
Algorithm Engineering:
It’s All About Speed

Bernard M.E. Moret

moret@cs.unm.edu

Department of Computer Science

University of New Mexico

Albuquerque, NM 87131

Rome School on Alg. Eng. – p.1/37

Disclaimer

Algorithm Engineering is also about
correctness
robustness
flexibility
portability

But speed is fun and easy to measure ;-)

Rome School on Alg. Eng. – p.2/37

First Lecture: A Survey

Motivation: Why Speed?

A Brief History

How Can We Get Speed?

Algorithm Engineering Techniques

Success Stories

Rome School on Alg. Eng. – p.3/37

Testing and Serial Speedup

Computational Phylogenetics

The Problem Of Test Sets

On the Distinction Between Applications and
Algorithms: A Question of Scale

How Would You Like A Billion-Fold
Speedup?

Rome School on Alg. Eng. – p.4/37

Measuring and Parallel Speedup

Algorithm Engineering for Parallel Algorithms

Measuring Parallel Execution

Message-Passing Computations

Shared-Memory Computations

Can We Finally Put to Use 30 Years of
Research in PRAM Algorithms?

Rome School on Alg. Eng. – p.5/37

First Lecture: A Survey

Motivation: Why Speed?

A Brief History

How Can We Get Speed?

Algorithm Engineering Techniques

Success Stories

Rome School on Alg. Eng. – p.6/37

Why Speed?

Research Tools: run many experiments to
test hypotheses and for discovery

Production Tools: obviously, save on
resources

Make It Possible: a million-fold speedup
allows one to solve in a week what would
otherwise have been infeasible (requiring
millennia)

Rome School on Alg. Eng. – p.7/37

Comparisons Between Abstract Algorithms

CS pioneers (Knuth, Floyd, etc.) always gave
implementations.

Jones started formal comparisons in early
80s.

Many studies since on the best algorithms
and data structures for basic abstract data
types and basic routines (priority queues,
search trees, hash tables, minimum
spanning trees, shortest paths, convex hulls,
Delaunay triangulations, matching and flow).

Rome School on Alg. Eng. – p.8/37

Going Beyond Abstract Algorithms

Comparisons of priority queue
implementations or coloring algorithms is not
what industry and scientists really need.
Industry has specific hard problems that
cannot be solved without sophisticated
algorithmic techniques, but that also exhibit
enough special structure to enable the
design of much better solutions than are
possible for the general problem.

Rome School on Alg. Eng. – p.9/37

Going Beyond Abstract Algorithms

Researchers push the envelope of what
computation can deliver—some
computational biologists run their code for a
year or more on a cluster of machines to
analyze their data.
Such research requires an interdisciplinary
team—a specialist with domain knowledge,
an algorithm specialist, perhaps a systems
specialist.

Rome School on Alg. Eng. – p.10/37

What Is Speed?

To the theorist developing algorithms, it is the
asymptotic worst-case running time.

To the experimentally savvy algorithm
developer, it might be the (more or less)
exact worst-case running time couched in
terms of the most common or expensive
operations, such as main memory accesses,

To a user, it is simply the time needed to run
the code on her dataset.

Rome School on Alg. Eng. – p.11/37

What Is Speed (cont’d)?

To the algorithm engineer, it is all of:
good asymptotic performance
low proportionality constants
fast running times on important real-world
datasets
robust performance across a variety of
data
robust performance across a variety of
platforms
scalability to faster platforms and larger
datasets

Rome School on Alg. Eng. – p.12/37

Example: Minimum Spanning Trees

Best algorithms in asymptotic sense are now
linear-time (Karger, Pettie and
Ramachandran).
Fastest algorithm remains Prim’s algorithm
(Moret & Shapiro), which is over 50 years old
in its general statement.
Good priority queues are the key, but note
that Prim’s algorithm with simple binary
heaps is hard to beat (pairing heaps are
better, but not by a huge amount).

Rome School on Alg. Eng. – p.13/37

How Else Do We Get Speed?

Algorithms with significantly improved
asymptotic running time
Faster machines (a $4K machine today runs
at least 1,000 times faster than a $500K
mainframe did 15 years ago).
Parallel computing: if the application can be
parallelized and scales well, k processors
may run almost k times faster.
Better code generation: modern optimizing
compilers are even capable of limited
optimization for cache utilization.

Rome School on Alg. Eng. – p.14/37

How Does Alg. Eng. Gain Speed?

Optimize low-level data structures (multiple
parallel arrays, maintenance vs.
recomputation)
Optimize low-level algorithmic details (e.g.,
upper and lower bounds)
Optimize low-level coding (hand-unrolling
loops, keeping local variables in registers)
Reduce memory footprint (the entire code
might fit in cache)
Maximize locality of reference (the memory
hierarchy can cause differentials of 100:1)

Rome School on Alg. Eng. – p.15/37

Working with the Memory Hierarchy

Performance assessment for fast algorithms
requires that caching be taken into account.
Performance assessment for algorithms that
work with large quantity of data requires that
paging be taken into account.

Thus the entire memory hierarchy should be part
of many experimental studies.

Rome School on Alg. Eng. – p.16/37

Working with the Memory Hierarchy (cont’d)

We need

credible models of caching and paging
analysis methods for the effects of caching
(see Ladner and LaMarca)
design methods for algorithms that use
caching and paging to optimize their running
time (see LaMarca, Mehlhorn, Vitter, Raman,
etc.)

Rome School on Alg. Eng. – p.17/37

A Brief History

50s and 60s: algorithmic work always
accompanied by working code, but testing
rare
70s and early 80s: paper and pencil years,
but Bentley starts his collection of priceless
observations about efficient programming
practices
mid 80s: studies by Jones (priority queues,
CACM), Stasko and Vitter (pairing heaps,
CACM), Moret and Shapiro (min. test sets,
SIAM JSSC); Bentley’s Programming Pearls

Rome School on Alg. Eng. – p.18/37

A Brief History (cont’d)

early 90s: seminal papers by Johnson’s
group, beginning of LEDA, calls in many
venues by Goldberg, Johnson, Mehlhorn,
Moret, Orlin, and others for more
experimentation and implementation
mid 90s: ACM starts the ACM JEA, ACM
Symp. on Comput’l Geometry sets up
applied tracks, G. Italiano organizes the first
Workshop on Algorithm Engineering (Venice
1997)

Rome School on Alg. Eng. – p.19/37

Present State of Affairs:

LEDA is a stable commercial product

WAE and ALENEX run yearly (WAE is now a
track at ESA)

many new studies appear in various
conferences

memory models of special interest

modest inroads in applications, esp.
computational molecular biology

Rome School on Alg. Eng. – p.20/37

Algorithm Engineering Challenges I

How to measure performance?

running time

structural measures (counting pointer
dereferences, memory accesses, cache
misses, etc.)

profiling (where and when is the time spent?)

Rome School on Alg. Eng. – p.21/37

Algorithm Engineering Challenges II

How to choose test sets?

generated datasets pinpoint specifics of the
program and are most helpful during
development

real application data tests performance
where it matters, but are often hard to get

datasets created from real application data
through random perturbations or through
probability estimates can prove useful in the
testing phase

Rome School on Alg. Eng. – p.22/37

Algorithm Engineering Challenges III

How to assess measurements?

data presentation (normalization, graphical
tools)

data analysis (statistical tools)

data enhancement (e.g., variance reduction,
McGeoch)

Rome School on Alg. Eng. – p.23/37

Guidelines for Experimental Setup

Begin the work with a clear set of objectives:
what are the questions to be answered?
Design the experiments, gathering test data
along the way to help improve the design;
discard the data once used.
Once the experimental design is complete,
simply gather data.
Analyze the data to answer only the original
objectives. (Later, consider how a new cycle
of experiments can improve your
understanding.)

Rome School on Alg. Eng. – p.24/37

Confounding Factors

Choice of machine, of language, of compiler

Consistency and sophistication of
programmers, effect of library layers

Instance selection or generation; in
applications, choice of model and model
parameters

Method for loading the datasets in memory

Method of analysis

Rome School on Alg. Eng. – p.25/37

Common Pitfalls

Uninteresting Work:
“I might as well get some numbers out that code I wrote”
“My parallel code only runs on the Exotica-19.5, but porting
it to a more common platform is too much trouble”
“I bet it’d run faster on machine X, if written in D++, . . . ”

Rome School on Alg. Eng. – p.26/37

Common Pitfalls

Bad Setup:
“My machine is slow or has little memory, so I’ll just test up
to some fixed running time (or space) or just test a few
large instances”
“I don’t like (or have time for) coding, so I’ll compare with
whatever code I can find on the net”
“I don’t have time to look for existing testbeds, but I am
running a lot of test cases”
“I used my measurements to refine my heuristic
parameters independently for each dataset”

Rome School on Alg. Eng. – p.27/37

Common Pitfalls

Bad Analysis or Presentation:
“These data do not fit the pattern—must be experimental
error—so I’ll ignore them”
“Standards of science say I should give all my data, so
here are some pages of numbers”
“Here are comparisons between the running time of my
new super-sort and that of standard radix sort”

Rome School on Alg. Eng. – p.28/37

Common Pitfalls

David Johnson has a well known list of over a
hundred “pet peeves” that he has encountered.

At the First Workshop on Algorithms in
Bioinformatics, Alberto Caprara remarked that

a theoretician solves interesting problems with no
practical use whatsoever, whereas
an experimental algorithmist solves problems of
significant practical use, but only tests his solutions on
randomly generated instances.

Rome School on Alg. Eng. – p.29/37

What to Measure?

In studies of the quality of (approximate)
solutions:

be sure to measure time in some
structural way (e.g., number of iterations),
to serve as scale for determination of
rates
measure the rate of convergence to the
final solution
whenever possible, determine the optimal
solution (by brute force if necessary)

Rome School on Alg. Eng. – p.30/37

What to Measure?

In comparative studies of algorithms for
tractable problems:

always measure running time!
but also look for low-level structural
measures (mems, comparisons, data
moves)
and be sure to establish reference values
for later normalization

Rome School on Alg. Eng. – p.31/37

How to Present and Analyze the Data

Ensure reproducibility.
Do not discard anomalies, but seek to
explain them if at all possible.
Use appropriate statistical measures.
Minimize influence of platform, coding,
caching, etc., through cross-checking and
normalization.
Do not present raw data when normalization
is possible (ratio to optimal; ratio of running
times to a baseline routine).

Rome School on Alg. Eng. – p.32/37

Recent Directions: Memory Models

The models are crucial: they must be credible,
reflecting fundamental properties of hardware
rather than pleasing simplifications.

Models and analysis tools for the effect of
caching (Ladner and LaMarca, others)
Design of cache-efficient algorithms for the
models developed (Raman, others)
Models of secondary memory (Mehlhorn,
Vitter, others)
Design of algorithms to work in secondary
memory (Mehlhorn, Vitter, others)

Rome School on Alg. Eng. – p.33/37

Recent Directions: Applications

Doing interesting research in experimental
algorithmics while putting one’s skills in the
service of a natural science.

Work with area experts to improve existing
models and solutions. (For example, the best
work done on memory models combines
systems know-how with algorithmic
sophistication.)
Target solution algorithms at real data sets
that require sophisticated solution
techniques as well as model refinement.

Rome School on Alg. Eng. – p.34/37

Recent Directions: Man In The Loop

Many objective functions are ill-defined tradeoffs
among separate objectives. Interaction with the
user (visualization!) is crucial in such problems:

the user may be able to give hints to the
optimization program;
the user may want to experiment with a
variety of constraints;
the user can be given a choice of various
suboptimal solutions—with potential
improvements in robustness.

Rome School on Alg. Eng. – p.35/37

Some Success Stories

CPLEX, LEDA, and CGAL (although speed
is not a primary objective in CGAL)

Cache-aware experimental studies (Ladner,
LaMarca, Raman, Sanders, Zhang, etc.) and
cache-oblivious algorithm design (Bender,
Frigo, etc.).

Secondary memory algorithms and
experiments (Arge, Mehlhorn, Vitter, etc.)

Rome School on Alg. Eng. – p.36/37

Some Success Stories

Large instances of NP-hard problems solved
quickly with fast implementations (TSP, Set
Cover, others).

Spectacular speedups over “everyday”
code—over six orders of magnitude (Moret).

Algorithm engineering has “registered” on
the map of high-performance computing and
of computational biology.

Rome School on Alg. Eng. – p.37/37

	Disclaimer
	First Lecture: A Survey
	Testing and Serial Speedup
	Measuring and Parallel Speedup
	First Lecture: A Survey
	Why Speed?
	Comparisons Between Abstract Algorithms
	Going Beyond Abstract Algorithms
	Going Beyond Abstract Algorithms
	What Is Speed?
	What Is Speed (cont'd)?
	Example: Minimum Spanning Trees
	How Else Do We Get Speed?
	How Does Alg. Eng. Gain Speed?
	Working with the Memory Hierarchy
	Working with the Memory Hierarchy (cont'd)
	A Brief History
	A Brief History (cont'd)
	Present State of Affairs:
	Algorithm Engineering Challenges I
	Algorithm Engineering Challenges II
	Algorithm Engineering Challenges III
	Guidelines for Experimental Setup
	Confounding Factors
	Common Pitfalls
	Common Pitfalls
	Common Pitfalls
	Common Pitfalls
	What to Measure?
	What to Measure?
	How to Present and Analyze the Data
	Recent Directions: Memory Models
	Recent Directions: Applications
	Recent Directions: Man In The Loop
	Some Success Stories
	Some Success Stories

