
Modular verification of DNA strand displacement

networks via serializability analysis

(APPENDICES)

Matthew R. Lakin1, Andrew Phillips2, and Darko Stefanovic1,3

1 Department of Computer Science, University of New Mexico
2 Biological Computation Group, Microsoft Research, Cambridge
3 Center for Biomedical Engineering, University of New Mexico

{mlakin,darko}@cs.unm.edu, andrew.phillips@microsoft.com

A Proof sketches for key results

A.1 Proof sketch for properties of trace rewriting

Proof (of Lemma 2). Assume that S `C t t0. By definition we get that S `C t.
If (CANCEL) was used to derive S `C t t0 then t has the form t1 :t2 :t3 and
t0 has the form t1 :t3, and furthermore we know that S

t1�! S

0 t2�! S

0. It fol-
lows immediately that S `C t1:t3, and hence that S `C t0 and finalC(S, t) =
finalC(S, t0), as required. On the other hand, if (SWAP) was used to derive S `C
t t0 then t has the form t1:t2:t3:t4 and t0 has the form t1:t3:t2:t4. Further-
more, we know that S `C t1:t3:t2, and finalC(S, t1:t3:t2) = finalC(S, t1:t2:t3).
Thus it follows that S `C t1:t3:t2:t4, and hence that S `C t0 and finalC(S, t) =
finalC(S, t0), as required. The cases for the remaining rules, (REFL) and (TRANS),
are straightforward. ut

A.2 Proof sketch for serializability

Proof (of Lemma 4). We assume that S `E t, i.e., that

S `E t1:[ra
1]:· · ·:tk�1:[ra

k�1]:tk :[ra
com]:tk+1:[ra

k+1]:· · ·:tn :[ra
n]:trest.

Since ra
com is the first commit reaction in t, all reactions prior to it must be re-

versible. Also, we note that the only species which can be shared between en-
codings are those of which the encodings are copy tolerant, and, because of the
stratified CRN property, a single reaction encoding cannot consume more fuel
or formal species than is necessary to complete an execution.

By assumption, we know that S `E t1:[ra
1] and S `E [ra

1]. We must show
that there exists t0

1 such that S `E t1:[ra
1] [ra

1]:t
0
1. We observe that t1 and

[ra
1] may conflict if t1 consumes n copies of some species x that is a reactant of

ra
1 , and subsequently returns at least one copy of x to the environment. In this

case, the minimum amount of x that could be present in the initial state is n,
as the copies of x returned to the environment by t1 can function as a reactant

of ra
1 . Since t1 is a trace of pre-commit reactions, in which formal species are

consumed by forward steps and re-emitted by backward steps, it follows from
Definition 14 that the encoding must revisit one of its previous states in order to
return a species to the environment. Therefore we can derive S `E t1 t0

1, for
some t0

1 which contains no backward steps. It follows that S contains sufficient
species to execute both t0

1 and ra
1 , and hence it follows that

S `E t [ra
1]:t

0
1:t2:[ra

2]:· · ·:tk�1:[ra
k�1]:tk :[ra

com]:tk+1:[ra
k+1]:· · ·:tn :[ra

n]:trest.

By repeated application of this argument we get that

S `E t [ra
1 , . . . , ra

k�1, ra
com]:t

0 :tk+1:[ra
k+1]:· · ·:tn :[ra

n]:trest,

where t0 = t0
1:· · ·:t0

k.
Now, ra

n is the last reaction in a complete execution of JaK, which means
that it must be a forward step. By Definition 14, forward steps after the commit
reaction only have fuels and intermediates as reactants, and by Definition 15 we
know that fuel and intermediate strands could potentially be shared with other
reaction encodings. However, by Definition 13 we know that if any reaction
in tn consumes a reactant x of ra

n, then that reaction must be from a copy of
reaction encoding which is in a state where it could consume x anyway, and
hence that copy must have its own copy of x present anyway. Hence, since we
know that ra

n can be executed directly after ra
n�1, we can move ra

n forward in the
reaction trace, to get

S `E t [ra
1 , . . . , ra

k�1, ra
com]:t

0 :tk+1:[ra
k+1]:· · ·:tn�1:[ra

n�1, ra
n]:tn :trest.

We now consider the subtrace [ra
n�1, ra

n]. In general, this trace could contain both
forward and backward steps in the JaK encoding, which means that these reac-
tions could also consume reactants which correspond to formal species. This
has the potential to cause a conflict if some reaction in tn�1 also consumed that
species. However, by Definition 14 we know that a formal species can only be
consumed by a post-commit reaction if that reaction is a backward step, and
this means that by the end of the subtrace [ra

n�1, ra
n], any formal species con-

sumed by a backward step will eventually be re-generated by a later reaction in
the subtrace. Hence, tn�1 and [ra

n�1, ra
n] can be swapped using the (SWAP) from

Definition 11, and we get that

S `E t [ra
1 , . . . , ra

k�1, ra
com]:t

0 :tk+1:[ra
k+1]:· · ·:tn�2:[ra

n�2, ra
n�1, ra

n]:tn�1:tn :trest.

By repeated application of this argument we get that

S `E t [ra
1 , . . . , ra

k�1, ra
com, ra

k+1, . . . , ra
n]:t

0
rest,

as required, where t0
rest = t0:tk+1:· · ·:tn:trest, i.e., t0

rest = t0
1:· · ·:t0

k:tk+1:· · ·:tn:trest.
ut

A.3 Proof sketch for soundness

Proof (of Theorem 2). We begin by recalling that, by Definition 15 there can be
no direct interaction between species which do not appear in the same reaction
encoding, and that the only species which are shared are those of which the
encodings are copy tolerant. Furthermore, a single copy of a given reaction en-
coding must be copy tolerant to any formal or fuel species that it uses. Thus,
the trace t must consist of an interleaving of reactions which all correspond
to a valid state transition from precisely one of the constituent reaction encod-
ings. Furthermore, since there is only a finite supply of fuel, there can only be
finitely many commit reactions in t. However, t could include infinite cycles of
reversible reactions—we assume that t has already been rewritten to eliminate
these. We proceed by induction on c(t), the number of commit reactions in t.

Base case: c(t) = 0. Since there are no commit reactions, all reactions in t
must be reversible. Therefore, by Lemma 3 there exists a trace t00 such that
(M(X) + F) `E t :t00 e. Then, if pt(X, F) = ? we can set t0 = t00 to get
that (M(X) + F) `E t :t0 e, as required. On the other hand, if pt(X, F) 6=
? then there must be a formal reaction a such that X `E a and for which
reqfuel([a]) F. Then, for a complete execution ta of JaK, we can set t0 = t00 :ta

to get (M(X) + F) `E t :t0 ta, which is a serial execution of [a] 2 pt(X, F),
as required.

Inductive case: c(t) = n + 1. Suppose that ra
com is the first commit reaction in

t, belonging to the encoding of the formal reaction a = (Ra A Pa). By Def-
inition 14, in order to pass the commit reaction we must consume all of the
species from M(Ra), and hence it follows that Ra X. Furthermore, since we
are only considering initial states with fuel to run complete encodings, we get
that [a] 2 pt(X, F) and hence pt(X, F) 6= ?.

We proceed by identifying those reactions from t which precede and follow
ra

com to make up a trace from JaK. If t does not contain a full execution of JaK,
let t0

a denote a trace which completes an execution of JaK. Since [a] 2 pt(X, F)
we know that (M(X) + F) `E ra

1 holds, where ra
1 is the first reaction of the

execution of JaK. Then, by Lemma 4 we get that (M(X) + F) `E t :t0
a ta :trest,

where ta is an execution of JaK.
Let X

0 be a formal state such that X

a�! X

0. Then, we get that (M(X) + F)
ta�!

(M(X0) + (F � Fa) + La), where La is the non-formal species which remain
after the execution of JaK has completed. By Lemma 2 we can deduce that
(M(X0) + (F � Fa) + La) `E trest. All reaction encodings must be copy tol-
erant of the species from La, which means that the reactions in trest may oc-
cur with or without the additional leftover species from La. It follows that
(M(X0) + (F � Fa)) `E trest, and we write Sa = M(X0) + (F � Fa).

Since c(trest) = n = c(t) � 1, we can invoke our induction hypothesis
on trest. Now, we perform a case split on whether pt(X0, F � Fa) is empty. If
pt(X0, F � Fa) = ?, by induction there exists t0

b such that Sa `E trest :t0
b e, and

hence that Sa + La `E trest :t0
b e. It follows that (M(X) + F) `E t :(t0

a :t0
b)

ta, and since ta is a serial execution of [a] 2 pt(X, F), we get the result.
If pt(X0, F � Fa) 6= ?, by induction there exists t0

b such that Sa `E trest :t0
b

tser, where tser is a serial execution of some formal trace tformal 2 pt(X0, F � Fa).
From this we get Sa + La `E trest :t0

b tser, and hence that (M(X) + F) `E
t :(t0

a :t0
b) ta :tser. Since tformal 2 pt(X0, F � Fa) it follows that [a] :tformal 2

pt(X, F), and since ta :tser is a serial execution of [a]:tformal, we get the result. ut

B Further details of verification example

B.1 Details of catalyst gate

The following is the DSD code for the catalyst gate module, together with an
initial state which instantiates it to implement the reaction x + y A y + z:

(* DSD code for two-domain catalyst gate. *)

(* Use with Infinite DSD semantics. *)

(* Define a global toehold *)

new t

(* Catalyst gate module, x + y -> x + z *)

def C(N,x,y,z) = new a new c

(N * {t^*}[x t^]:[y t^]:[c]:[a t^]:[a]

| N * [x]:[t^ z]:[c]:[t^ y]:[t^ a]{t^*}

| N * <t^ c a>

| N * <z c t^>)

(* Example initial state *)

(C(1,x,y,z) | <t^ x> | <t^ y>)

We used the Infinite semantics option in the DSD compiler to generate the full
sets of reactions and species generated from this initial state. These are pre-
sented in Figure S1 and Figure S2 respectively.

In order to verify that this encoding satisfies the criteria from Definition 14,
we must investigate the state space starting from the initial state defined above.
We can use the DSD compiler to show that this system does indeed have a uni-
versally reachable terminal state—the initial and terminal states are illustrated
in Figure S3. A summary of the full state space is presented in Figure S4. The
initial and terminal states are drawn in full, and for the other states only the for-
mal species are drawn, to save space. From this we see that every terminal trace
from the initial state has a commit reaction (in fact, this is the same reaction in
all cases) which satisfies the criteria from Definition 14, therefore the encoding
does indeed satisfy our correctness criteria.

B.2 Details of approximate majority example

As discussed above, the approximate majority example circuit consists of the
following four chemical reactions.

1. x + y A y + b 2. x + y A x + b

3. x + b A x + x 4. y + b A y + y

We implement this system by instantiating the catalyst gate from the previous
section to encode each of the four chemical reactions. To verify this system,
we must first compile each of these reaction gates separately and analyze their
state spaces so we can check that they all satisfy the requirements from Defini-
tion 14. For this we use the DSD compiler to instantiate the catalyst gate from
Section B.1 for each reaction in turn: the corresponding sets of species are pre-
sented in Figure S5 and Figure S6. The a and c domains from the module def-
inition are instantiated with a different domain in each case, which we denote
by a.1, a.2, c.1, c.2, etc., as is the convention in DSD syntax. This ensures that
the gate strands are unique between the different encodings. In each case, the
CRN graph and the state space follows the template of those presented above,
from which we conclude that the encodings all satisfy Definition 14.

It remains to see that the four reaction encodings are pairwise compatible
in the sense of Definition 15, and for this we again we use the DSD compiler
to check that no interactions are possible between species that never appear
in the same reaction encoding. It is not hard to check that the only shared
species between these gates are waste strands, strands which correspond to
formal species and certain intermediate strands. We must show that the encod-
ings are copy tolerant of these shared strands, and we use the DSD compiler to
achieve this by adding an copy of these species to the starting state of the rel-
evant reaction encodings and verifying that the state space is identical in each
case (modulo the additional copies of those species in every state). Adding a
single copy suffices because none of the two-domain reactions from Figure 1
require more than one of a particular reactant, so just one additional copy will
be enough to show up any additional reactions enabled by extra copies of this
species. Hence, by Theorem 2 it follows that any trace generated by these four
reaction encodings can be rewritten to produce a serial trace which corresponds
to a valid execution of the underlying formal reactions.

F
i
g

.
S

1
.
C

at
al

ys
tg

at
e

re
ac

tio
ns

,f
ro

m
an

en
co

di
ng

of
th

e
re

ac
tio

n
x
+

y
A

y
+

z.

Fig. S2. Catalyst gate species, from an encoding of the reaction x + y A y + z.

Fig. S3. Initial (left) and terminal (right) states for the catalyst gate which encodes the
reaction x + y A y + z.

F
i
g

.
S

4
.

Su
m

m
ar

y
of

ca
ta

ly
st

ga
te

st
at

e
di

ag
ra

m
,f

ro
m

an
en

co
di

ng
of

th
e

re
ac

tio
n

x
+

y
A

y
+

z.
Th

e
in

iti
al

st
at

e
ha

s
a

th
ic

k
bl

ac
k

ou
tli

ne
an

d
th

e
te

rm
in

al
st

at
e

ha
s

a
th

ic
k

re
d

ou
tli

ne
.T

he
in

te
rm

ed
ia

te
st

at
es

ar
e

sh
ow

n
w

ith
br

ok
en

ou
tli

ne
s,

an
d

in
th

es
e

st
at

es
on

ly
th

e
fo

rm
al

sp
ec

ie
s

ar
e

sh
ow

n,
to

sa
ve

sp
ac

e.
Th

e
co

m
m

it
re

ac
tio

n
(w

hi
ch

is
th

e
sa

m
e

fo
ra

ll
te

rm
in

al
tr

ac
es

)i
s

la
be

le
d

as
su

ch
.

1. x + y A y + b 2. x + y A x + b

Fig. S5. Species for catalyst gates which implement reactions 1 and 2 from the approxi-
mate majority circuit.

3. x + b A x + x 4. y + b A y + y

Fig. S6. Species for catalyst gates which implement reactions 3 and 4 from the approxi-
mate majority circuit.

