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Abstract. In this appendix, we justify the reduction of the nonlinear ODE sys-
tem describing three coupled deoxyribozyme oscillators. We show that the kinetic
simulation of the deoxyribozime chemistry agrees with the result of the labora-
tory experiment. We make simplifying assumption that help us reduce a system
of nine ODEs into three linear ODEs that is more amenable to mathematical anal-
ysis. We show that the reduced ODEs preserves the essentially properties of the
original nonlinear ODEs and we use it to perform stability analysis on the sys-
tem’s dynamics.

A Kinetics and Oscillation in a Network of Deoxyribozyme Logic
Gates

The fundamental units of our deoxyribozyme design are input, gate, substrate, and prod-
uct. We denote the concentrations of these species by symbols [Ii], [Gi], [Si], [Pi], where
the subscript i is used as index to show compatible interacting reactants whenever we
have more than one of each type of species in our reactions. The gate molecules become
active in the presence of input molecules and cleave the substrate molecules [3]. As a
result, substrate molecules turn into product molecules.

The reaction of gates and substrates and hence production of products can be de-
scribed by d[P]

dt = β [S][G], where β = 5× 10−7 nM−1 s−1 is the reaction rate constant
measured experimentally [1]. Figure 1a depicts the simulation of the actual experiment
where 250 nM of gate molecules and 2500 nM of substrate molecules interact to pro-
duce products in the presence of different concentrations of input molecules (given in
nM). For [I] > [G], we observe that there is nonlinear growth in product concentration
with a rate that is nearly independent of [I]. This simulation result agrees closely with
the lab experiment reported in [1].

The effect of input molecules on gate molecules is very rapid, compared with the
other reactions in the system. Since the only purpose of this reaction is to make the
gates active we ignore this activation altogether and throughout this paper whenever we
write [G] we mean gate molecules that have been activated.
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Fig. 1: Deoxyribozyme reaction rate and mixing behavior in a microfluidic reactor.(a) The simu-
lated product concentration over time for different input concentrations (given in nM). The result
agrees very well with the experimental results in [1]. (b)The calculated homogeneity of reactor
content as the reactor goes through 15 s charging phase followed by a 15 s mixing phase [2].

Based on the results in [1], Farfel and Stefanovic [2] proposed an oscillator using
three coupled deoxyribozyme NOT gates. In this design, one compatible pair of gate
and substrate react and their products suppress the reaction of another pair of gate and
substrate. For steady dynamics, there is an ongoing supply of new gates and substrates
into the reactor, as well as an outflow of the reactor content to keep the volume constant.
In the charging phase the new supplies come into the reaction chamber and old contents
leave the chamber. Then influx and efflux stop and the mixing phase starts. During
this phase the molecular species mix to create homogeneous solution. The reactions
takes place as soon as the species are mixed. The charging and mixing phase repeat
throughout the length of the simulation.

To describe the system, we need the influx of three different gate species and three
corresponding substrate species denoted by Gm
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gates only binds to the substrate with matching index. We denote the corresponding
concentration of interacting gates, substrates, and products in the reaction chamber by
[Gi], [Si], [Pi]. When explicitly talking about the concentrations at time t, we use Gi(t),
Pi(t), and Si(t). The total efflux rate, solution homogeneity, and chamber volume are
given by constants E, H, and V . The system is then described by the following system
of Ordinary Differential Equations (ODEs):



d[G1]
dt =

Gm
1 (t)−E(t)[G1]

V

d[G2]
dt =

Gm
2 (t)−E(t)[G2]

V

d[G3]
dt =

Gm
3 (t)−E(t)[G3]

V

d[P1]
dt = βH(t)[S1]max(0, [G1]− [P3])− E(t)[P1]

V

d[P2]
dt = βH(t)[S2]max(0, [G2]− [P1])− E(t)[P2]

V

d[P3]
dt = βH(t)[S3]max(0, [G3]− [P2])− E(t)[P3]

V

d[S1]
dt =

Sm
1 (t)
V −βH(t)[S1]max(0, [G1]− [P3])− E(t)[S1]

V

d[S2]
dt =

Sm
2 (t)
V −βH(t)[S2]max(0, [G2]− [P1])− E(t)[S2]

V

d[S3]
dt =

Sm
3 (t)
V −βH(t)[S3]max(0, [G3]− [P2])− E(t)[S3]

V

(1)

For the simulation of this system E(t)= 0.12 nL s−1, Gm
i = 1.7940×10−7 nmol s−1,

Sm
i = 7.2921×10−6 nmol s−1, and V = 7.54 nL. The reaction rate constant is the same

for all the species and has the same value described before. Homogeneity of the solution
during the mixing phase H(t) should be computed using the method in [2]. Figure 1b
shows the calculated H(t) during the simulation. However, this calculation is very ex-
pensive. It is possible to replace the result of the calculation by an average value of the
calculated homogeneity H(t) = 0.7849 as a constant. Note that because of the symme-
try in the equations, for the oscillation to begin, we should break the symmetry in the
initial value of the one of the species by giving it a different value. For our simulation
we chose the following initial value [P1] = 1000 nM. The result of this simulation is
shown in Figure 2 and matches the result reported in [2].
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Fig. 2: The products and the substrates behavior in the reactor. (a) shows the oscillation in product
concentrations in the reactor. (b) shows the substrate concentration in the reactor. The homogene-
ity is constant. These results match the original implementation in [2].



B Reduced Oscillator Model

In order to have better analytical grasp of the deoxyribozyme oscillator model discussed
above, we can reduce the ODE system in Equation 1 into a form amenable to mathemat-
ical manipulation. Several of the details in the way simulation was previously done are
related to the basic setup of the laboratory experiment initially conducted. First, the two
phase charging and mixing operation was conceived because both gates and substrate
flow into the microfluidic reaction chamber with a laminar flow. As a result the solu-
tion will not be well mixed and the reaction will not take place as expected. Therefore,
separate charging and mixing phases were proposed in which a specific mixer that is
designed to operate within the microfluidic reaction chamber mixes the solution within
the chamber before different reactants can interact. However, in current setup gates are
not consumed and their only role is to cleave the substrate into products. Therefore, we
can assume a chamber in which gates are immobilized in the chamber. This eliminates
the need for gate influx and separates the charging and mixing phases. In addition, we
can adjust the gate and substrate concentration in a way that lets us safely remove the
max function from Equation 1. This allows us to replace several of the variables with
constants. We choose h = H(t), g = [Gi]. Moreover, because we eliminated the two-
phase operation, the fluctuation in the substrate concentration (Figure 2b) now turns
into a steady-state concentration which gives us a new constant s = [S]. The list of all
the new constants and rates to be used in the reduced model is given in Table 1.

V 7.54 nL
E(t) 8.8750×10−2 nL s−1

β 5×10−7 nM s−1

h 0.7849
[S1], [S2], [S3] 6×104 nM
[G1], [G2], [G3] 2.5×103 nM

Table 1: New constants and rates for the reduced model.

After grouping all the constants together our new reduced model turns into a first-
order linear ODE system given by Equation 2. The new constants are given in List 2.
Since all the ci and the bi values are equal because of the symmetry of our model, we
can suppress the indices and write c and b instead.

d[P1]
dt = b− c[P3]− e[P1]

d[P2]
dt = b− c[P1]− e[P2]

d[P3]
dt = b− c[P2]− e[P3]

(2)

The fixed-point of the products in Equation 2 can be easily calculated by setting d[Pi]
dt = 0

and solving for [Pi] as given in Equation 3:



new constant old variables value
e E(t)

V 1.1770×10−2 ≈ 1.175×10−2

c1 βh(t)[S1] 2.35×10−2

c2 βh(t)[S2] 2.35×10−2

c3 βh(t)[S3] 2.35×10−2

b1 c1[G1] 5.88675×101

b2 c2[G2] 5.88675×101

b3 c3[G3] 5.88675×101

Table 2: New grouped constants used in Equation 2. We calculated these using the values in
Table 1.

[P1]
∗ = c[P3]

∗−b
−e = 1670

[P2]
∗ = e[P3]

∗−b
−c = 1670

[P3]
∗ = −b(ec−c2−e2)

c3−e3 = 1670

(3)

The Jacobian of this system is given by Equation 4:

J =


d[P1]
d[P1]

d[P2]
d[P1]

d[P3]
d[P1]

d[P1]
d[P2]

d[P2]
d[P2]

d[P3]
d[P2]

d[P1]
d[P3]

d[P2]
d[P3]

d[P3]
d[P3]

=

−e −c2 0
0 −e −c3
−c1 0 −e

=

−e −c 0
0 −e −c
−c 0 −e

 , (4)

where eigenvalues are:

λ1 = c
2 − e− (

√
3c)
2 i,

λ2 = c
2 − e+ (

√
3c)
2 i,

λ3 = −c− e.

(5)

Not all eigenvalues are zero or purely imaginary so the Poincare-Lyapunov theorem
holds and the system near its fixed-points approximately behaves like the linearized
system described by the Jacobian.

Existence of an imaginary part in λ1 and λ2 indicates oscillatory behavior of the
system. For c

2 > e, the oscillations grow and the system becomes chaotic whereas for
c
2 < e, the oscillations die out over time. For sustained oscillation, we need to set c

2 = e
as is the case in our reduction (cf. Table 2). One can also predict the period of the
oscillation as T = 2π

θ
, where θ is the coefficient of the imaginary part of the eigenvalues.

We can easily verify that this is in fact the correct period in the simulation of the original
model if the same values of the concentration for the reduced model are used. Figure 3
shows that the dynamics of oscillation in the reduced model and the original model are
essentially identical. This justifies using the mathematically tractable reduced model for
further analysis which we do in the the body of this paper.
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Fig. 3: Oscillation in the reduced model (solid line) versus the original model (dotted line).The ef-
flux used for the reduced model is constant in time and given by E(t) = 8.8750×10−11, whereas
the efflux used by the original model varies between the charging and the mixing phase and is
given by E(t) = 1.775× 10−10. The behaviors of the models match perfectly except for minor
fluctuation due to the switching between charging and mixing in the original model. The reduced
model preserves all essential aspects of the original model.
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