
Compiling DNA strand displacement reactions using a
functional programming language

Matthew R. Lakin1,2 and Andrew Phillips1

1 Biological Computation Group, Microsoft Research, Cambridge, CB1 2FB, UK
2 Department of Computer Science, University of New Mexico, NM 87131, USA

mlakin@cs.unm.edu, andrew.phillips@microsoft.com

Abstract. DNA nanotechnology is a rapidly-growing field, with many poten-
tial applications in nanoscale manufacturing and autonomous in vivo diagnostic
and therapeutic devices. As experimental techniques improve it will become in-
creasingly important to develop software tools and programming abstractions, to
enable rapid and correct design of increasingly sophisticated computational cir-
cuits. This is analogous to the need for hardware description languages for VLSI.
In this paper we discuss our experience implementing a domain-specific language
for DNA nanotechnology using a functional programming language. The ability
to use abstract data types to describe molecular structures and to recurse over
these types to derive the various interactions between structures was a major rea-
son for the use of a functional language in this project.

Keywords. DNA strand displacement, process calculus, biological modelling.

1 Introduction

DNA is an attractive engineering material for controlling matter at the nanoscale, as
it is robust and undergoes predictable, sequence-specific, programmable interactions.
Previous work has shown that synthetic DNA circuits can be used to implement com-
putational systems including digital logic circuits [1], neural networks [2] and game-
playing automata [3]. In this setting, DNA is used both as an information carrier and
as an engineering material, simultaneously. Furthermore, DNA is inherently biocom-
patible, meaning that DNA-based computing devices could feasibly operate in living
cells, autonomously monitoring the cell state and administering appropriate treatment
for diseases at the cellular level [4].

As the scale and complexity of DNA-based computing devices continues to grow,
tool support will become ever more important. A key goal is to formalize the structures
and interactions of DNA molecules, so that their behaviour may be analyzed [5]. To
this end we developed a domain-specific language known as DSD [6], which is a pro-
cess calculus for describing a particular class of DNA circuits that interact via strand
displacement reactions [7]. Prior to the development of the DSD language, strand dis-
placement circuits were largely designed by hand, which was time-consuming and not
scalable. The key aspects of the DSD language design are its syntax for representing
a particular class of DNA structures, and the operational semantics which models the
real-world interactions between those structures. We implemented a compiler, stochas-
tic and deterministic simulators and state space analysis tools for the DSD language in

(a) Abstract double
helix structure

Divide sequences into
functional domains

(i) (ii)

(iii) (iv)

Input strand

Gate

Unreactive
strand Output strand

(b)

ATAAGG GGGTTTTGTTTTGTTTTGTT

CCCAAAACAAAACAAAACAA

CC
CT
TT
TC
TA
AA
CT
AA
AC
AA

x

x*

y

t*

xt y

x

t*

y

x* y*

u

u*

x

t*

y

x* y*

u

u*

x

y

t

x

t*

y

x* y*

u

u*

t x

y

y u

t*

y

x* y*

u

u*

t x
y

t*

y

x* y* u*

t x

Fig. 1. (a) DNA secondary structure abstraction. (b) Basic strand displacement reactions.

F# [8], and in this paper we describe the experience of modelling and compiling DNA
reactions in a functional language.

2 DNA strand displacement

DNA strand displacement [7] is a robust mechanism for engineering sequence-specific
interactions between DNA molecules. As shown in Figure 1a, we use the secondary
structure abstraction of DNA structure, which ignores the double helical structure and
absolute positions of the molecules and represents the relative positions of the strands
by parallel lines, with arrowheads denoting strand orientations. Instead of dealing with
nucleotide sequences (G, A, T , C) we define domains as shorthands for particular finite
sequences. We write x∗ for the complement of the domain x, which is the domain that
binds to x. This is defined by the standard Watson-Crick base-pairing rules for DNA
(G↔ C, A↔ T). We assume that domains have been chosen to be non-interfering,
so that each domain only binds to its complement. Domains are divided into toeholds
(drawn in black in figures and denoted by a caret in the text), which are sufficiently
short that they bind reversibly to their complements, and long domains (drawn in grey
in figures), which are sufficiently long that they do not spontaneously unbind from their
complements. Toeholds are identified by a caret, for example tˆ and tˆ∗.

Figure 1b illustrates the fundamental reactions involved in DNA strand displace-
ment, in which a single strand of DNA interacts with a multi-strand complex, which we
call a gate. In reaction (i), the input strand binds reversibly to the gate via the toehold
tˆ. The next long domain on the input strand matches the neighbouring domain on the
gate structure, which allows the remainder of the input strand to continue binding to the
gate across the x reaction, as in the strand displacement reaction (ii). In this reaction,
the input strand completely displaces another strand from the gate. (We refer to this
displaced strand as unreactive because it contains no toeholds, and we require that the
only exposed complementary domains are toeholds.) Since the remaining domains also
match, the input strand can displace the y domain from the input gate, in a reversible
branch migration reaction (iii). Finally, when the output strand is only bound to the gate
by the toehold uˆ, the output strand may unbind, as in reaction (iv), which is reversible
because the output strand may rebind to the gate via the exposed toehold uˆ.

Upper([Long("4",false), Toe("5",false)]) : strand

LowerJoin(Seg([Long("1",false)],[],[Long("2",false)],[],[]),
 Seg([Long("6",false)],[],[Toe("3",false),Long("4",false)],
 [],[Toe("5",true)])) : gate

(a)

3

3* 4* 5*2*

42

1 6

=
2*

2

1

3

3* 4* 5*

4

6

Join

(b)

4 5

Fig. 2. DNA strand and gate structures, and their translation to abstract data types. Examples are
from [9]. (a) An upper strand. (b) A gate made by joining two segments along their lower strand.

Despite their apparent simplicity, strand displacement reactions like those outlined
in Figure 1b are capable of rich behavior. Since the output strand produced by one strand
displacement reaction may serve as the input to another reaction, strand displacement
systems may be scaled up to produce more complex circuits. Our goal is to formalize
these structures and their reactions, at various levels of detail.

3 Modelling DNA structures

We consider the class of DNA structures introduced in [6]: either single strands or
multi-strand gates. For user convenience, we distinguish between upper and lower
strands. A gate is made up of one or more segments, which consist of a double-stranded
section of one or more complementary domains and possible single-stranded overhang-
ing regions. A segment is connected to its neighbour by joining either the upper or the
lower strand. These structures are translated to the following ML data types:

type domain = Toe of (string * bool) | Long of (string * bool)
type strand = Upper of domain list | Lower of domain list
type segment = Seg of domain list * domain list * domain list

* domain list * domain list
type gate = Single of segment

| LowerJoin of segment * gate
| UpperJoin of segment * gate

In the case of domains, the string represents the name of the domain and the bool
represents whether that domain is complemented. The translation of DNA structures
into these data types is illustrated in Figure 2. Note that if two segments are joined
across an overhang, then there are multiple ways to express the resulting structure:
hence the representation is not unique. Therefore, we normalize structures to a common
representation by gathering overhangs on joining strands, using the following functions

let normLower Seg(L1,L1’,S1,R1,R1’) Seg(L2,L2’,S1,R2,R2’)
= (Seg(L1,L1’,S1,R1,(R1’@L2’)),Seg(L2,[],S1,R2,R2’))

of type segment -> segment -> (segment * segment), and a corresponding func-
tion normUpper for upper strand joins. By applying the appropriate normalization func-
tion to each segment join in the gate structure, we obtain a canonical gate representation.

(a)

(b)

+

3

3* 4* 5*

4

6

5

4

3

3* 4* 5*2*

42

1 6

3

3* 4* 5*

4

6

4 5

4 5

+

3

3* 4* 5*2*

42

1 6

5
4

Fig. 3. Enumerating DNA reactions, using the example species from Figure 2. (a) An upper strand
binding to a single segment. (b) An upper strand binding to a multi-segment gate, which is in-
ferred from the segment-level interaction.

4 Compiling DNA reactions

To analyze the dynamic behavior of DNA strand displacement systems it is necessary
to enumerate the interactions between the species. We achieve this by defining a com-
piler that takes a set of initial DNA species as input and produces the set of all possible
generated species and all possible reactions that could occur. This enables the dynamic
behaviour of a strand displacement system to be simulated before one attempts a labo-
ratory implementation. We begin by defining a type for reactions:

type species = Strand of strand | Gate of gate
type reaction = Reac of species list * float * species list

The structures of the abstract syntax trees for the DNA strands and gates guide the defi-
nition of the functions that enumerate reactions—consider the problem of enumerating
all possible reactions between a strand and a gate. A free upper strand will only bind
to the exposed lower single-stranded parts of a gate, and only then if a complementary
pair of toeholds are present. As in the definition of the structure normalization func-
tion described above, the basic approach here is to write a “segment-level” compilation
function that enumerates all possible ways that a strand can interact with a particular
segment:

strandBindsToSegment : strand -> segment -> segment list

This function returns a list of all segments that could result from the binding of the
strand in question to the segment, as shown in Figure 3a. Using a custom map-like
functional that collects all the segments that result from the binding of a particular
strand at any point along the gate struture, we can define a compilation function that
produces all possible reactions between the strand and the gate, as shown in Figure 3b:

strandBindsToGate : strand -> gate -> reaction list

Note that these reactions will produce a new gate in which the incoming strand is just
bound by the toehold, since this function only considers the binding reaction.

The unimolecular reactions are strand unbinding, branch migration and strand dis-
placement. These can be enumerated similarly, using segment-level compilation func-
tions that are then mapped across the gate structure.

strandUnbindings : segment -> (strand * segment) list
branchMignUpper : segment -> segment -> (segment * segment) option
strandDispUpper : segment -> segment -> (segment * segment) option

Strand unbinding reactions can be identified at the single segment level, but branch
migration and strand displacement reactions occur across the boundary between two
neighbouring segments, hence the branchMignUpper and strandDispUpper func-
tions require two segments as arguments. Note that we have only presented signatures
for functions to calculate branch migration and strand displacement reactions on the
upper strand of a gate. This is because the set of possible DNA reactions is closed un-
der a “mirror” operation which swaps the top and bottom strands, so we only need to
define enumeration functions for the top strand and use mirroring to check for possible
reactions on the bottom strand.

To enable modelling at various levels of detail it is desirable to compile reactions at
different levels of abstraction, defined in [6]:

type absLevel = Detailed | Finite | Default | Infinite

We achieve this by categorizing the classes of reactions as fast or slow, depending on
the desired level of abstraction. Strand binding is always a slow reaction, and any fast
reactions that may occur after a slow reaction are simply merged with the slow reaction
to produce a single reaction. In all but the most detailed levels of abstraction, branch
migration reactions (reaction (iii) from Figure 1b) are assumed to happen so quickly
that we use a structural congruence that identifies gates up to branch migration.

In addition, we have implemented reaction rules to enable two gates to interact
end to end, forming linear heteropolymers that may be used to design DNA strand
displacement stack machines [10, 11], and to allow modelling of “crosstalk” reactions
to study failure modes of DNA circuits [6].

5 Discussion

While the use of domain-specific languages for formal modelling of biological pro-
cesses is a well-established technique [12], the design of engineered biochemical sys-
tems can also benefit from domain-specific languages for specification and simulation.
In addition to DSD, other such languages include GEC [13] and gro [14]. We believe
that this is a fruitful new direction for research in programming languages.

Our experience developing the DSD compiler in F# convinced us that functional
languages are an ideal implementation vehicle for this kind of domain-specific lan-
guage, since in DNA nanotechnology, structure and function are closely linked. Base-
level representations of DNA secondary structure based on strings [15] or numeric en-
codings [16] are often too detailed, meaning that some abstraction of structures into
high-level features is typically required. Abstract data types provide a convenient means
of representing DNA secondary structures at the level of domains, since each DNA
structure is reflected in the structure of the abstract syntax tree of the corresponding
value. Furthermore, the ability to pattern-match on these values and recurse over them
allows concise definitions of the structure-function relationship.

The DSD language has been used to develop a number of DNA strand displacement
systems [1, 2, 17]. In particular, the strand displacement digital logic circuit that was
used to compute the square roots of four-bit binary numbers [1] consists of 74 initial
species (a total of 130 DNA strands). This illustrates the scale of systems that can be
modelled using the DSD language and constructed in the laboratory. Our implemen-
tation can be used online via the Visual DSD web server [18], which is accessible at
http://research.microsoft.com/dna/ with accompanying documentation.

References

1. L. Qian and E. Winfree. Scaling up digital circuit computation with DNA strand displace-
ment cascades. Science, 332:1196–1201, 2011.

2. L. Qian, E. Winfree, and J. Bruck. Neural network computation with DNA strand displace-
ment cascades. Nature, 475:368–372, 2011.

3. M. N. Stojanovic and D. Stefanovic. A deoxyribozyme-based molecular automaton. Nat.
Biotechnol., 21(9):1069–1074, 2003.

4. Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro. An autonomous molecular com-
puter for logical control of gene expression. Nature, 429:423–429, 2004.

5. M. R. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska, and A. Phillips. Design and analysis
of DNA strand displacement devices using probabilistic model checking. JRS Interface,
9(72):1470–1485, 2012.

6. M. R. Lakin, S. Youssef, L. Cardelli, and A. Phillips. Abstractions for DNA circuit design.
JRS Interface, 9(68):470–486, 2012.

7. D. Y. Zhang and G. Seelig. Dynamic DNA nanotechnology using strand-displacement reac-
tions. Nat. Chem., 3(2):103–113, Feb 2011.

8. D. Syme, A. Granicz, and A. Cisternino. Expert F#. Springer, 2008.
9. D. Y. Zhang, A. J. Turberfield, B. Yurke, and E. Winfree. Engineering entropy-driven reac-

tions and networks catalyzed by DNA. Science, 318:1121–1125, 2007.
10. L. Qian, D. Soloveichik, and E. Winfree. Efficient Turing-universal computation with DNA

polymers. In Y. Sakakibara and Y. Mi, editors, DNA16 Proceedings, volume 6518 of LNCS,
pages 123–140. Springer, 2011.

11. M. R. Lakin and A. Phillips. Modelling, simulating and verifying Turing-powerful strand
displacement systems. In L. Cardelli and W. Shih, editors, DNA17 Proceedings, volume
6937 of LNCS, pages 130–144. Springer, 2011.

12. C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of a stochastic name-passing
calculus to representation and simulation of molecular processes. Information Processing
Letters, 80:25–31, 2001.

13. M. Pedersen and A. Phillips. Towards programming languages for genetic engineering of
living cells. JRS Interface, 6(Suppl. 4):S437–S450, 2009.

14. S. S. Jang, K. T. Oishi, R. G. Egbert, and E. Klavins. Specification and simulation of synthetic
multicelled behaviors. ACS Synthetic Biology, 1:365–374, 2012.

15. P. Hogeweg and B. Hesper. Energy directed folding of RNA sequences. Nucleic Acids Res.,
12(1):67–74, 1984.

16. M. L. Fanning, J. Macdonald, and D. Stefanovic. ISO: numeric representation of nucleic
acid form. In Proceedings of ACM-BCB 2011. ACM, 2011.

17. Y.-J. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli, D. Soloveichik, and G. Seelig.
Programmable chemical controllers made from DNA. Nat. Nanotechnol., 41(1):e33, 2013.

18. M. R. Lakin, S. Youssef, F. Polo, S. Emmott, and A. Phillips. Visual DSD: a design and anal-
ysis tool for DNA strand displacement systems. Bioinformatics, 27(22):3211–3213, 2011.

