Linear Programming for Phylogenetic Reconstruction
Based on Gene Rearrangements™

Jijun Tang’ Bernard M.E. Moret*

Abstract

Phylogenetic reconstruction from gene rearrangements has attracted increasing attention
from biologists and computer scientists over the last few years. Methods used in reconstruc-
tion include distance-based methods, parsimony methods using sequence-based encodings,
and direct optimization. The latter, pioneered by Sankoff and extended by us with the soft-
ware suite GRAPPA, is the most accurate approach, but has been limited to small genomes
because the running time of its scoring algorithm grows exponentially with the number of
genes in the genome. We report here on a new method to compute a tight lower bound on
the score of a given tree, using a set of linear constraints generated through selective ap-
plications of the triangle inequality. Our method generates an integer linear program with a
carefully limited number of constraints, rapidly solves its relaxed version, and uses the result
to provide a tight lower bound. Since this bound is very close to the optimal tree score, it can
be used directly as a selection criterion, thereby enabling us to bypass entirely the expensive
scoring procedure. We have implemented this method within our GRAPPA software and run
several series of experiments on both biological and simulated datasets to assess its accu-
racy. Our results show that using the bound as a selection criterion yields excellent trees,
with error rates below 5% up to very large evolutionary distances, consistently beating the
baseline Neighbor-Joining. Our new method enables us to extend the range of applicability
of the direct optimization method to chromosomes of size comparable to those of bacteria,
as well as to datasets with complex combinations of evolutionary events.

1 Introduction

Biologists can infer the ordering and strandedness of genes on a chromosome and thus represent
each chromosome by an ordering of signed genes (where the sign indicates the strand). These
gene orders can be rearranged by evolutionary events such as inversions and transpositions and,
because they evolve slowly, give biologists an important new source of data for phylogeny re-
construction [7, 16, 17, 19]. Appropriate tools for analyzing such data may help resolve some
difficult phylogenetic reconstruction problems. Developing such tools is thus an important area
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of research: the recent DCAF symposium [22] was devoted to this topic, while results are rapidly
accumulating [14].

A natural optimization problem for phylogeny reconstruction from gene-order data is to
reconstruct a tree that minimizes the total number of evolutionary events. This problem is NP-
hard for most criteria—even the very simple problem of computing the median of just three
genomes (the median of k genomes is a genome that minimizes the sum of the pairwise distances
between itself and each of the k given genomes) under such models was proved NP-hard [4, 18].

For some datasets (e.g., chloroplast genomes of land plants), biologists conjecture that re-
arrangement events are predominantly inversions (also called reversals). In other datasets (e.g.,
mitochondrial genomes), transpositions are viewed as more likely, but their relative prepon-
derance with respect to inversions is unknown. Sankoff proposed the breakpoint distance (the
number of pairwise gene adjacencies present in one genome but absent in the other) as a measure
of distance between genomes that is independent of any particular mechanism of rearrangement.
The breakpoint phylogeny [1] is then the most parsimonious tree with respect to breakpoint
distances. By analogy, the inversion phylogeny is the most parsimonious tree with respect to
inversion distances.

The main software package for reconstructing the inversion (or breakpoint) phylogeny is our
GRAPPA [15]. Its basic optimization tool is an algorithm for computing the inversion (or break-
point) median of three genomes. Extensive testing has shown that the trees returned by GRAPPA
are superior to those returned by other methods used in phylogenetic reconstruction based on
gene orders, such as distance-based methods and parsimony based on encodings [13, 14, 28].
The closely related software of Pevzner’s group, MGR [3], is the only method that approaches
its accuracy. (A Bayesian approach [11] and a method based on minimum spanning trees [29]
have shown promise, but have been tested on just one or two datasets so far.) Moreover, our
extension using disk-covering, DCM-GRAPPA [26], runs quickly on large datasets—indeed, the
number of taxa in the dataset is no longer the main issue.

Two serious issues remain, however. Handling genomes with unequal gene content (i.e.,
involving duplications, insertions, and deletions of genes) remains largely unsolved, although
some progress has been made in computing pairwise distances in such cases [8, 9, 12, 27].
Handling large genomes within GRAPPA is very expensive, because the median computation takes
time exponential in the size of the genomes; this problem prevents its application to organismal
genomes with thousands of genes. It is this second problem that we tackle here.

2 Definitions

A phylogeny for a set S of N genomes is a (preferably) binary tree with N leaves, with each leaf

labeled by a distinct element of S. Let G be the genome with signed ordering of g1,g2,...,8x.

An inversion between indices i and j (i < j), produces the genome with linear ordering
81,825--+,8i—1,—8js —8j—1s-++, —8ir8j+1:--+,8n

A transposition on genome G acts on three indices i, j,k, with i < j and k ¢ [i, j], picking up

the interval g;,g+1,...,£; and inserting it immediately after g;. Thus genome G is replaced by

(assume k > j):

81y--+,8i—1,8j+15-+++8k)8i»8i+1y--+,8j,8k+15---,8n
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Figure 1: The median problem: given gene orders 1, 2, and 3, find a gene-order O that minimizes
21'3:1 dO,i .

The edit distance between two genomes is the minimum number of allowed evolutionary
events required to transform one genome into the other. When only inversions are allowed, the
edit distance is the inversion distance. The score of a tree is the sum of the costs of its edges,
where the cost of an edge is the distance (breakpoint or edit distance) between the two genomes
that label the endpoints of the edge.

For N genomes {G,Ga,...,Gy}, each with identical set of genes, the median problem is to
find a signed gene order G that minimizes Zﬁvzl dyp ;, where d ; is the distance between G( and
G;. Because our various genomic distances are all metrics, we must have

N—1

1
do; > 5 dy+ Z dijv1
1 i=1

=

1

When this inequality is an equality, we call the corresponding median a perfect median. Finding
the gene order Gy is NP-hard even for the case N = 3, the case (illustrated in Figure 1) of most
use in phylogenetic reconstruction [4, 18].

In the following, we will consider only genomes with equal gene content, that is, with the
same number of genes and where each gene appears exactly once. Clearly, this restriction is
unrealistic in biological practice; however, we use it here mostly for clarity of exposition: all
results presented in this paper can be readily applied to genomes with unequal gene contents as
long as a pairwise distance between such genomes can be computed, as in [8, 12].

3 GRAPPA

GRAPPA is based on the approach pioneered by Sankoff and Blanchette in the software pack-
age BPAnalysis [21], but uses various algorithmic techniques to improve its accuracy and
speed. GRAPPA is an exhaustive search method, moving systematically through the space of
all (2N —5)!! possible trees on N genomes. For each tree, the program tests a lower bound to
determine whether the tree is worth scoring; if so, then the program will iteratively solve the
median problems at internal nodes until convergence, as outlined in Figure 2. Since the scoring
procedure of GRAPPA involves solving numerous instances of median problems, a fast median
solver is crucial. Two inversion median solvers are available, both using a branch-and-bound



Initially label all internal nodes with gene orders
Repeat
For each internal node v, with neighbors A, B and C, do
Solve median problem on A, B, C to yield m
If relabeling v with m improves the tree score, then do it
Until no change occurs

Figure 2: The GRAPPA scoring procedure

strategy. Caprara’s solver [5] is based on an extension of the breakpoint graph; that developed
by Siepel and Moret [24] runs a direct search. Although they are both fast when the pairwise
distances among the three given genomes are relatively small, they can become extremely slow
when the distances become larger. For example, in the worst case, Siepel’s algorithm needs to
check n? gene orders, where d is min(di2 + d13,d21 + dr3,d13 + dp3) and n is the number of
genes (see Figure 1). Indeed, for large genomes, a single median problem can take anywhere
from seconds to days of computation. It is thus crucial to avoid scoring trees unnecessarily and
thus to use tight lower bounds.

4 Lower Bounding with Perfect Medians

Siepel and Moret [24] reported that almost all medians found by their algorithms were perfect
medians, i.e., they obeyed

> dip+diz+dy3
Y doi= >
i=1

When the pairwise distances were about 0.1n, all medians were perfect; as the distances in-
creased, the proportion of perfect medians decreased slowly—for instance, over 97% of the
medians remained perfect with pairwise distances around 0.3n [23]. Moreover, even when the
medians were not perfect, their scores exceeded the lower bound by only one inversion. These
findings indicate that an assumption that all medians are perfect may lead to a tight lower bound.

Label a phylogenetic tree with N leaves as follows; the leaves are labeled from the set
{1,2,...,N}, while the internal nodes are labelled from the set {N +1,N +2,...,2N —2}; we
number the edges from 1 to 2N — 3 and denote the length of edge i by d;, as illustrated in Figure 3.

Lemma 1 The sum of the perfect median scores (over all internal tree nodes) is a lower bound
on the tree score; that is, we have (see Figure 3):

IN-3
d d d ..+ (dy- doy_3n_1+don_
w(r)= Y d,-z( 12 tdint2 +dany2) + +2( N_IN+don 3N-1+doN 3N) 0

i=1

Because most medians are perfect, this lower bound is very close—or perhaps even equal—to
the tree score. Of course, we cannot compute this lower bound exactly without first solving the
median problems, which would defeat the entire purpose of bounding. So we settle for a close
approximation of that bound through mathematical programming.
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Figure 3: Perfect medians for internal nodes

S Setting up the Integer Linear Program

An integer linear program is composed of a linear objective function and of a collection of
constraints, most taking the form of linear equations or inequations and some requiring that
certain variables assume only integer values. The scoring function for our method is just the
length of the tree; that is, our objective is to minimize the sum of the tree edge lengths:

2N-3

min Z d; (2)
i=1

This function introduces a total of 2N — 3 variables.
Now, given any internal node M, its three neighbors A, B. and C, and their associated tree
edges k, k+ 1, and k+ 2 (see Figure 4), we can write (if M is a perfect median):

dap+dac+dpc
2

di +dit1 T diyr = 3)
Each in the N — 2 internal nodes gives rise to one such equation, which we use as an equality
constraint in the integer linear program. Equation 3 introduces three new variables per node
(the pairwise distances dj g, dac, and dp ¢), unless two of the node’s neighbors are leaves, in
which case only two new variables are introduced (because one of the pairwise distances is then

Figure 4: Equation setup for any internal nodes



known). Thus, overall, Equations 2 and 3 (the latter applied at each internal node) introduce from
4N to SN variables, depending on the tree shape. Therefore we need to add many constraints
(beyond our N — 2 equalities) in order to obtain a solution.

Now, a good selection of constraints derived from triangle inequalities in the tree should
meet the following criteria:

e Because LP solvers typically take more time when the number of constraints increases
and because many of the constraints will be redundant, the number of constraints should
be kept as small as possible.

e In order to obtain robust solutions, every variable added by Equations 2 and 3 should
appear in at least one constraint.

Consider again Figure 4: in addition to the edges of the tree (drawn with uninterrupted
lines), we have shown the pairwise connections among the three neighbors of an internal node
(drawn with dashed lines). By considering the graph resulting from the addition of these edges
connecting neighbors of internal nodes to the the set of edges of the original tree, we get a
graph with many alternate paths. We base our additional constraints on the distances between
pairs of tree leaves, as measured directly and as measured along paths in the extended graph.
Specifically, for each pair (i, j) of leaves, we can write the inequality

dij< ), dle)

ecpath

where d; ; is the genomic distance between the two gene orders i and j and where d(e) is the
length of edge e on the selected path from leaf i to leaf j in the extended graph. Since there are
(g) pairs of leaves, we immediately get a large number of constraints.

However, a number of edges in the extended graph may remain unused in any constraint; to
remedy this problem, we generate two inequalities for each pair of leaves that are not siblings:
one each for the two paths between these leaves with the fewest edges—the “shortest paths” if
we define the length of a path in this context to be the number of edges on the path. Finding
the k shortest paths between two vertices in a graph is a thoroughly studied problem [10] and is
easily done, especially when the length is just the number of edges. Using the two shortest paths
will produce N(N — 2) inequality constraints, which works well in our context, for two reasons:

e For 20 genomes (the largest problem size we need to solve within the DCM approach), we
get on the order of 100 variables and 400 constraints, an instance of quite modest size for
a modern LP solver.

e There are roughly N 2 constraints and at most SN variables, so that, on average, a variable
will appear in % constraints. Thus the probability that a variable does not appear in any
constraint is very small.

6 Implementation Details

We implemented this bounding computation within our GRAPPA platform. We do not solve the
integer linear program, but only its linear programming relaxation: the ILP itself is already an
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approximation and would take too long to solve exactly and many techniques (such as random-
ized rounding) are readily available to use LP solutions in order to obtain a good integer solution.
We used a standard non-commercial package for linear programming, 1p_solve (version 4.0).

The new bound can be used in two different contexts: (i) we can use it to improve the
pruning rate of GRAPPA; or (ii) we can use it directly as a selection criterion. The current version
of GRAPPA (2.0) already has very fast and strong pruning (often eliminating 99.9999% of the
candidate trees); the LP bound, which is noticeably more expensive to compute than the bounds
currently used in GRAPPA, can be used to filter the remaining trees in order further to reduce
the number of trees that must be scored. Unfortunately, the LP bound offers (so far) no help in
scoring a tree: the problem with medians of large genomes remains unaffected. Thus, while the
first application of the LP bound does provide additional speedup for GRAPPA, it does not yet
enable us to handle large genomes.

The second application, on the other hand, enables us to process trees very quickly: we
retain the pruning strategy of GRAPPA and then simply compute a “score” (the LP lower bound)
for each remaining tree, retaining those trees with the best score. With this approach, the size of
the genomes no longer presents any computational problem, so that we can handle datasets of
up to 16 genomes with GRAPPA and much larger datasets with DCM-GRAPPA.

7 Experimental Results

We set out to test the accuracy of the second approach described above: using the LP bound as a
direct selection criterion to choose among the trees not pruned away by GRAPPA. For this purpose,
we generated datasets of 12 genomes each (datasets of that size form the bulk of the subproblems
solved in the DCM approach to reconstruction from gene-order data when working on datasets
of 1,000 genomes [26]) and chose genomes of 200, 500, and 1,000 genes, spanning the range
from large organelles (such as plant mitochondria) to small bacteria (such as symbiotic bacteria).
Our model trees are birth-death trees, but the number of evolutionary events along an edge is
set independently of the birth-death process to avoid any semblance of a molecular clock. We
used a large range of evolutionary rates, including very high rates: letting r denote the expected
number of evolutionary events along an edge of the model tree, we used values of r in the range
of 5% to 15% of the number of genes. The actual number of events along each edge is sampled
from a uniform distribution on the set {1,2,...,2r}. While all our distance computations are
based on inversion distances, we generated the data with a deliberate model mismatch to test the
robustness of our bounding, using a mix of 80% inversions and 20% transpositions. For each
combination of parameter settings, we ran 10 datasets and averaged the results.

Our baseline is the basic neighbor-joining (NJ) method [20]. We did not use EDE dis-
tances (obtained by correcting inversions distances), which were found very useful for smaller
genomes [13], because on such large distances they overcorrect and produce very large values
for most pairs of genomes, leading to very large error rates for NJ. We considered only one tree
produced by NJ—if a tie arose in the construction process, we made an arbitrary choice among
the possibilities. In contrast, in our new method, we considered all trees given the minimum
score by our LP procedure and took their strict consensus. Therefore, while the NJ trees are
always binary, the trees returned by our procedure are sometimes not fully resolved and will
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Figure 5: Average FN and FP rates as a function of r for 200, 500, and 1,000 genes.

tend to have somewhat better rates for false positives (FP) than for false negatives (FN). Thus
we report FP and FN rates separately rather than as an aggregate Robinson-Foulds score. We at-
tempted to run GRAPPA on these datasets, but, for all but the lowest of the r values, some median
computations were taking days or weeks, as expected. In consequence, we could not complete
the runs, so that our comparisons are limited to NJ and our new LP-based method.

Figure 5 shows our results for each genome size; we placed a line at the 5% error level,
which is typically considered the threshold of acceptability for accuracy in phylogenetic recon-
struction [25]. Note that, while the NJ trees almost always exceed the 5% error rate in both FP
and FN, our LP-based method only exceeds that threshold for very large evolutionary rates; for
instance, with 200 genes and r = 28, some edges will have up to 56 inversions and transposi-
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tions, resulting in well over 100 breakpoints. In Figure 6, we show the FP and FN rates for all
three genome sizes, as a function of the ratio ;. —the expected percentage of events per edge in
terms of genome size. Again, note that, when the normalized r is 15%, the breakpoint distance
could reach 70% of the genome size—values at which all past reconstruction methods based on
distance fail as badly as NJ; in contrast, our new LP bound still selects good trees at that rate.

We also ran our procedure on small chloroplast datasets that we have used in the past (the
Campanulaceae dataset [6] and a dataset of red algae, green algae, and land plants [27]), with
similar results.

8 Conclusions

We have described a novel use of mathematical programming to derive tight bounds on the
total length (score) of a phylogenetic tree and have used these bounds as selection criteria to
reconstruct small phylogenies based on gene-order data for genomic sizes that had so far been
out of reach of reconstruction tools. Our experiments show that the method works well, returning
trees with accurate (better than 95%) topologies up to very large evolutionary rates. While we
have not applied the method to the reconstruction of ancestral genomes (and the solution of the
median problem for genomes), we expect that knowledge of the edge lengths (provided by the
LP solution) will enable us to speed up such reconstruction dramatically, thereby removing the
last scaling problem left in phylogenetic reconstruction from gene-order data.
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