer scientists and medical faculty at
Stanford were ready to deploy their MYCIN program they tested it against a set of outside
medical experts skilled in the diagnosis of meningitis infections (Buchanan and Shortliffe
1984). The results of this analysis were very interesting, not just because, in the double-
blind evaluation, the MYCIN program out performed the human experts, but also because of
the lack of a general consensus - only about 70% agreement - on how the human experts
themselves would treat these patients! Besides evaluating many deployed expert systems, a
form of Turing’s test is often used for testing Al-based video games, chess and backgammon

programs, computers that understand human languages, and various forms of web agents.

The failure, however, of computers to succeed at the task of creating a general-purpose
thinking machine begins to shed some understanding on the “failures” of the imitation game
itself. Specifically, the imitation game offers no hint of a definition of intelligent activity nor
does it offer specifications for building intelligent artifacts. Deeper issues remain that
Turing did not address. What IS intelligence? What IS grounding (how may a human’s or
computer’s statements be said to have “meaning”)? Finally, can humans understand their

own intelligence in a manner sufficient to formalize or replicate aspects of it?

This paper considers these issues, especially the responses to the challenge of building
intelligent artifacts that the artificial intelligence community has taken since Turing. In the
next section we introduce deductive, inductive, and abductive reasoning (Peirce 1958) as
general methodological constructs for describing intelligent activity. We also discuss

epistemology, the study of our understanding of intelligence itself, and finally, the question



of epistemological access - whether, in fact, an agent can understand its own interactions

with both the self and non-self worlds.

In the third section we give a brief overview of several Al programs built over the past sixty
years as intelligent problem solvers. We see, often apart from the practical stance of the
program’s original designers, many of the earliest approaches to Al as being components of
an empiricist or rationalist approach to understanding an external world. In the fourth
section we present a constructivist rapprochement that addresses many of the dualist
assumptions of early Al work. We also present and justify a Bayesian approach to the
problem of abduction. Finally, we offer some preliminary conjectures about how a Bayesian

model might be epistemologically plausible.
2. Human Reasoning and Epistemological Access

Many philosophers and mathematicians break down descriptions of human reasoning into
three modes: the deductive, the inductive, and the abductive. Aristotle first described forms
for deductive reasoning, when he pointed out in his Rhetoric that many statements must be
seen as true simply because of the form in which they are presented. Aristotle proposed
these forms as a methodology for his reader to develop convincing arguments. It required
almost two more millennia, however, before mathematicians, including Boole, Frege, and
Tarski, formalized a mathematical system for problem representation and the use of
specific algorithms for deductive reasoning: the propositional and predicate calculi. We
present one form for deductive reasoning, modus ponens, in Figure 1. Deductive inference

plays a large role in rationalist approaches to Al, as we see in the following section.

a. b.
pP>q P(X) > Q(X)
and p and P(george)
implies q implies Q(george)

Figure 1a. The deductive form for modus ponens using the propositional calculus. Figure 1b is
modus ponens with the predicate calculus and instantiation, {george/X).

Inductive reasoning is also a formal method for building arguments about properties of
specific systems. Induction is applied across potentially infinite structures whose elements
can be indexed by the counting numbers, that is, by systems reflecting Peano’s axioms. For
an extended discussion of these axioms see http://en.wikipedia.org/wiki/Peano_axioms

9/9/12). Informally, given a base case and for each case a well formed procedure for



creating a next case, properties can be asserted for all possible countably infinite cases.
Figure 2 offers an example of induction, inferring a general formula for calculating a
sequence of sums. Inductive proof procedures have proven valuable for mathematicians

and computer scientists, especially for proof of properties related to recursive procedures.

The most general, and seemingly open-ended practice of problem solving is referred to as
abductive, or sometimes empirical induction. One way of understanding this is that in
limited micro-areas of reasoning the deductive and inductive forms of inference may be
appropriate but in most all aspects of human interaction these forms are not sufficient to
capture what is going on. When agents interact with the stimuli afforded by the surrounding
world their task is to determine the best explanation for the data they are experiencing. In
fact, Peirce (1958), the twentieth century philosopher who has made an extensive analysis
of abductive reasoning, describes it this way: Abduction is reasoning to the best explanation,

given a set of perceptual cues.

Term number: 1 2 3 n
For all integersn>0: 12 + 22 + 32 + .. + n2 = (n(n+1)(2n+1))/6
Figure 2. An inductive argument: for P(1): 1 = (1(1 + 1)(2 + 1))/6, so the base case is true.
Pn+1):(12 + 22 + 32+ ..+n2) + (n+1)2 = (n+ 1) (n+1+1)2n+1)+1)/6
= (nn+1)(2n+1))/6 + (n+1)2 = ((n+1)(n+2)(2n + 3))/6. Since the base case

P(1) is true and the n + 1 case, P(n+ 1) can be built from the P(n) case, this relationship of sums
is true for alln > 0.

So what might abduction include? Certainly it includes speech communication between
agents. When, for example, an utterance (sound) is made by an agent in some context, the
perceiving agent does not have access to the content of the speaker’s head. Nor does he/she
have perfect access to how the speaker is interpreting his/her environment. As a listener
we are constantly working, often with comments or questions, towards the best explanation
of what meaning might be afforded, given both the speaker’s sounds and the context of
interpretation. There are myriad similar examples of abductive inference available, for
instance in medical diagnosis, where the doctor does not have perfect information of the
patient, but actively struggles, often with measures and testing of the patient’s symptoms, to
come to the best explanation, usually by the attribution of some disease state. And in fact,
even the patient’s symptoms are not directly “perceived”, but seen as a function of, or best
explanation for, the readings from some instrument, a temperature or blood pressure

measure, for example, or the “results” of some blood test.



Aristotle, in his Rhetoric, first described the abductive phenomena, commenting how the
observation of a woman nursing is an indicator of a probable earlier pregnancy. Peirce
introduced the topic more formally (1958), and Eco (1976) and Sebeok (1985) describe
abduction, often in a literary context, as a form of semiotic analysis. Discussion of abductive

phenomena by modern psychologists includes that of Schvaneveldt et al. (2010).

We present in Figure 3 a description of the abductive argument form, noting how it relates
to the modus ponens model of deductive inference shown in Figure 1. Further, Figure 3
demonstrates how multiple factors, the p, r, s, could each explain the perceived set of
evidence, q. Note that abduction is an unsound reasoning rule in that the argument is not
guaranteed (mathematically) to be correct - it is just proposed as a possible explanation of
the data. Various devices, including probability measures and certainty factors (see, for
example, Section 4) may be employed in computational models to prioritize best
explanations, given sets of possible explanations and supporting data. We present

computational models for several examples of abductive inference in Section 6.

a. b.
p2>q r>q s>q P(X) 2 Q(X)
and q and q and q and Q(george)
impliesp??  implies r??  implies s7?? implies P(george) ??

Figure 3a. The abductive form of reasoning with the propositional calculus where p, r, and s all
imply q. We wish to determine which of p or s or r offers the best explanation for the fact of q.
Similarly, Figure 1b is abduction with the predicate calculus and instantiation, {george/X).

Any characterization of the abductive processes of an active agent’s problem solving -
perceptions triggering possible explanations - immediately requires us to consider deeper
issues of human information acquisition and insight. To ask how an agent perceives,
interprets, and explains impinging patterns of “stuftf” (experienced as the philosopher’s
qualia?) is fundamental to understanding how that agent copes with its world. Furthermore,
the problem of whether or not the agent can come to understand and characterize its own

interactions with this “stuff” introduces the issue of epistemological access.

The study of epistemology considers how the human agent knows itself and its world, and,
in particular, whether this agent/world interaction can be considered as a topic for
scientific study. The empiricist and rationalist traditions have offered their specific answers
to this question and artificial intelligence researchers have have made these approaches

concrete with their programs, as we see in the following section. We then propose, in



Section 4, a constructivist, model-refinement approach to epistemological issues and
propose a Bayesian characterization of this agent/world interaction. We present in Section
5 several Bayesian-based models of abductive reasoning and point out epistemological
aspects of this approach. We conclude with some discussion of possible cognitive correlates

of this class of computational model.
3. Artificial Intelligence as Adventures in Rationalism and Empiricism

Over the past sixty years, most of the research efforts in artificial intelligence can be
characterized as an ongoing dialectic between the empiricist and rationalist traditions in
philosophy, psychology, and epistemology. It is only natural that a discipline that as its focus
engages in the design and building of artifacts that are intended to capture intelligent
activity would intersect with philosophy and psychology, and in particular, with
epistemology. We describe this intersection of disciplines in due course, but first we look at

these philosophical traditions themselves.

Perhaps the most influential rationalist philosopher was Rene Descartes (1680), a central
figure in the development of modern concepts of the origins of thought and theories of
mind. Descartes attempted to find a basis for understanding himself and the world purely
through introspection and reflection. Descartes (1680) systematically rejected the validity
of the input of his senses and even questioned whether his perception of the physical world
was “trustworthy”. Descartes was left with only the “reality” of thought: the reality of his
own physical existence could be reestablished only after making his fundamental
assumption: “Cogito ergo sum”. Establishing his own existence as a thinking entity,
Descartes inferred the existence of a God as an essential creator and sustainer. Finally, the
reality of the physical universe was the necessary creation and its comprehension was

enabled through a veridical trust in this benign God.

Descartes’ mind/body dualism was an excellent support for his later creation of
mathematical systems including analytic geometry, where mathematical relationships could
provide the constraints for characterizing the physical world. It was a natural next step for
Newton to describe Kepler’s laws of planetary motion in the language of elliptical
relationships of distances and masses. Descartes clear and distinct ideas themselves became

a sine qua non for understanding and describing “the real”. His physical (res extensa) non-



physical (res cogitans) dualism supports the body/soul or mind/matter biases of much of

our own modern life, literature, and religion (e.g., the spirit is willing but the flesh is weak).

The origins of many of Descartes’ ideas can be traced back at least to Plato. The
epistemology of Plato supposed that as humans experience life through space and time we
gradually come to understand the pure forms of real life separated from material
constraints. In his philosophy of reincarnation, the human soul is made to forget its
knowledge of truth and perfect forms as it is reborn into a new existence. As life progresses,
the human, through experience, gradually comes to remember the forms of the
disembodied life: learning is remembering. In his cave experience, in book seven of The
Republic, Plato introduces his reader to these pure forms, the perfect sphere, beauty, and
truth. Mind /body dualism is a very attractive exercise in abstraction, especially for agents
confined to a physical embodiment and limited by senses that can mislead, confuse, and
even fail. Rationalism’s embodiment entering the Al-age can be found in the early twentieth
century analytic philosophers, the symbol-based Al practitioner Herb Simon (1981), and
especially in the works of the linguist Noam Chomsky (1957). It provides a natural starting

point for work in Al as we see subsequently.

Aristotle was one of the first proponents of the empiricist tradition, although his philosophy
also contained the ideas of “form” and the ability to “abstract” from a purely material
existence. However, Aristotle rejected Plato’s doctrine of transcendent forms, noting that
the act of abstraction did not entail an independent existence. For Aristotle the most
important aspect of nature is change. In his Physics, he defines his “philosophy of nature” as
the “study of things that change”. He distinguishes the matter from the form of things: a
sculpture might be “understood” as the material bronze taking on the form of a specific
human. Change occurs when the bronze takes on another form. This matter/form
distinction supports the modern computer scientists’ notions of symbolic computing and
data abstraction, where sets of symbols can represent entities in a world and abstract
relations and algorithms describe how these entities can share common characteristics, as
well as be systematically altered. Abstracting form from a particular material existence
supports computation, the manipulation of abstractions, as well as theories for data

structures and languages as symbol-based representations.

In the world of the enlightenment, the empiricist tradition, espoused by Locke, the early

Berkeley, and Hume, distrusting the abstractions of the rational agent, reminds us that



nothing comes into the mind or to understanding except by passing through the sense
organs of the agent. On this view the rationalist’s perfect sphere, or absolute truth, simply
do not exist. Locke suggests that the human at birth is tabula rasa, a blank slate, where all
language and human “meaning” is captured as conditioning across time and experience.
What the human agent “internalizes” are the human-perceptible aspects of a physical
existence; what it “knows” are loose associations of these physical stimuli. The extremes of
this tradition, expressed through the Scots philosopher David Hume, include a denial of
causality and the very existence of an all-powerful God. There is an important distinction
here, the foundation of an agnostic/skeptic position: it is not that a God doesn’t/can’t exist,

it is rather that the human agent can’t know or prove that he/she does exist.

The empiricist tradition was especially strong in the first half of the twentieth century
leading into the Al movement, where its supporters included A. ]J. Ayer and Rudolph Carnap,
proponents of logical empiricism, who tried to fuse empiricism with a logic-based

rationalism, as well as the behaviorist psychologist B. F. Skinner.

Many modern artificial intelligence practitioners have implicitly adopted either empiricist
or rationalist views of the world. To offer several examples: From the rationalist
perspective came the expert system technology where knowledge was seen as a set of clear
and distinct relationships (expressed in if/then or condition/action rules) encoded within a
production system architecture that could then be used to compute decisions in particular

situations. Figure 4 offers a simplified example of this approach, where a rule set - the
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Figure 4. A production system; in the traditional data-driven mode, a pattern in the Working
Memory matches the condition of a rule in the Production Memory. When this happens the
conclusion of that rule is asserted (modus ponens) as a new pattern in Working Memory and the
system continues to iterate towards a solution.



content of the production memory - is interpreted by the production system. When the if
component of the rule is matched by the data in the working memory, the rule is said to
“fire” and its conclusion then changes the content of the working memory preparing it for
the next iteration of the system. The reader can observe that when the system is run in this

“data-driven” mode it is equivalent to a modus ponens interpreter, as seen in Figure 1.

Interestingly enough, when the same production system is run in goal-driven mode it can be
seen as an abductive interpreter. In this situation the goals we wish to solve - the
explanations we want to prove “best” - are contained in the working memory and the
production system takes these goals and matches them to the conclusions, the action or
then components of the rules. When a conclusion is matched the rule again “fires” and the
system puts the if pattern of the rule into the working memory to serve as a subgoal for the
next iteration of the system, matching the conclusions of new rules. In this abductive mode
(Figure 3) the system searches back through a sequence of subgoals to see if it can make the
case for the original goal/explanation to be true. As noted earlier, abduction is an unsound
form of reasoning, so the abductive interpreter can be seen as generating possible
explanations for the data. In many cases, some probabilistic or certainty factor measure is
included with each rule supporting the interpreter’s likelihood of producing the “best”

explanation (Luger 2009, Chapter 9).

In the work of Newell and Simon (1972) and Simon (1981) this production system
interpreter was taken a further step towards cognitive plausibility. On the Newell and
Simon view, the production memory of the production system was a characterization of the
human long-term memory and the if/then rules were seen to encode specific components of
human knowledge. On this approach, human expertise for the practicing physician or the
master chess player, for example, was acknowledged to be about 50,000 such rules (Newell
and Simon 1976). The working memory of the production system was seen as the human’s
short-term memory, or as describing a “focus of attention” for what the human agent was
considering at any specific time (we now refer to this as Broadmann'’s areas of pre-frontal
cortex). Thus the production system was proposed as a cognitive architecture that took the
current focus of the agent and used that to “fire” specific components of knowledge (rules)
residing in long-term memory, which, in turn, changed the agent’s focus of attention.

Furthermore, production system learning (SOAR, Rosenbloom et al. 1993) was seen as a set

10



of procedures that could encode an agent’s repeated experiences in a domain into new

if/then rules in long-term (production) memory.

Early design of robot systems (Fikes and Nilsson 1971) can also be seen as a rationalist
exercise where the world is described as a set of explicit constraints that are to be
organized as “states” and searched to accomplish a particular task. “States” of the world are
represented as a set of predicate calculus descriptions and then these are checked by a set
of “move” rules that are used to generate new states of the world, much as the production
system did in the previous example. Figure 5a presents a start state and a goal state for a
configuration of blocks and a robot arm. These states are then changed by applying “move”
predicates, as can be seen in the state space of Figure 5b. Problems can happen, of course,
when the actual world situation is not represented precisely as the logic specifications

would suggest, e.g., when one block or the robot arm accidentally moves another.

a. 2 M
A C
B | e | . | A | B
: The start state l : The goal state
start = [handempty, ontable(b), ontable(c), on(a,b),
clear(c), clear(a)]
goal = [handempty, ontable(a), ontable(b), on(c,b),
clear(a), clear(c)]
b.

move(pickup(X), [handempty, clear(X), on(X,Y)], [del(handempty), del(clear(X)), del(on(X,Y)),
add(clear(Y)), add(holding(X))]).

Figure 5a. The start and goal states of a blocks world problem, and the set of predicate
descriptions for each state. Figure 5b presents part of the state space search representing the
movement of the blocks to attain a goal state. The move procedure (stated as preconditions,
add, and delete constraints on predicates) is one of many possible predicates for changing the
current state of the world.
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Several later approaches to the design of control systems take a similar approach. When
NASA wanted to design a planning system for controlling the combustion systems for deep
space vehicles, it expressed the constraints of the propulsion system as sets of propositional
calculus formulae. When the control system for the space vehicle detected any anomaly it
searched these constraints to determine what to do next. This system, NASA’s Livingstone,
proved very successful for guiding the space flight in deep-space situations (Williams and

Nayak 1996, 1997; Luger 2009, Sections 8.3 - 8.4).

There are many other examples of this rationalist bias in Al problem solvers. For example,
case-based reasoning uses a data base of collected and clearly specified problem solving
situations, much as a lawyer might look for earlier legal precedents, cases that can be

modified and reused to address new and related problems (Kolodner 1993).

A final example of the rationalist perspective, is the suggestion that various forms of logic,
both in representation and inference, can be sufficient for capturing intelligent behavior has
long been the position of a small group of researchers in the Al community (McCarthy 1968,
McCarthy and Hayes 1969). Many interesting and powerful representations have come from
this work including non-monotonic logics, truth-maintenance systems, and assumptions of

minimal models or circumscription (McCarthy 1980, 1986; Luger 2009, Chapter 9.1).

From the empiricist view of Al there is the creation of semantic networks, conceptual
dependencies, and related association-based representations. These structures, deliberately
formed to capture the concept and knowledge associations of the human agent, were then
applied to the tasks of understanding human language and interpreting meaning in specific
contexts. The original semantic networks were, in fact, taken from the results of
psychologists’ (Collins and Quillian 1969) reaction-time experiments. The goal was to
design associative networks for computer-based problem solvers that captured the
associative components of actual human memory. In the reaction time experiments of
Figure 6, the longer the human subject took to respond to a query, for example, Does a bird
have skin?, the further “apart” these concepts were assumed to be in the human memory

system. Closely associated concepts would support more immediate responses.

A number of early Al programs sought to capture this associative representation, first
Quillian (1967) himself, with the creation and use of semantic networks. Wilks, (1972)

basing his research on earlier work by Masterman (1961) who defined around 100
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primitive concept types, also creates semantic representations for the computer based
understanding of human language. Schank (Schank and Colby 1975) with their conceptual
dependency representation, created a set of primitive association-based primitives intended
to support language-based human meaning as it might be used for computer understanding

on translation.

From the empiricist perspective, neural networks were also designed to capture
associations in collected sets of data and then, once trained, to interpret new related
patterns in the world. For example, the back-propagation algorithm in training phase takes
a number of related situations, perhaps surface patterns for an automated welder or phone
patterns of human speech, and conditions a network until it achieves a high percentage of
successful pattern recognition. Figure 7a presents a typical neuron from a back-propagation
system. The input values for each neuron are multiplied by the (conditioned) weights for
that value and then summed to determine whether the threshold for that neuron is reached.
If the threshold is reached the neuron fires, usually generating an input signal for other
neurons. The back-propagation algorithm, Figure 7b, differentially “punishes” those weights
responsible for incorrect decisions. Over the time of training the appropriately configured
and conditioned network comes to “learn” the perceptual cues that solve a task. And then

the trained network can be used to solve new related tasks.
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Figure 6. A semantic net “bird” hierarchy (left) that is created from the reaction time data (right) of
human subjects (Collins and Quillian 1969). This figure is adapted from Harmon and King (1985).

Back-propagation networks are an example of supervised learning, where appropriate

rewards and/or punishments are used in the process of training a network. Other network
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learning can be unsupervised where algorithms classify input data into “clusters” either
represented by a prototype pattern or by some “closeness” measure. New input patterns
then enter into the basins of attraction offered by the currently clustered patterns. In fact,
many successful families of networks have been created over the years. (See Luger 2009,
Chapter 12 for an overview of several of these.) There have also been many obvious - and
scientifically useless - claims that neural connectivity (networks) ARE the way humans
performed these tasks, and therefore appropriate representations for use in computer-

based pattern recognition.
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Figure 7a presents a single artificial neuron whose input values, multiplied by (trained) weights,
produce a value, net. Usually using some sigmoid function, f(net), produces an output value that
may, in turn, be an input for other neurons. Figure 7b is a simple backpropagation network
where input values move forward through the nodes of the network. During training the
networks weights are differentially “punished” for incorrect responses to the input.

In an interesting response to the earlier rationalist planners for robotics described above,
Brooks at the MIT Al laboratory created what he called the “subsumption” architecture
(Brooks 1989, 1991). The subsumption architecture was a layered collection of finite state
machines where each level of the solver was constrained by layers below it. For example, a
“wander” directive at one level of the robot’s controller would be constrained by a lower

level that prevented the agent from “running into” other objects during wandering.
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The subsumption architecture is the ultimate knowledge-free system in that there are no
memory traces ever created that could reflect situations that the robot had already learned
through pattern association. Obviously such a system would not be able to find its way
around a complex environment, for example, the roadways and alleys of a large city. Brooks
even seemed to acknowledge this fact of a memory free solver, in entitling his 1991 paper

“Intelligence without Representation” (Brooks 1991).

As final examples of representations with an empiricist bias, artificial life and genetic
algorithms have been proposed by various groups within the Al community as examples of
evolution-based problem-solvers. These architectures may be seen as knowledge-free
association-and-reward based solvers that are intended to capture survival of the fittest.
Their advocates often saw these approaches as plausible models incorporating evolutionary

pressures to produce emergent phenomena, including the intelligent behavior of an agent.

[t is not surprising that many of the products of the empiricist and/or rationalist
approaches to problem solving have met with only limited successes. To give them their
due, they have been useful in many of the application domains in which they were designed
and deployed. But as models of human cognition, able to generalize to new related
situations, even to generalize and interpret their various results, they were not successful,
or in the context of this paper, could not pass Turing’s test. The success of the Al
practitioner as the designer and builder of new and important software languages and
artifacts is beyond question; the notion that this effort builds out the full set of cognitive

skills of the human agent is simply naive.

The problem is both epistemological and practical. How does the human agent work within
and manipulate elements of a world that is external to, or more simply, is not, that agent?
And consequently, how can the human agent address the overarching epistemological
integration of the agent and its ever-changing environment? And how does (or even can)

the human agent understand this integration?

This paper offers the author’s rapprochement with the issue of epistemology and addresses
the deeper problem of epistemological access. The following section takes a philosophical

stance, finding in constructivism and model refinement a plausible integration of empiricist
and rationalist views. Section 5, using the insights of Bayes theorem, offers a computational

model of abductive reasoning able to integrate prior expectations of a situation with
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posterior perceptions presented by the phenomenal world. In Section 6, going back to the
artificial intelligence tradition, we demonstrate this integration in several examples of

abductive (diagnostic) reasoning.
4. A Constructivist Rapprochement

We view a constructivist epistemology as a rapprochement between the empiricist and
rationalist viewpoints. The constructivist hypothesizes that all understanding is the result
of an interaction between energy patterns in the world and mental categories imposed on
the world by the intelligent agent (Piaget 1954, 1970; von Glasersfeld 1978). Using Piaget’s
descriptions we assimilate external phenomena according to our current understanding and

accommodate our understanding to phenomena that does not meet our prior expectations.

Constructivists use the term schema to describe the a priori structure used to mediate the
experience of the external world. The term schema is taken from the British psychologist
Bartlett (1932) and its philosophical roots go back to Kant (1781/1964). On this viewpoint

observation is not passive and neutral but active and interpretative.

Perceived information, Kant’s a posteriori knowledge, rarely fits precisely into our
preconceived and a priori schemata. From this tension, the schema-based biases a subject
uses to organize experience are either strengthened, modified, or replaced. The use of
accommodation in the context of unsuccessful interactions with the environment drives a
process of cognitive equilibration. The constructivist epistemology is one of cognitive
evolution and continuous model refinement. An important consequence of constructivism is
that the interpretation of any perception-based situation involves the imposition of the
observers (biased) concepts and categories on what is perceived. This constitutes an

inductive bias.

When Piaget proposed a constructivist approach to understanding the external world, he
called it a genetic epistemology. When encountering new phenomena, the lack of a

comfortable fit of current schemata to the world “as it is” creates a cognitive tension. This
tension drives a process of schema revision. Schema revision, Piaget's accommodation, is

the continued evolution of the agent’s understanding towards equilibration.

Schema revision and continued movement toward equilibration is a genetic predisposition

of an agent for an accommodation to the structures of society and the world. It combines
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both these forces and represents an embodied predisposition for survival. Schema
modification is both an a priori reflection of our genetics as well as an a posteriori function
of society and the world. It reflects the embodiment of a survival-driven active agent, of a

contingent being in space and time.

There is a blending in constructivism of the empiricist and rationalist traditions, mediated
by the requirement of agent survival. As embodied, agents can comprehend nothing except
that which first passes through their senses. As accommodating, agents survive through
learning the general patterns of an external world. What is perceived is mediated by what is
expected; what is expected is influenced by what is perceived: these two functions can only
be understood in terms of each other. In the following sections we propose several Bayesian
models where prior experience conditions current interpretations and current data

supports selection of interpretative models.

We, as intelligent agents, are seldom consciously aware of the schemata that support our
interactions with the world. As the sources of bias and prejudice both in science and society,
we are more often then not unaware of our a priori schemata. These are constitutive of our
equilibration with the world and are not usually a perceptible or transparent component of

our conscious mental life.

Finally, we can ask why a constructivist epistemology might be useful in addressing the
problem of understanding intelligence itself? To what extent can an agent within an
environment understand its own understanding of that situation? We believe that
constructivism also addresses this problem of epistemological access. For more than a
century there has been a struggle in both philosophy and psychology between two factions:
the positivist, who proposes to infer mental phenomena from observable physical behavior,
and a more phenomenological approach which allows the use of first person reporting to
enable the access of cognitive phenomena. This factionalism exists because both modes of

access to cognitive phenomena require some form of model construction and inference.

In comparison to physical objects like chairs and doors, which often, naively, seem to be
directly accessible, the mental states and dispositions of an agent seem to be particularly
difficult to characterize. We contend that this dichotomy between the direct access to
physical phenomena and the indirect access to mental phenomena is illusory. The

constructivist analysis suggests that no experience of the external or internal world is
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possible without the use of some model or schema for organizing that experience. In
scientific enquiry, as well as in our normal human cognitive experiences, this implies that all
access to phenomena is through exploration, approximation, and model refinement (Luger

2011).

In the following section we consider mathematical (computational) approaches to this
exploratory model refinement process. We begin our analysis with Bayes’ methods for
probabilistic interpretations and refine this approach to a form of naive Bayes, which we
call, as it is computed across time, the greatest likelihood measure. This uses continuous
data acquisition to do real-time diagnosis through model refinement. Section 6 presents

several examples of Bayesian-based Al research supporting a model refinement approach.
5. A Bayesian-Based and Constructivist Computational Model

We can ask how the computational epistemologist might build a falsifiable model of the
constructivist worldview. Historically, an important response to David Hume’s skepticism,
described briefly in an earlier section, was that of the English cleric, Thomas Bayes (1763).
When challenged to defend the gospel’s and other believers’ accounts of Christ’s miracles in
the light of Hume’s demonstrations that such “accounts” could not attain the credibility of a
“proof”, Bayes’ genius responded (published posthumously, in 1763, in the Transactions of
the Royal Society) with a mathematical demonstration of how an agent’s prior expectations
can be related to its current perceptions. Bayes’ approach, although it didn’t do much for the
creditability of miracles, has had an important effect on the design of probabilistic models.
In this section we develop Bayes’ insight and in the final section of this paper we conjecture

how Bayes’ approach might support a computational model and epistemological access.

We make a simple start; suppose we have a single symptom or piece of evidence, e, and a
single hypothesized disease, h: we want to determine how a bad headache, for example, can
be an indicator of a meningitis infection. We visualize this situation with Figure 8, where we
see one set, e, containing all the people having bad headaches and a second set, h,
containing all the people that have the disease, meningitis. We want to get a measure of

what the probability is of a person that has a bad headache also has meningitis.
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disease h

Figure 8. A representation of the numbers of people having a symptom, e, and a disease, h. Note
that what we want to measure is the probability of a person having the disease, given that they
suffer the symptom, denoted: p(h|e).

We now determine the probability that a person having the symptom, e, also has the
hypothesized disease, h. This probability can be determined by finding the number of
people having both the symptom and the disease divided by the number of people having
the disease. (We will concern ourselves with the processes for obtaining these actual
numbers later.) Since both these sets of people are normalized by the total number of
people considered, we then represent each number as a probability. We represent the

probability of the symptom e given the disease h as p(e|h):

p(elh)=[enh|/[h]|=p(enh)/p(h),

where “|” surrounding symbols, e.g., | € N h |, indicates “the number of people in that set”.
The value of p(e N h) can now be determined by multiplying by p(h):

p(e N h) = p(e|h) p(h)

We wish to determine the p(e N h) value and to do so we have other information from

uln

Figure 8, including the number of people (again) that have both the symptom and the
disease, @ N h, as well as the total number of people that have the symptom, e. So we
determine the value for p(e N h) with this information: The probability of the disease h,

given the evidence e, p(h|e):

p(hle) = p(e N h)/ p(e)
Finally, we have a measure of the probability of the hypothesized disease, h, given the

evidence, e, in terms of the probability of the evidence given the hypothesized disease:

p(hle) = p(e|h) p(h) / p(e)

This last formula is Bayes’ law for one piece of evidence and one hypothesized disease. But
what have we just accomplished? We have created a relationship between the posterior
probability of the disease given the symptom, p(h]e), and the prior knowledge of the

symptom given the disease, p(e|h). Our (or in this case the medical doctor’s) experience
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over time supplies the prior knowledge of what should be expected when a new situation -
a patient with symptoms - is encountered. The probability of the new person with symptom
e having the hypothesized disease h, is represented in terms of the collected knowledge
obtained from previous situations where the diagnosing doctor has seen that a diseased

person had a particular symptom p(e|h) and how often the disease itself occurred, p(h) .

We can make the more general case, along with the same set-theoretic argument, of the
probability of a person having a possible disease given two symptoms, say of having
meningitis while suffering from both a bad headache and high fever. Again the probability of
meningitis given these two symptoms will be a function of the prior knowledge of having

the two symptoms when the disease is present along with the probability of the disease.

Next we present the general form of Bayes’ law for a particular hypothesis, h;, from a set of
hypotheses, given a set of symptoms (evidence, E). The denominator of Bayes’ theorem
represents the probability of the set of evidence occurring. With the assumption of the
hypotheses being independent, given the evidence, the union of each h, with its piece of the

evidence set forms a partition of the full set of evidence, E, as seen in Figure 9.

h»

Figure 9. The set of evidence, E, is partitioned by the set of all possible currently known
hypotheses, hn.

With the assumption of this partitioning, the earlier equation we presented:
p(e N h) = p(elh) p(h)
can be summed across all the h, to produce the probability of the set of evidence, p(E), and

the denominator of Bayes’ relationship for the probability of a particular hypothesis, h;, given

evidence E becomes:

p(E Ihyp(h;)
D p(E Ihp(hy)

p(h; IE) =

p(hi|E) is the probability that a particular hypothesis, h;, is true given evidence E.
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p(hi) is the probability that hjis true overall.
p(E|h;i) is the probability of observing evidence E when h; is true.
n is the number of possible hypotheses.

With the general form of Bayes’ theorem we have a functional (computational) description
(model) for a particular situation happening given a set of perceptual evidence clues.
Epistemologically, we have created on the right hand size of the equation a schema
describing how prior accumulated knowledge of occurrences of phenomena can relate to
the interpretation of a new situation, the left hand side of the equation. This relationship
can be seen as an example of Piaget’s assimilation where encountered information fits the

accepted pattern created from prior experiences.

To describe further the pieces of Bayes formula: The probability of an hypothesis being true,
given a set of evidence, is equal the probability that the evidence is true given the
hypothesis times the probability that the hypothesis occurs. This number is divided by
(normalized by) the probability of the evidence itself. The probability of the evidence
occurring is seen as the sum over all hypotheses presenting the evidence times the

probability of that hypothesis itself.

There are several limitations to using Bayes’ theorem as just presented as an
epistemological characterization of the phenomenon of interpreting new (a posteriori) data
in the context of (prior) collected knowledge and experience. First, of course, is the fact that
the epistemological subject is not a calculating machine. We simply don’t have all the prior
(numerical) values for all the hypotheses and evidence that can fit a problem situation. In a
complex situation such as medicine where there can be well over a hundred hypothesized

diseases and thousands of symptoms, this calculation is intractable (Luger 2009, Chapter 5).

A second objection is that in most realistic diagnostic situations the sets of evidence are
NOT independent, given the set of hypotheses. This makes the mathematical version of full
Bayes just presented unjustified. When this independence assumption is simply ignored, as
we see shortly, the result is called naive Bayes. More often, however, the rationalization of
the probability of the occurrence of evidence across all hypotheses is seen as simply a
normalizing factor, supporting the calculation of a realistic measure for the probability of

the hypothesis given the evidence (the left side of Bayes’ equation). The same normalizing
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factor is utilized in determining the actual probability of any of the h;, given the evidence,

and thus, as in most natural language processing applications, is usually ignored.

A final objection asserts that diagnostic reasoning is not about the calculation of
probabilities; it is about the determination of the determining the most likely explanation,
given the accumulation of pieces of evidence. Humans are not doing real-time complex
mathematical processing; rather we are looking for the most coherent explanation or

possible hypothesis, given the amassed data.

A much more intuitive form of Bayes rule - often called naive Bayes - ignores this p(E )
denominator entirely as well as the associated assumption of evidence independence. Naive
Bayes determines the likelihood of any hypothesis given the evidence, as the product of the
probability of the evidence given the hypothesis times the probability of the hypothesis itself
p(E|h;) p(hi). In many diagnostic situations we are required to determine which of a set of
hypotheses h; is most likely to be supported. We refer to this as determining the argmax
across all the set of hypotheses. Thus, if we wish to determine which of all the h; has the

most support we look for the largest p(E|h;) p(h;):

argmax(h;) p(E|hi) p(hi)
In a dynamic interpretation, as sets of evidence themselves change across time, we will call
this argmax of hypotheses given a set of evidence at a particular time the greatest likelihood
of that hypothesis at that time. We show this relationship, an extension of the Bayesian

maximum a posteriori (or MAP) estimate, as a dynamic measure over time t:

gl(hi[E¢) = argmax(h;) p(E/hi) p(hi)
This model is both intuitive and simple: the most likely interpretation of new data, given
evidence E at time t, is a function of which interpretation is most likely to produce that

evidence at time t and the probability of that interpretation itself occurring.

We now ask how the argmax specification can produce a computational model of
epistemological phenomena. First, we see that the argmax relationship offers a falsifiable
approach to explanation. If more data turns up at a particular time an alternative hypothesis
can attain a higher argmax value. Furthermore, when some data suggests an hypothesis, h;,
it is usually only a subset of the full set of data that can support that hypothesis. Going back

to our medical hypothesis, a bad headache can be suggestive of meningitis, but there is
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much more evidence that is also suggestive of this hypothesis including fever, nausea, and

the results of certain blood tests.

Thus, we view the evolving greatest likelihood relationship as a continuing tension between
a set of possible hypotheses and the accumulating data collected across time. The presence
of changing data supports the revision of the greatest likelihood hypothesis, AND, because
data sets are not always complete, the possibility of a particular hypothesis motivates the
search for data that can either support or falsify it. Thus, greatest likelihood represents a
dynamic equilibrium evolving across time of hypotheses suggesting supporting data and the

presence of data combinations supporting particular hypotheses.

When, because of changing data, no new hypothesis is forthcoming, a greedy local search on
the data points can suggest (create) new hypotheses. This technique supports model
induction, the creation of a most likely model to explain the data, which is an important
component of current research in machine learning (Luger 2009, Chapter 13). In the
following section we present several computational examples from Al research of utilizing

this greatest likelihood model for creating dynamic equilibration.

6. Computational Examples of Model Refinement and Equilibration

Probabilistic modeling tools have supported significant components of Al research since the
1950s when researchers at Bell Labs built a speech system that could recognize any of the
ten digits spoken by a single speaker with accuracy in the high ninety percent range (Davis
et al. 1952). Shortly after this Bledsoe and Browning (1959) built a Bayesian based letter
recognition system that used a large dictionary that served as the corpus for recognizing
hand written characters, given the likelihood of character sequences and of particular
characters. Later research addressed authorship attribution by looking at the word patterns
in anonymous literature and comparing them to similar patterns of known authors

(Mosteller and Wallace 1964).

By the early 1990s, much of computational-based language understanding and production
was stochastic, including parsing, part-of-speech tagging, reference resolution, and
discourse processing, usually using tools like the greatest likelihood measures of the
previous section (Jurafsky and Martin 2009). Many other areas of artificial intelligence,

especially machine learning, became more Bayesian-based. In many ways these uses of
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stochastic technology for pattern recognition were another instantiation of the behaviorist

tradition, as collected sets of patterns were used to condition recognition of new patterns.

Judea Pearl’s (1988) proposal for use of Bayesian belief nets (BBNs) and his assumption of
their links reflecting “causal” relationships (Pearl 2000) brought the use of Bayesian
technology to an entirely new importance. First, the assumption of these networks being
directed graphs - reflecting causal relationships - and disallowing cycles - no entity can
cause itself - brought a radical improvement in computational costs of such systems (Luger
2009, Chapter 5). Second, these same two assumptions made the BBN representation much
more transparent as a representational tool that could capture causal relations. Finally,
most all the traditional powerful stochastic representations used in language work and
machine learning, for example, the hidden Markov model in the form of a dynamic Bayesian

network (DBN), could be readily brought to this new representational formalism.

We next illustrate the BBN approach in several application domains. In the diagnosis of
failures in discrete component semiconductors (Stern et al. 1997, Chakrabarti et al. 2005)
we have an example of creating the greatest likelihood for hypotheses across expanding
data sets. Consider the situation of Figure 10, presenting two failures of discrete component

semiconductors.
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Figure 10. Two examples of discrete component semiconductors, each exhibiting the “open”
failure.

Figure 10 shows two examples of a failure type called an “open”, or the break in a wire

connecting components to others in the system. For the diagnostic expert, the presence of a
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break supports a number of alternative hypotheses. The search for the most likely
explanation for a failure broadens the evidence search: How large is the break? Is there any
discoloration related to the break? Were there any sounds or smells on its happening? What

are the resulting conditions of the components of the system?

Driven by the data search supporting multiple possible hypotheses that can explain the
“open”, the expert notes the bambooing effect in the disconnected wire, Figure 10a. This
suggests a revised greatest likelihood hypothesis that explains the open as a break created
by metal crystallization that was likely caused by a sequence of low-frequency high-current
pulses. The greatest likely hypothesis for the open of the example of Figure 10b, where the
break is seen as balled, is melting due to excessive current. Both of these diagnostic
scenarios have been implemented by an expert system-like search through an hypothesis
space (Stern et al. 1997) as well as reflected in a Bayesian belief net (Chakrabarti et al.
2005). Figure 11 presents a Bayesian belief net (BBN) capturing this and other related

diagnostic situations.

The BBN, without new data, represents the a priori state of an expert’s knowledge of an
application domain. In fact, these networks of causal relationships are usually carefully
crafted through many hours working with human experts’ analysis of known failures. Thus,
the BBN can be said to capture a priori expert knowledge implicit in a domain of interest.
When new (a posteriori) data are given to the BBN, e.g., the wire is “bambooed”, the color of
the copper wire is normal, etc, the belief network “infers” the most likely explanations
within its (a priori) model, given this new information. There are many inference rules for
doing this (Luger 2009, Chapter 9). We describe one of these, loopy belief propagation
(Pearl 1988), later. An important result of using the BBN technology is that as one
hypothesis achieves its greatest likelihood, other related hypotheses are “explained away”,

i.e., their likelihood measures decrease.

In a second example, (Chakrabarti et al. 2005) analyze a continuous data stream from a set
of distributed sensors. In monitoring of the “health” of the transmission of Navy helicopter
rotor systems, a steady stream of sensor readings is analyzed; this data consists mainly of
temperatures, vibrations, and pressure from the various components of the transmission
running across time. An example of this data can be seen in the top portion of Figure 12,

where this continuous data is broken into discrete and partial time slices.
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Figure 11. A Bayesian belief network representing the causal relationships and data points
implicit in the discrete component semiconductor domain. As data is “discovered” the (a priori)
probabilistic hypotheses change and suggest further search for data.

A

A Fourier transform? is then used to translate these signals into the frequency domain, as
shown on the left side of the second row of Figure 12. These frequency readings were
compared across time cycles to diagnose the running health of the rotor system. The
method for diagnosing rotor health is by using the auto-regressive hidden Markov model (A-
RHMM) of Figure 13. The observable states of the system are made up of the sequences of
the segmented signals in the frequency domain while the hidden states are the imputed

health states of the helicopter rotor system itself, as seen in the lower right of Figure 12.

The hidden Markov model (HMM) technology is an important stochastic technique that can
be seen as a variant of a dynamic BBN. In the HMM, we attribute values to states of the
network that are themselves not directly observable. For example, the HMM technique is
widely used in the computer analysis of human speech, trying to determine the most likely
word uttered, given a stream of acoustic signals. Training this system on streams of normal
transmission data allows the system to make the correct greatest likelihood measure of

failure when breakdown occurs. The Navy supplied data both for the normal running
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system as well as for transmissions that contained seeded faults (Chakrabarti et al. 2007).
Thus, the hidden state S¢ of the A-RHMM reflects the greatest likelihood hypothesis of the

state of the rotor system, given the observed evidence Oy at time t.

A final computational example of determining the greatest likelihood measure for
hypotheses considers the model-calibration problem itself. What can be done if the data
stream cannot be interpreted by the present state’s (a priori) model? The problems we have
considered to this point simply ask, what is the greatest likelihood hypothesis, given a
model and sets of data across time. Now we ask what we can be done when there is no

interpretation of the model that fits the current data.
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Figure 12. Real-time data from the transmission system of a helicopter’s rotor. The top
component of the figure presents the original data stream and an enlarged time slice. The lower
left figure is the result of the Fourier transform of the time slice data (transformed) into the
frequency domain. The lower right figure represents the hidden states of the helicopter rotor
system.

Figure 13. The data of Figure 12 is processed using an auto-regressive hidden Markov model. States
O represent the observable values at time t. The S¢ states represent the hidden “health” states of
the rotor system, {safe, unsafe, faulty} at time t.

Figure 14 presents an overview of this situation, where, on the top row, a cognitive model
either offers an interpretation of data or it does not. Piaget has described these situations as

instances of assimilation and accommodation. Either the data fits, possibly requiring the
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model to slightly adjust its probabilistic expectations (assimilation), or the model must
reconfigure itself, possibly adding new variable relationships (accommodation). The lower
part of Figure 14 presents the COSMOS architecture (Sakanenko et al. 2009) that addresses
both these tasks.

Although this model-calibration algorithm has been tested in complex tasks such as that of
pumps, pipes, filters, and liquids, complete with real-time measures of pressure, pipe flow,
filter clogging, vibrations, and alignments (Sakhanenko et al. 2009), we describe the model

calibration idea in the simpler situation of home burglar alarms.

Suppose we have developed a probabilistic home burglar alarm and monitoring system. We
then deploy many of these alarm systems in a certain city and test their outputs across
multiple situations, in particular monitoring these systems for false positive predictions.
Suppose this system is deployed successfully over four winter months where we learn the
probabilistic values for the outputs of alarm monitoring system. The day-to-day deployment
produces data that are used to condition the system. After a time of training the new daily

data is easily assimilated into the model and the resulting trained system successfully
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Figure 14. Cognitive model use and failure, above; a model-calibration algorithm, below, for
assimilation and accommodation of new data.

We then find ourselves in the spring months of the year where we encounter multiple fierce
desiccating winds that shake the components - those mounted on doors and windows - of

the alarm systems and dry out their connections. When our monitoring system sees many
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more false positive results that no longer fit comfortably into the previously trained system
it is necessary to readjust the probabilities of the model and add new parameters reflecting
the spring wind conditions. The result will be a new model for spring monitoring

(Sakhanenko et al. 2008).

Furthermore, when the alarm systems are sold in new environments it must be determined
which of its library of models will best fit that new situation, or whether a new model must
be discovered. If there are other important variables, such as many small earthquake

tremors, this variable will probably also need to be modeled.

In this paper we considered the problem of model induction as a search for a most likely
explanation, given a set of data. This, as noted, can be represented using Bayes theorem and
a search for greatest likelihood parameters. There are many other examples in the literature
of reasoning to the greatest likelihood for diagnostic and prognostic systems, for example,
in computer based speech understanding where, with a series of n-grams, sounds and/or
words, are tested against the contents of large corpora of language data. In these situations
a probabilistic form of dynamic programming, often referred to as the Viterbi algorithm
(Jurasky and Martin 2009), process continuous streams of data to produce greatest
likelihood results, given current data. Another example is researchers attempting to
determine what cortical connectivity, represented as a dynamic Bayesian network, might

best explain sets of fMRI images (Burge et al 2010).

A further approach to model inductive inference was proposed by Pearl (2000) with his
Calculus of Interventions, explored further in research with his students (Tian and Pearl
2001). In this approach, researchers force variables in a model to take on specific values, to
determine causal relationships within that model. A simple example of this approach would
be an infant throwing things from her highchair to see which items bounced best (or upset
her father most). Although the problem of model induction in general is intractable, in many
knowledge intensive situations useful new models can be created, using ideas such as
calculated interventions and the greedy local search of constraints located near the points

of model failure (Rammohan 2010).

In the final section we offer some conjectures about possible cognitive architectures that

can support the computational calculation of the greatest likelihood schemas.
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7. Conclusion: An Epistemological Stance

Turing’s test for intelligence was totally agnostic both as to what the computer was
composed of or the language used to make it run. It simply required the responses of the
machine to be roughly equivalent to the responses of humans in the same situations.
Tuting’s test was not about whether the computer was made of vacuum tubes, flip-flops,
protoplasm, or even tinker toys, but what it could produce. To build Turing’s computational
system has, however, required researchers to commit to specific data structures and search

algorithms.

We have seen that researchers building out Turing’s machine have also committed to
various epistemological stances, most notably forms of empiricist, rationalist, or

structuralist-stochastic traditions.

Although Turing is again agnostic about any sort of epistemological stance, an important
subset of Al researchers since Turing have taken up such a stance, and see it as a critical
component of their creating intelligent artifacts. Notable among these are Newell and Simon
(1976) with their symbol system hypothesis and Sejnowski’s (Meltzoff et al 2009) work in
neural networks and computational neuroscience. This paper suggests that that the

structuralist-stochastic tradition could have a similar role in modeling human cognition.

There now exist a number of algorithms created for real-time integration of posterior
information and its propagation into (a priori) stochastic models as well as many
computational inference rules for calculating the greatest likelihood in probabilistic
modeling situations. An attractive choice among these is the loopy belief propagation
algorithm (Pearl 1989) as it reflects a system constantly iterating towards equilibrium, or
equilibration, as Piaget might describe it. A cognitive system can be in a priori equilibrium
with its continuing states of learned diagnostic knowledge. When presented with the novel
information characterizing a new diagnostic situation, this a posteriori data perturbs the
equilibrium. The cognitive system then iterates by sending “messages” between near-
neighbors’ prior and posterior components of the model until it finds convergence or

equilibrium, often with the support for a particular greatest likelihood hypothesis.

[teration of this system can be (intuitively) seen as integrating small perturbations of the
values of neighbors in the system, aimed at achieving compatible equilibrating measures,

until a stable state of the system is reached. The iteration process itself can be visualized as
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continuous message passing between near neighbors (“I've got these values; what are
yours? Let’s each make slight adjustments moving toward a probabilistic compatibility”)
attempting to determine the most appropriate set of values for the entire system, once the a

posteriori information is added to the previous a priori equilibrium.

This iteration process can also be seen as a method to account for incomplete or missing
information in a situation, given a priori equilibrium. The iterative message passing
suggests most likely values for missing, unobservable, or obscured data, given the state of a
priori equilibrium. Sakhanenko et al. (2008) show this iterative process to be a form of
expectation-maximization (EM) learning (Dempster et al. 1977). Furthermore, we suggest
that a loopy belief propagation algorithm iterating to equilibrium when the original a priori
belief state encounters a posteriori stimulation reflects an essential nexus between the
embodied mind/brain and its environment that is compatible with current epistemological
positions, including Nozick and tracking (1981), the content externalism and knowledge as

evidence of Williamson (2000), as well as the anti-dualism of Rorty (1999).

In concluding, note that we are not claiming the human abductive system is doing loopy
belief propagation on an explicit graphical model when it moves to finding equilibration
through interpreting a posteriori information. This type of a reduction of cognitive
phenomena to computational representations and algorithms has long been questioned by

researchers including Anderson (1978, see representational indeterminacy).

The claim of this paper is that graphical models coupled with the loopy belief propagation
algorithm can offer a sufficient account of the cortical computation of the greatest likelihood
measure given a priori cognitive equilibrium and the presentation of novel stimuli. Further,
we suggest that this greatest likelihood calculation is cognitively penetrable, supports an
epistemological stance on understanding the phenomena of human diagnostic and
prognostic reasoning, and thus addresses the larger question of how agents can come to

understand their own acts of interpreting a complex and often ambiguous world.

At least as important as Turing’s 1950 paper, his work from the 1930s through the early
1950s created the foundations for and suggested some of the limitations of the modern
sciences of computing, artificial intelligence, as well as computational neuroscience. Turing

answered Hilbert’s challenge in the famous Entscheidungsproblem by formally specifying

31



what it meant to compute. Further, Turing, in proposing the halting problem, following the
arguments of Godel (1931), demonstrated that there were queries within any system as rich
as Peano’s axioms, which a computing machine could not answer (Davis et al. 1976). Finally,
along with Alonzo Church (1941), Alan Turing demonstrated that his Turing Machine was
equivalent to other models of computation and offered a maximally powerful example of
what can be computed. We await the answer as to whether the human processor falls within
the theoretical limits of this Church-Turing thesis. Thanks to Alan Turing, however, we can
now, coherently, address these questions. We end with the still cogent quote from Turing,

the final sentence of his 1950s challenge first proposed in Mind:

We can see only a short distance ahead, but we can see plenty there that needs to be done.

Alan Turing, Computing Machinery and Intelligence, Mind, 1950.

1The Fourier transform (often abbreviated FT) is an operation that transforms one complex-valued
function of a real variable into another. In such applications as signal processing, the domain of the
original function is typically time and is accordingly called the time domain. The domain of the new
function is frequency, and so the Fourier transform is often called the frequency domain representation of
the original function. It describes which frequencies are present in the original time function. The term
Fourier transform refers both to the frequency domain representation of a function and to the process or
formula that "transforms" one function into the other. Fourier Transform, Wikipedia, the free
encyclopedia, http://en.wikipedia.org/wiki/Main _Page, 9/9/9.

Acknowledgments: The equations developed in Section 5 may be found in many texts introducing
probabilistic methods. For further support for the integration of the empiricist and rationalist traditions in
cognitive psychology see Piaget’s Structuralism (1970). The hypothesis that dynamic Bayesian networks
can model a structuralist epistemological stance is developed further elsewhere (Author 2012). This
research was supported in part by the National Science Foundation, the Office of Naval Research, and the
Air Force Research Laboratory.
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