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Measuring and Parallel Speedup

Measuring Parallel Execution

Algorithm Engineering for Parallel Algorithms
(briefly)

Message-Passing Computations (briefly)

Shared-Memory Computations: Can We
Finally Put to Use 30 Years of Research in
PRAM Algorithms?
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What to Measure

In a parallel execution, measure wallclock time!

takes into account all processors (all must
finish!) as well as system overhead
but requires dedicated system and
“warm-up” runs to allow threads to migrate
and stabilize on their processors
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How to Compare

Compare to the best sequential algorithm
(though it will make the parallel code look
bad when run on few CPUs).

Compare speedup against (a cleaned-up
version of) the parallel code run on a single
processor—gives a better idea of scaling.
Average over lots of instances of various
types to avoid data biases that may favor
specific numbers of CPUs.
In an MP environment, ensure the
single-CPU version has enough memory.
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Parallel Algorithm Engineering

Does not exist. . .

Can reuse techniques of algorithm
engineering for sequential code—most gains
will be found in the sequential part.
In distributed memory (or virtual
shared-memory) systems, need to focus on
transmission of information.
In true shared-memory systems, need to
focus on synchronization and cache
utilization.
Memory hierarchy is deeper and more
complex.
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Message-Passing Systems

Communication is the bottleneck.

Load-balancing (data migration) is a
problem.

PRAM algorithms have little in common with
efficient message-passing code.

BSP or virtual shared-memory cannot
overcome the basic facts, but they do allow
the programmer to use PRAM-style
algorithms, although with a mandatory
slowdown.
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Shared-Memory Programming

Symmetric Multiprocessor (SMP)
architectures
Uniform-Memory-Access (UMA) SMPs
PRAMs vs. UMA SMPs
A UMA SMP programming model
Our running example: Ear decomposition
Implementation
Experimental setup
Experimental results
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Symmetric Multiprocessor Architectures

SMP: several processors integrated into one
machine, using shared-memory with
concurrent read.
Small SMPs (≤ 4 CPUs) are commodity
items.
Larger SMPs are the choice for servers
(large memory, high throughput, redundancy)
Largest SMP is the Sun Starcat with 105
CPUs and 210GB memory. Clusters of large
SMPs (IBM Netfinity) form the
next-generation terascale architecture.
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Uniform-Memory-Access SMPs

Early SMPs (SGI Origin) had variable
memory access times, so efficiency
depended on keeping items local to each
processor—just as in message-passing
style.
Sun and IBM Netfinity SMPs have true
uniform-access shared-memory.
UMA SMPs open the way to efficient parallel
computing for complex, irregular problems.
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Memory Access on Sun SMPs

Large SMPs have a deep memory
hierarchy—10ns to 600ns in the Sun E10K
and 3ns to 250ns in the Starcat.
The 250ns worst case is still two orders of
magnitude faster than message-passing.
We tested memory access from a single
processor to the full addressable memory on
our lab’s E4500 and on the San Diego
Supercomputing Center’s E10K. Results
clearly show cache sizes (L1 and L2).
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Sun Enterprise Results
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PRAMs and UMA SMPs

Similarities are striking:
all processors can access any memory
location
concurrent read capability
no need for messages

Two major differences remain:

few processors: up to 100, not O(nO(1))
no lockstep synchronization: one must
use software barriers
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Validating the Model

A methodology for designing practical
shared-memory algorithms on UMA
shared-memory machines,
A fast and scalable shared-memory
implementation of ear decomposition
demonstrating the first significant parallel
speedup for this class of problems.
An example of experimental performance
analysis for a nontrivial parallel
implementation.
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Linear Speedups on Irregular Graph Problems
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Linear Speedups on Irregular Graph Problems
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Methodology: PRAM to SMP

how to partition the tasks (and data) among
the very limited number of processors
available
how to optimize the use of caches
how to minimize the work spent in
synchronization (barrier calls)

Good data and task partitioning, coupled with
cache-sensitive coding; barriers are trickier,
because of the need to flush caches.
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Methodology: Complexity Model

matching complexity model (Helman and
Jájá 99) captures contention at processors
and contiguous vs. noncontiguous memory
accesses
analysis reports triple (MA, ME, TC), where

MA: number of noncontiguous accesses
to main memory
ME: amount of data exchanged with main
memory
TC : upper bound on the local
computational work
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Ear Decomposition

The ear decomposition of an undirected
graph G = (V,E) is a partition of E into an
ordered collection of simple paths such that
each endpoint of a path is contained in an
earlier path, but no interior point of a path is
contained in any other path.
Useful in its own right (structural analysis)
and a good decomposition step for complex
graph algorithms (in lieu of dfs, for instance).
Has a simple linear-time sequential algorithm
based on dfs.
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Ear Decomposition

Challenging to implement in parallel

Requires prefix sum, prefix product,
list-ranking, least-common ancestor, tree
raking, pipelined sorting, and spanning tree
construction.
Except for prefix computation, none of these
tasks has been shown to scale on
message-passing architectures.
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Ear Decomposition: An Example
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The PRAM Algorithm

find a spanning tree
root tree and compute level of each node
each non-tree edge corresponds to a distinct
ear, so find least common ancestor (LCA) of
endpoints of each non-tree edge and label
the edge by the level of its LCA
label each tree edge by choosing the
smallest label of any non-tree edge whose
cycle contains it
labels are sorted
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SMP Implementation and Analysis

find a spanning tree by successive grafting;
each takes O((m + n)/p) time, so total time
is T (n, p) = O(1, n

p
, ((m + n)/p) log n)

root the tree and compute the level of each
node with the Euler tour technique in O(n/p)
time and O(n/p) noncontiguous memory
accesses
computing the edge labels takes O(n/p) time
and O(n/p) noncontiguous memory
accesses
total algorithm runs in O(n

p
, n

p
, m+n

p
log n)
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Experimental Setup

Input: sparse graphs (regular and not, planar
and not) from 28 to 218 vertices.
Environment: the SMP node library of
SIMPLE (by D. Bader), built on top of POSIX
threads
Machines: our laboratory’s E4500 (14 CPUS,
14GB memory) and the SDSC’s E10K (64
CPUS, 64GB memory), both with 450MHz
Sparc II processors, each with 16KB on-chip
direct-mapped L1 cache and 8MB L2 cache
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Classes of Input Graphs

Regular 4-connected mesh of b√nc × d√ne
vertices
Regular triangulated mesh, obtained from
above by adding an edge connecting a
vertex to its down-and-right neighbor, if any
Random planar graphs of varying density,
from very sparse (few, if any, cycles) to
nearly triangulated
Constrained Delaunay triangulation of n
random points in the unit square
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Experimental Results

We plot efficiency: the ratio of the measured
speedup to the number of processors used
(which is the ideal speedup).
A perfect implementation of a perfect parallel
algorithm has a constant efficiency of 1.
We expect increases in efficiency as the size
of the problem increases—due to relatively
smaller influence of overhead.
Conversely, we expect decreases in
efficiency as the number of processors
increases (for the same problem size).
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Experimental Results

Sparse random graphs on the NPACI Sun E10K:
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Experimental Results

Sparse random graphs on the NPACI Sun E10K:

Problem Size (log2n)
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SMPs: Conclusions

first practical linear speed-up for a difficult
combinatorial problem
good match of model predictions and
experimental results
transfer of PRAM algorithms to practical
applications is possible on UMA SMPs
promise for a whole new range of
applications for parallel computation
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Parallel Alg. Eng.: Conclusions

We can and should develop parallel algorithm
engineering:

It will improve both the sequential and parallel
parts of the code and yield new insights into the
memory hierarchy, compiler development, and
related topics.

Shared-memory implementations will be more
challenging (more parameters), but we have
promising results already.
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