
Rec-I-DCM3: A Fast Algorithmic Technique for Reconstructing Large
Phylogenetic Trees

Usman W. Roshan
Department of Computer Science

University of Texas at Austin
usman@cs.utexas.edu

Bernard M. E. Moret
Department of Computer Science

University of New Mexico
moret@cs.unm.edu

Tandy Warnow
Department of Computer Science

University of Texas at Austin
tandy@cs.utexas.edu

Radcliffe Institute for Advanced Study
twarnow@radcliffe.edu

Tiffani L. Williams
Department of Computer Science

University of New Mexico
tlw@cs.unm.edu

Abstract

Phylogenetic trees are commonly reconstructed based
on hard optimization problems such as maximum parsi-
mony (MP) and maximum likelihood (ML). Conventional
MP heuristics for producing phylogenetic trees produce
good solutions within reasonable time on small datasets (up
to a few thousand sequences), while ML heuristics are lim-
ited to smaller datasets (up to a few hundred sequences).
However, since MP (and presumably ML) is NP-hard, such
approaches do not scale when applied to large datasets. In
this paper, we present a new technique called Recursive-
Iterative-DCM3 (Rec-I-DCM3), which belongs to our fam-
ily of Disk-Covering Methods (DCMs). We tested this new
technique on ten large biological datasets ranging from
1,322 to 13,921 sequences and obtained dramatic speedups
as well as significant improvements in accuracy (better than
99.99%) in comparison to existing approaches. Thus, high-
quality reconstructions can be obtained for datasets at least
ten times larger than was previously possible.

1. Introduction

One of the outstanding problems facing biology is the re-
construction of the “Tree of Life,” the evolutionary history
of all organisms on this planet. Fundamental to this recon-
struction is the ability to produce, within reasonable time
constraints, accurate phylogenies for large datasets (tens to
hundreds of thousands of taxa), since the “Tree of Life” it-
self is estimated to contain tens to hundreds of millions of

taxa. The most commonly used approaches to phylogeny re-
construction are heuristics for two hard optimization prob-
lems, maximum parsimony (MP) and maximum likelihood
(ML). However, despite decades of research and algorithm
development, acceptably accurate analyses that run within
a few days of computation on one processor are not cur-
rently possible much beyond a few thousand taxa for MP
and a few hundred taxa for ML—nor is it clear that in-
creasing the computing power will enable the analysis of
larger datasets, as the accuracy of the heuristics steadily de-
creases with increasing size of datasets. Polynomial-time al-
gorithms do exist (Neighbor-Joining [19] and UPGMA [12]
are the best known examples), but many experimental stud-
ies have shown that such trees are not as accurate as those
produced by MP or ML analyses.

One of the major challenges confronting both MP and
ML heuristics is that the tree space is enormous (there are
(2n-5)!! possible solutions for a dataset with � leaves), and
existing techniques for searching for optimal trees under
both criteria are insufficient for this kind of space. In ad-
dition, ML heuristics have to confront the challenge of how
to score individual trees - a problem which is easy for MP,
but hard for ML. Our research in this paper is focused on
addressing the first problem - how to search through tree
space; improvements we obtain here will be helpful for both
MP and ML analyses.

Whereas 90–95% accuracy is often considered excellent
in heuristics for hard optimization problems, heuristics used
in phylogenetic reconstruction must be much more accu-
rate: in another study [24], we found that solutions to MP
that had an error rate larger than ����� (i.e., whose length

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

exceeded the optimal length by more than �����) produced
topologically poor estimates of the true tree. Thus, heuris-
tics for MP need at least ������ accuracy (and probably
significantly more on very large datasets) in order to pro-
duce topologically accurate trees. Obtaining this level of
accuracy while running within a reasonable time presents
a stiff challenge to algorithm developers.

In this paper, we describe a new technique that makes
it possible to reach that level of accuracy on datasets of
large size—indeed, of sizes at least one order of magni-
tude larger than could be analyzed before. Our technique is
called Recursive-Iterative DCM3 (Rec-I-DCM3), a divide-
and-conquer technique that combines recursion and iter-
ation with a new variant of the Disk-Covering Method
(DCM) to find highly accurate trees quickly. Rec-I-DCM3
uses iteration for escaping local optima, the divide-and-
conquer approach of the DCMs to reduce problem size,
and recursion (as pioneered in [22]) to enable further lo-
calization and reduction in problem size. A Rec-I-DCM3
search not only dramatically reduces the size of the ex-
plored tree space, but also finds a larger fraction of MP trees
with better scores than other methods. We demonstrate the
power of Rec-I-DCM3 on ten large biomolecular sequence
datasets, each containing more than 1,000 sequences (half
contain over 6,000 sequences and the largest contains al-
most 14,000 sequences). Our study shows that Rec-I-DCM3
convincingly outperforms TNT [5]—the best implemented
MP heuristic—often by orders of magnitude, on all datasets
and at all times during the time period (usually 24 hours) al-
lotted for computation. Although we focused on testing our
technique on MP analyses, our improvements work as well
in ML analyses.

2. Our Datasets

In our experiments, we used a large variety of biological
datasets and simulations. In this paper, we present our re-
sults on the ten largest biological datasets we used: because
of their large size, all but one are RNA data, ranging from
a smallest set of 1,322 sequences to a largest of 13,921 se-
quences, all with sequence lengths between 800 and 1,600.
Seven of these ten sets have over 4,500 sequences and thus
are not, in practice, accurately analyzable with existing MP
heuristics.

1. A set of 1,322 aligned large subunit ribosomal RNA of
all organisms (1,078 sites) [25].

2. A set of 2,000 aligned Eukaryotes ribosomal RNA se-
quences (1,326 sites) obtained from the Gutell Lab at
the Institute for Cellular and Molecular Biology, The
University of Texas at Austin.

3. A set of 2,594 rbcL DNA sequences (1,428 sites) [9].
4. A set of 4,583 aligned 16s ribosomal Actinobacteria

RNA sequences (1,263 sites) [11].

5. A set of 6,590 aligned small subunit ribosomal Eukary-
otes RNA sequences (1,661 sites) [25].

6. A set of 7,180 aligned ribosomal RNA sequences
(1,122 sites) from three phylogenetic domains ob-
tained from the Gutell Lab at the Institute for Cellu-
lar and Molecular Biology, The University of Texas at
Austin.

7. A set of 7,233 aligned 16s ribosomal Firmicutes (bac-
teria) RNA sequences (1,352 sites) [11].

8. A set of 8,506 aligned ribosomal RNA sequences
(851 sites) from three phylogenetic domains, plus or-
ganelles (mitochondria and chloroplast), obtained
from the Gutell Lab at the Institute for Cellu-
lar and Molecular Biology, The University of Texas at
Austin.

9. A set of 11,361 aligned small subunit ribosomal Bac-
teria RNA sequences (1,360 sites) [25].

10. A set of 13,921 aligned 16s ribosomal Proteobacteria
RNA sequences (1,359 sites) [11].

3. Maximum Parsimony

Let � be a set of � sequences, each of length �, over a
fixed alphabet �. Let � be a tree leaf-labelled by the set �
and with internal nodes labelled by sequences of length �

over �. The length (or parsimony score) of � with this la-
belling is the sum, over all the edges, of the Hamming dis-
tances between the labels at the endpoints of the edge. (The
Hamming distance between two strings of equal length is
just the number of positions in which the two strings differ.)
Thus the length of a tree is also the total number of point
mutations along the edges of the tree. The Maximum Parsi-
mony (MP) problem seeks the tree � leaf-labelled by � with
the minimum length. While MP is NP-hard [4], construct-
ing the optimal labeling of the internal nodes of a fixed tree
� can be done in polynomial time [3].

3.1. Iterative Improvement Methods

Iterative improvement methods are some of the most
popular heuristics in phylogeny reconstruction. A fast tech-
nique is used to find an initial tree, then a local search mech-
anism is applied repeatedly in order to find trees with a bet-
ter score. The most commonly used local move is called
Tree-Bisection and Reconnection (TBR) [10]. In TBR, an
edge is removed from the given tree � , thereby creating two
subtrees, � and � � �; the two subtrees are then reconnected
by subdividing two edges (one in each subtree) and adding
an edge between the newly introduced nodes.

Heuristics for MP are implemented in many software
packages, but the most popular package is PAUP*[21].
The software package TNT, however, provides a faster im-
plementation of local search and also implements search

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

strategies such as simulated annealing and genetic algo-
rithms. The default (recommended) technique is a combi-
nation of simulated annealing, divide-and-conquer, and ge-
netic algorithmic techniques. In our unpublished studies the
TNT-default technique is faster and more accurate than the
PAUP*-default technique for solving MP; therefore we fo-
cus on TNT in this study. Both, PAUP* and TNT, are pub-
licly available but neither is open-source.

3.2. Disk-Covering Methods

Disk-Covering Methods (DCMs) [7, 8, 15, 18, 23] are a
family of divide-and-conquer methods designed to “boost”
the performance of existing phylogenetic reconstruction
methods. All DCMs proceed in four major phases: (i) de-
composing the dataset, (ii) solving the subproblems, (iii)
merging the subproblems, and (iv) refining the resulting
tree. Variants of DCMs come from different decomposi-
tion methods—the last three phases are unaffected. The first
DCM [7], also called DCM1, was designed for use with
distance-based methods and has provable theoretical guar-
antees about the sequence length required to reconstruct
the true tree with high probability under Markov models
of evolution [23]. The second DCM [8], also called DCM2,
was designed to speed up heuristic searches for MP trees;
we showed that when DCM2 was used with PAUP*-TBR
search, it produced better trees faster on simulated datasets.

4. DCM3

We designed the third DCM, or DCM3, from the lessons
learned with our first two DCMs. DCM1 can be viewed, in
rough terms, as attempting to produce overlapping clusters
of taxa to minimize the intracluster diameter; it produces
good subproblems (small enough in size), but the struc-
ture induced by the decomposition is often poor. DCM2
computes a fixed structure (a graph separator) to overcome
that drawback, but the resulting subproblems tend to be
too large. Moreover, both DCM1 and DCM2 operate solely
from the the matrix of estimated pairwise distances, so that
they can produce only one (up to tiebreaking) decomposi-
tion. In contrast, DCM3 uses a dynamically updated guide
tree (in practice, the current estimate of the phylogeny) to
direct the decomposition—so that DCM3 will produce dif-
ferent decompositions for different guide trees. This feature
enables us to focus the search on the best parts of the search
space and is at the heart of the iterative use of the decompo-
sition: roughly speaking, the iteration in Rec-I-DCM3 con-
sists of successive refinements of the guide tree. Thanks
to the guide tree, DCM3 also produces smaller subprob-
lems than DCM2: the guide tree provides the decomposition
structure, but does so in a manner responsive to the phylo-
genetic estimation process. Finally, we designed DCM3 to

be much faster than either DCM1 or DCM2 in producing
the decompositions (mostly by not insisting on their opti-
mality), since previous experiments had shown that dataset
decomposition used most of the running time with DCM2.

4.1. The optimal decomposition

We begin by describing the algorithm to find an optimal
DCM3 decomposition. (As noted, it is not the decomposi-
tion used in our implementation, but we need it to estab-
lish the framework.) Consider a tree � on our set � of taxa
and an edge weighting � of � , ����� � � ��. (A possi-
ble edge weighting is given by the Hamming distances un-
der the MP labelling of the nodes of � .) We construct the
short subtree graph, which is the union of cliques formed
on “short subtrees” around each edge. Let � be an internal
edge (not touching a leaf) in � ; then removing � and its two
endpoints from � breaks � into four subtrees. A short quar-
tet around � is composed of four leaves, one from each of
these four subtrees, where each leaf is selected to be the
closest (according to the edge weights) in its tree to �. This
short quartet need not be unique: several leaves in the same
subtree may lie at the same shortest distance from �. Thus
we define the short subtree around � to be the set ���� of
all leaves that are part of a short quartet around �. We will
use the clique on ����: the graph with ���� as its vertices
and with every pairwise edge present, weighted according
to �; denote this clique by ����. The short subtree graph
is then the union, over all internal edges � of the guide tree,
of the ����. We now use the following lemma from [2] and
[6] to prove that the short subtree graph is triangulated.

Lemma 1. Every triangulated graph is the intersection
graph of subtrees of a tree and vice-versa.

Theorem 1. The short subtree graph � of an edge-
weighted binary tree � is triangulated.

Proof. We will use Lemma 1 to show that � � ��	�� is
isomorphic to such an intersection graph. First, we define a
subtree for each
 � � . Create a copy of � called � � and
subdivide every internal edge of � �; thus, we create a new
node
� for every internal edge �.

Recall that each node
 � � represents a leaf in ��� �,
where � is the guide-tree. For each node
 � � , consider
the set of edges ���� � such that for all � � ���� �,
 is a
leaf in the short subtree of �. Note that ���� � is the set of
edges in the original guide-tree � . We now define for each
� � ���� � the path � �
	
�� in � � which begins at leaf

and ends at
�. Clearly, this path is a subtree of � �. Let � �
�
be the union of all such paths in � � that begin at
 and end
at
�, for all edges � � ���� �. Note that � �
� is a subtree
of � � which we associate to
 in the short subtree graph; we
call this subtree
�.

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

We now need to show that ��� �� � � iff �� � �� �� �.
By definition of �, this is equivalent to showing that �� �
belong to some same short subtree iff �� � �� �� �. So as-
sume that � and � belong to some common short subtree,
defined by some edge �. By definition, the subtrees �� and
�� will share at least the node ��; thus, �� � �� �� �. On
the other hand, suppose that �� and �� share some vertex
�. There are two cases to consider, depending on whether
� � �� for some edge � or not. When � � ��, it is easy to
see that both � and � are in a short subtree around edge �;
hence ��� �� � �. On the other hand, suppose � �� �� for
any edge �. Then � is a node in � but not in � �. By con-
struction, �� and �� are each the union of paths that end in
the newly introduced nodes; hence, �� has a node ��� adja-
cent to �, and �� has a node ���� also adjacent to �. Note that
if �� �� ���, then ���� is on the path from � to �, and hence
���� is in ��. But then ���� � �� � �� .

Since the short subtree graph � is triangulated, we can
find in polynomial time, as proved in [6], a maximal clique
separator	 that minimizes
����	 ����, where ��	 is
the union of
 components ��� ���

 � ��. Using 	 , we
can define the Optimal DCM3 Decomposition to be formed
of the subsets �� �	 , for � � �� ��

 �
. Its computation
thus proceeds in two steps:

1. Construct the short subtree graph.
2. For each of the maximal cliques in the short subtree

graph, determine if it is a separator. If so, then com-
pute the maximum size of any created subproblem and
choose that separator which minimizes it.

Theorem 2. The Optimal DCM3 decomposition can be
computed in ����� time.

Proof. Constructing the short subtree graph takes �����
time. There are ���� maximal cliques [6]. For each max-
imal clique, determining whether it is a separator and, if
so, computing the sizes of the components, takes a total of
����� time.

Constructing the short subtree graph and finding the sep-
arator and connected components are the costliest parts of
this decomposition. Although both parts have ����� run-
ning times, finding the optimal separator and the connected
components takes much longer in practice. Thus, the opti-
mal decomposition is too expensive to compute for the kind
of � we have in mind—even if we can obtain one optimal
decomposition relatively fast for one tree on a million taxa,
we will need to iterate this computation many, many times.

4.2. A fast suboptimal decomposition

Rather than explicitly seeking a clique separator 	 in �
which minimizes the size of the largest subproblem, we ap-
ply a simple heuristic to get a decomposition, which in prac-

tice turns out to be a good decomposition. Although finding
such a clique separator in a triangulated graph takes polyno-
mial time, it is still costly in practice and is the reason why
DCM2’s decomposition was expensive to compute.

We first find a centroid edge in �—that is, an edge such
that when removed, produces the most balanced bipartition
of the leaves. This can be found in linear time using a depth-
first search on � . We set 	 to be the short subtree around
the centroid edge �. Under most conditions (other than the
case where the guide tree is ultrametric, i.e., when the strong
molecular clock hypothesis holds), the short subtree will be
a separator and it tends to produce subproblems that are ac-
ceptably small—in all our runs the short subtree was a sep-
arator. Should this set 	 fail to be a separator in the short
subtree graph defined by the guide tree, we would then re-
sort to computing all maximal clique separators in �; how-
ever, we never needed to do this.

Once we have computed the short subtree graph, it takes
����� time to find the subproblems using the centroid
technique—we just perform a depth first search on the short
subtree graph to find the connected components. However,
computing the short subtree can take ����� time in the
worst case, i.e., when the short subtrees are of size ����.
In our experiments, however, the short subtrees are usually
of size 4 or 5; thus, reducing the running time to �����.

4.3. Comparison of DCM decompositions

We designed DCM3 in part to avoid producing large sub-
sets, as DCM2 is prone to do. Yet, of course, the subprob-
lems produced from a very large dataset remain too large
for immediate solution by a base method. Hence we used
the approach successfully pioneered by Tang and Moret
with DCM-GRAPPA [22] and used DCM3 recursively, pro-
ducing smaller and smaller subproblems until every sub-
problem was small enough to be solved directly. Figure 1
shows that DCM3 produces subproblems of sizes bounded
by about half the initial subproblem size and much smaller
than those produced by DCM2. (Rec-DCM3 in this series
of tests was set up to recurse until each subproblem was of
size at most one quarter of the original size.)

4.4. Subtree construction and assembly

Once the dataset is decomposed into overlapping sub-
sets ��� ���

 � �� (for us,
 � � is typical), subtrees
are constructed for each subset, ��, using the chosen “base
method,” and then combined using the Strict Consensus
Merger [7, 8] to produce a tree on the combined dataset. The
proof that the resulting tree is accurate (i.e., agrees, with
high probability and in the limit, with the unknown under-
lying “true tree”) follows from the following structural the-

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

orem (we omit the proof which is along the same lines as in
[7]).

Theorem 3. Let � be the true tree and let ��� ��� � � � � ��

be the subproblems obtained in some DCM3 decomposition.
If every short quartet in � is a four-clique in some �� and if
the base method applied to �� returns the true tree for that
subset (i.e., �� � � ���), then the strict consensus merger of
trees ��� ��� � � � � �� yields the true tree � .

4.5. Rec-I-DCM3

Our Rec-I-DCM3 algorithm takes as input the set � �

���� � � � � ��� of � aligned biomolecular sequences, the cho-
sen base method, and a starting tree � . In our experi-
ments, we have used TNT (with default settings) as our base
method, since it is the hardest to improve (in comparison,
the PAUP* implementation of the parsimony ratchet [1] is
easier to improve). Our algorithm produces smaller sub-
problems by recursively applying the centroid-edge decom-
position until each subproblem is of size at most �; in our
experiments we used subproblems of size at most one quar-
ter of the original size. The subtrees are then computed,
merged, and resolved (from the bottom-up, using random
resolution) to obtain a binary tree on the full dataset. These
steps are repeated for a specified number of iterations.

5. Experimental design

Having designed a new algorithm and having prelimi-
nary evidence (on small simulations) that it outperforms
existing techniques, we now need to evaluate its perfor-
mance in practice. The experimental evaluation of algo-
rithms for phylogenetic reconstruction is a difficult en-
deavor (see [13, 14] for details). Because credible simu-
lations of evolution remain lacking at the scale of 10,000
or more taxa, we chose to use biological datasets in our
study. This choice ensures biological relevance of our re-
sults, but it prevents us from evaluating the accuracy of re-
constructed trees, since the “true” tree is not available. How-
ever, other work from our group [24] tells us that we need
to achieve excellent approximation of the parsimony score
(tree length) in order to have any chance at reconstructing
the true topology. Thus, we focused our testing on the qual-
ity of approximation in terms of the parsimony score.

Parameters and measurements: We chose to test perfor-
mance during the first 24 hours of computation on each
dataset for each method, taking hourly “snapshots” along
the way in order to evaluate the progress of each method.
We asked the following two questions: (i) how much of
an improvement is gained by using Rec-I-DCM3 ver-
sus TNT, if any? and (ii) how long does the best TNT trial
(out of five runs) take to attain the average MP score ob-
tained at 24 hours by Rec-I-DCM3? To answer these ques-

tions, we ran TNT and Rec-I-DCM3(TNT), which uses
TNT as its base method, on our ten biological datasets, us-
ing five independent runs, all on the same platform, with
computed variances for all measurements.

Implementation and platform: Our DCM implementations
are a combination of LEDA, C++, and Perl scripts. The
TNT Linux executable was obtained from Pablo Goloboff,
one of the authors of TNT. We ran our experiments on three
sets of processors, all running Linux: the Phylofarm clus-
ter of 9 dual 500MHz Pentium III processors; a part of
the 132-processor SCOUT cluster, consisting of 16 dual
733MHz Pentium III processors, and the Phylocluster
of 24 dual 1.5GHz AMD Athlon processors, all at the Uni-
versity of Texas at Austin. For each dataset all the meth-
ods were executed on the same cluster; larger datasets were
run on the faster machines. Note that Rec-I-DCM3(TNT)
was not parallelized: all subproblems were processed one
after the other even though we had access to many proces-
sors at once. Clearly we can expect even greater speedups if
we processed all the subproblems in parallel.

6. Results

We defined the “best score” on each dataset to be the
best MP score found over all five runs among all methods
in the 24-hour period we allowed; on our datasets, this best
score score was always obtained by Rec-I-DCM3(TNT). On
each dataset and for each method, we computed the aver-
age MP score at hourly intervals and reported this value as
a percentage of deviation from the best score. In our exper-
iments, on every dataset and at every point in time (within
these 24 hours), the best performance was obtained by Rec-
I-DCM3(TNT). Since only error rates less than 0.01% are
tolerable, Rec-I-DCM3’s performance is very impressive;
all trees are at least 99.99% correct. TNT, on the other
hand, failed to reach this level of accuracy consistently—
especially on datasets with more than 4,500 sequences.

Figure 2 shows the performance of Rec-I-DCM3(TNT)
and of TNT at 24 hours. As the size of the dataset increases,
the relative error in MP scores increases, but at a much faster
rate for TNT than for Rec-I-DCM3(TNT), so that the accu-
racy gap between the two increases quite rapidly.

Figure 2(a) indicates how long it took TNT, in the best
of five runs, to match the average scores obtained by Rec-
I-DCM3(TNT) after 24 hours—we stopped the clock after
one week of computation if the TNT run had not achieved
a match by then, something that happened on the seven
largest datasets. On these seven datasets, we plotted the ra-
tio of the time taken by Rec-I-DCM3(TNT) to reach the
best TNT week-run score against the time taken by the TNT
week-run to reach that score. Figure 3(b) shows that Rec-I-
DCM3(TNT) reaches the best TNT week-run score at least

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

10 times faster on Datasets 4-10. On Datasets 6 and 10 the
improvement is 50 times.

Figure 4 compares the time-dependent behaviors of TNT
and Rec-I-DCM3(TNT) on our three smallest datasets (1, 2,
and 3), while Figure 5 shows the same for the three medium
datasets (4, 5, and 6), and Figure 6 shows the same for
our three large datasets (8, 9 and 10). Figure 7 shows the
performance of TNT and Rec-I-DCM3(TNT) on our largest
dataset of about 14,000 sequences. It should be noted that
the 24-hour time limit was perhaps overly limiting for the
largest dataset: a quick look at the curves appears to indicate
that even Rec-I-DCM3(TNT) has not yet reached a plateau
at that point. The improvement achieved by boosting TNT
with Rec-I-DCM3 is significant on all datasets as well as at
all time intervals. In particular, note that the boosted version
of TNT shows much stronger decreases in MP scores in the
first several hours than the unboosted version. The low vari-
ances, as indicated by the datapoints of all five runs of both
the methods, show that our results are statistically sound.
Note that there is a noticeably large difference between the
worse datapoint of Rec-I-DCM3(TNT) and the best data-
point of TNT at 24 hours on Dataset 6 onwards.

Figure 8 shows how the error rate (deviation above the
best score) of Rec-I-DCM3(TNT) decreases with compu-
tation time on each of the ten datasets. While the initial
trees computed for the large datasets tend to exhibit large er-
ror (as large as 0.35%), the error drops very rapidly—even
more rapidly for the large datasets than for the smaller ones.
Thus, not only do the error rates of Rec-I-DCM3(TNT) fall
more rapidly than those of TNT alone, but they have a pos-
itive second derivative: the larger they are, the faster they
fall.

7. Related Work and Discussion

Because of the importance of MP analyses in phylogeny
reconstruction, systematists and algorithms researchers in
phylogeny have studied the existing methods (specifically,
implementations of heuristics in different software pack-
ages) to see which performed the best. The main criterion by
which these methods have been studied is the time needed
to get to the best known score on various real datasets,
preferably of at least one hundred sequences. These stud-
ies [5, 16, 17, 18, 20] have suggested that the “parsimony
ratchet” [16], an iterated local search technique, was more
effective than Tree-Bisection and Reconnection (TBR) hill-
climbing [10], and that TNT (which uses the parsimony
ratchet) was more efficient than PAUP*’s implementation
of the ratchet. The study by Pablo Goloboff [5] suggested
that the TNT-default technique (a combination of simulated
annealing, divide-and-conquer, and genetic algorithms) was
better than the TNT-ratchet implementation, especially on
large datasets.

Our previous studies of our DCM variants included a
study of the performance of boosted PAUP* MP heuris-
tics using DCM2, which showed good results [8]. How-
ever, our own analyses of phylogenetic reconstruction meth-
ods showed convincingly that the default PAUP* heuristic
was not as powerful as the default TNT heuristics; they also
showed that DCM2 failed to boost TNT. DCM3 was our at-
tempt to remedy this situation, but it, too, failed to boost
TNT reliably. The two key ideas were to use (i) iteration in
order to refine the guide tree (since, obviously, the initial
guide tree is perforce poor), and (ii) recursion, which had
been used with spectacular success by Tang and Moret [22]
in boosting the GRAPPA reconstruction software (for gene-
order data) over three orders of magnitude.

Looking over our experience with both Rec-I-DCM3 and
DCM-GRAPPA, we can make reasonable inferences as to
the reasons for the success of both. Recursion is neces-
sary to bridge the gap between datasets that can be ana-
lyzed today by the base method (2,000–3,000 sequences
for TNT, 14–15 genomes for GRAPPA) and large datasets.
DCM-GRAPPA bridged three orders of magnitude in sim-
ulation studies (from 14 to 1,200 taxa); our Rec-I-DCM3
bridges a least one order, but may be capable of more—
biological datasets with 100,000 aligned sequences do not
yet exist! But speed is only one component of the equa-
tion: the other is accuracy. In the case of DCM-GRAPPA,
which uses no iteration and a simple DCM1 decomposition,
the accuracy derives in good part from the excellent proper-
ties of gene-order data in phylogenetic reconstruction—and
only simulations were used. In our case, recursion alone (a
version we could call Rec-DCM3, which we tested), does
not suffice: we need the ability, through iteration, to modify
the guide tree at every level of the recursion. The combina-
tion of the two has synergistic effects: the decomposition is
dictated by the guide tree, and thus by the successive itera-
tions, and localizes the work for the recursive stages and the
base method; and recursion enables the same process to take
place at finer and finer levels of resolution, while communi-
cating the results back to the coarser levels. Our results sug-
gest that DCM-GRAPPA could be significantly enhanced by
using a version of Rec-I-DCM3, but also that a more dis-
criminating use of the guide tree, yielding more than just
four subsets (e.g., by using a type of DCM1 decomposition
guided by the guide tree), would probably work better for
us, especially when tackling truly large datasets (on the or-
der of millions of sequences) where several orders of mag-
nitude will have to be bridged.

8. Summary and Future Plans

We have presented a new Disk-Covering Method for
boosting the performance of phylogenetic reconstruction
methods. Our new technique, Rec-I-DCM3, dramatically

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

improves on existing techniques for maximum parsimony,
as our experimental study on ten large biological datasets
shows. Rec-I-DCM3 reconstructs trees with MP scores that
are within 0.01% of the best score—a necessary feature
since only MP estimates that are 99.99% correct or better
can yield good topological estimates of the true tree. More-
over, Rec-I-DCM3 produces high-quality reconstructions
very quickly (within 24 hours) even on the largest datasets.
Other approaches fail to achieve such accuracy within a rea-
sonable time period. While the work in this study focused
on maximum parsimony, our results are equally applicable
to maximum likelihood (which has far more severe time
constraints, so that a much much larger payoff in running
time is likely) and to phylogenetic multiple sequence align-
ment. An open source C implementation of our algorithm is
in progress and will be released in the near-future.

9. Acknowledgments

This work was supported by the National Science Foun-
dation under grants ANI 02-03584 (Moret), DEB 01-20709
(Moret and Warnow), EF 03-31453 (Warnow), EF 03-
31654 (Moret), EIA 99-85991 (Warnow, the SCOUT Clus-
ter), IIS 01-13095 (Moret), IIS 01-13654 (Warnow), IIS
01-21377 (Moret), IIS 01-21680 (Warnow), by an Al-
fred P. Sloan Foundation Postdoctoral Fellowship in Com-
putational Molecular Biology DE-FG03-02ER63426
(Williams), by the David and Lucile Packard Foundation
(Warnow), by the Institute for Cellular and Molecular Biol-
ogy at UT-Austin (Warnow), by the Radcliffe Institute for
Advanced Study (Warnow), and by the Program in Evo-
lutionary Dynamics at Harvard University (Warnow). We
thank Pablo Goloboff for providing us with a Linux exe-
cutable for TNT.

References

[1] O. Bininda-Emonds. Ratchet implementa-
tion in PAUP*4.0b10, 2003. Available from
www.tierzucht.tum.de:8080/WWW/Homepages/Bininda-
Emonds.

[2] P. Buneman. A characterization of rigid circuit graphs. Dis-
crete Mathematics, 9:205–212, 1974.

[3] W. Fitch. Toward defining the course of evolution: minimum
change for a specified tree topology. Syst. Zool., 20:406–416,
1971.

[4] L. Foulds and R. Graham. The Steiner problem in phylogeny
is NP-complete. Advances in Applied Mathematics, 3:43–49,
1982.

[5] P. Goloboff. Analyzing large data sets in reasonable times:
solution for composite optima. Cladistics, 15:415–428,
1999.

[6] M. Golumbic. Algorithmic graph theory and perfect graphs.
Academic Press, Inc., 1980.

[7] D. Huson, S. Nettles, and T. Warnow. Disk-covering, a
fast-converging method for phylogenetic tree reconstruction.
Journal of Computational Biology, 6:369–386, 1999.

[8] D. Huson, L. Vawter, and T. Warnow. Solving large scale
phylogenetic problems using DCM2. In Proc. 7th Int’l Conf.
on Intelligent Systems for Molecular Biology (ISMB’99),
pages 118–129. AAAI Press, 1999.

[9] M. Kallerjo, J. Farris, M. Chase, B. Bremer, and M. Fay. Si-
multaneous parsimony jackknife analysis of 2538 rbcL DNA
sequences reveals support for major clades of green plants,
land plants, seed plants, and flowering plants. Plant. Syst.
Evol., 213:259–287, 1998.

[10] D. Maddison. The discovery and importance of multiple
islands of most parsimonious trees. Systematic Biology,
42(2):200–210, 1991.

[11] B. Maidak, J. Cole, T. Lilburn, C. P. Jr, P. Saxman, J. Stred-
wick, G. Garrity, B. Li, G. Olsen, S. Pramanik, T. Schmidt,
and J. Tiedje. The RDP (ribosomal database project) contin-
ues. Nucleic Acids Research, 28:173–174, 2000.

[12] C. Michener and R. Sokal. A quantitative approach to a prob-
lem in classification. Evolution, 11:130–162, 1957.

[13] B. Moret. Towards a discipline of experimental algorith-
mics. In M. Goldwasser, D. Johnson, and C. McGeoch, edi-
tors, Data Structures, Near Neighbor Searches, and Method-
ology: Fifth and Sixth DIMACS Implementation Challenges,
volume 59 of DIMACS Monographs, pages 197–213. AMS
Press, 2002.

[14] B. Moret and T. Warnow. Reconstructing optimal phylo-
genetic trees: A challenge in experimental algorithmics. In
R. Fleischer, B. Moret, and E. Schmidt, editors, Experimen-
tal Algorithmics, volume 2547 of Lecture Notes in Computer
Science, pages 163–180. Springer-Verlag, 2002.

[15] L. Nakhleh, U. Roshan, K. St. John, J. Sun, and T. Warnow.
Designing fast converging phylogenetic methods. In Proc.
9th Int’l Conf. on Intelligent Systems for Molecular Biology
(ISMB’01), volume 17 of Bioinformatics, pages S190–S198.
Oxford U. Press, 2001.

[16] K. Nixon. The parsimony ratchet, a new method for rapid
parsimony analysis. Cladistics, 15:407–414, 1999.

[17] D. Quicke, J. Taylor, and A. Purvis. Changing the landscape:
A new strategy for estimating large phylogenies. Systematic
Biology, 50(1):60–66, 2001.

[18] U. Roshan, B. Moret, T. Williams, and T. Warnow. Per-
formance of supertree methods on various dataset decom-
positions. In O. Bininda-Emonds, editor, Phylogenetic Su-
pertrees: Combining Information to Reveal the Tree of Life,
volume 3 of Computational Biology, pages 301–328. Kluwer
Academic Publishers, 2004.

[19] N. Saitou and M. Nei. The neighbor-joining method: A new
method for reconstructing phylogenetic trees. Molecular Bi-
ology and Evolution, 4:406–425, 1987.

[20] D. Soltis, P. Soltis, M. Chase, M. Mort, D. Albach, M. Za-
nis, V. Savolainen, W. Hahn, S. Hoot, M. Fay, M. Axtell,
S. Swensen, L. Prince, W. Kress, K. Nixon, and J. Farris.
Angiosperm phylogeny inferred from 18s rDNA, rbcL, and
atpB sequences. Botanical Journal of the Linnean Society,
133:381–461, 2000.

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

[21] D. Swofford. PAUP*: Phylogenetic analysis using parsi-
mony (and other methods), 2002. Sinauer Associates, Sun-
derland, Mass., Version 4.0.

[22] J. Tang and B. Moret. Scaling up accurate phylogenetic re-
construction from gene-order data. In Proc. 11th Int’l Conf.
on Intelligent Systems for Molecular Biology ISMB’03, vol-
ume 19 (Suppl. 1) of Bioinformatics, pages i305–i312, 2003.

[23] T. Warnow, B. Moret, and K. St. John. Absolute conver-
gence: True trees from short sequences. In Proc. 12th Ann.
ACM-SIAM Symp. Discrete Algorithms (SODA’01), pages
186–195. SIAM Press, 2001.

[24] T. Williams, B. M. T. Berger-Wolf, U. Roshan, and
T. Warnow. The relationship between maximum parsimony
scores and phylogenetic tree topologies. Technical Re-
port TR-CS-2004-04, Department of Computer Science, The
University of New Mexico, 2004.

[25] J. Wuyts, Y. V. de Peer, T. Winkelmans, and R. D. Wachter.
The European database on small subunit ribosomal RNA.
Nucleic Acids Research, 30:183–185, 2002.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Dataset#

M
ax

 s
ub

pr
ob

le
m

 s
iz

e
as

 a
 %

 o
f f

ul
l d

at
as

et
 s

iz
e Rec−DCM3

DCM3
DCM2

(a) maximum relative subproblem size

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Dataset#

A
ve

ra
ge

 s
ub

pr
ob

le
m

 s
iz

e
as

 a
 %

 o
f f

ul
l d

at
as

et
 s

iz
e Rec−DCM3

DCM3
DCM2

(b) mean relative subproblem size

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Dataset#

N
um

be
r

of
 s

ub
pr

ob
le

m
s

Rec−DCM3
DCM3
DCM2

(c) number of subproblems

Figure 1. Comparison of DCM2, DCM3 and
Recursive-DCM3 decompositions. DCM2 de-
compositions on Datasets 5–10 could not be
computed due to memory limitations.

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

7 8 9 10 11 12 13 14 15 16
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Dataset#

(A
vg

. s
co

re
 a

t 2
4

ho
ur

s
−

 b
es

t s
co

re
)/

(b
es

t s
co

re
)

*
10

0 TNT−default
Rec−I−DCM3(TNT)

deviation from optimal

Figure 2. Shown here is the average devia-
tion above best score after 24 hours by TNT
and Rec-I-DCM3(TNT).

1 2 3 4 5 6 7 8 9 10
0

24

48

72

96

120

144

168

Dataset#

H
ou

rs
 fo

r
be

st
 T

N
T

 to
 r

ea
ch

 a
vg

 R
ec

−
I−

D
C

M
3(

T
N

T
)

sc
or

e

(a) TNT time to best score

4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

Dataset#R
at

io
 o

f R
ec

−
I−

D
C

M
3(

T
N

T
)

an
d

T
N

T
−

w
ee

kr
un

 ti
m

e
to

 a
tta

in
 b

es
t T

N
T

−
w

ee
kr

un
 s

co
re

(b) Improvement of Rec-I-DCM3 over TNT week-run

Figure 3. Part (a) shows the time taken by
the single best TNT trial, extended to run
for up to a week, to match the average Rec-
I-DCM3(TNT) score at 24 hours—bars that
reach the top indicate that TNT could not
reach a match after a week of computation.
Part (b) shows the ratio of the time taken by
Rec-I-DCM3(TNT) to find the best TNT-default
week-run score against the time taken by
the TNT-default week-run to find that score.
We show the improvement only on Datasets
4-10 because that is where the best score
found by the TNT-default week-run was worse
than the mean Rec-I-DCM3(TNT) score at 24
hours.

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

0 4 8 12 16 20 24
0

0.005

0.01

0.015

0.02

0.025

0.03

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 th
e

be
st

 s
co

re

TNT−default
Rec−I−DCM3(TNT)

(a) Dataset #1 (1,322 sequences)

0 4 8 12 16 20 24
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 th
e

be
st

 s
co

re

TNT−default
Rec−I−DCM3(TNT)

(b) Dataset #2 (2,000 sequences)

0 4 8 12 16 20 24
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 th
e

be
st

 s
co

re

TNT−default
Rec−I−DCM3(TNT)

(c) Dataset #3 (2,594 sequences)

Figure 4. Average MP scores of TNT and Rec-
I-DCM3(TNT) on Datasets 1, 2, and 3, given as
the percentage above the best score. Shown
in each graph are datapoints of all five runs
of both methods indicated by the small sym-
bols. The variances are low in Datasets 1 and
3 and moderate in Dataset 2. Note: the verti-
cal range varies across the datasets.

0 4 8 12 16 20 24
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 th
e

be
st

 s
co

re

TNT−default
Rec−I−DCM3(TNT)

(a) Dataset #4 (4,584 sequences)

0 4 8 12 16 20 24
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 th
e

be
st

 s
co

re

TNT−default
Rec−I−DCM3(TNT)

(b) Dataset #5 (6,590 sequences)

0 4 8 12 16 20 24
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 th
e

be
st

 s
co

re

TNT−default
Rec−I−DCM3(TNT)

(c) Dataset #6 (7,180 sequences)

Figure 5. Average MP scores of TNT and Rec-
I-DCM3(TNT) on Datasets 4, 5, and 6, given
as the percentage above the best score.
Shown in each graph are datapoints of all
five runs of both methods indicated by the
small symbols. The variances are low on all
the datasets shown here with little overlap
of points in Datasets 4 and 5 and almost no
overlap in Dataset 6. Note: the vertical range
varies across the datasets.

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

0 4 8 12 16 20 24
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 th
e

be
st

 s
co

re
TNT−default
Rec−I−DCM3(TNT)

(a) Dataset #7 (7,322 sequences)

0 4 8 12 16 20 24
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 th
e

be
st

 s
co

re

TNT−default
Rec−I−DCM3(TNT)

(b) Dataset #8 (8,506 sequences)

0 4 8 12 16 20 24
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 th
e

be
st

 s
co

re

TNT−default
Rec−I−DCM3(TNT)

(c) Dataset #9 (11,361 sequences)

Figure 6. Average MP scores of TNT and Rec-
I-DCM3(TNT) on Datasets 8, 9, and 10, given
as the percentage above the best score.
Shown in each graph are the datapoints of all
five runs of both methods indicated by small
symbols. After the fourth hour there is no
overlap of points and the variances of both
the methods are low. Note: the vertical range
varies across the datasets.

0 4 8 12 16 20 24
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 th
e

be
st

 s
co

re

TNT−default
Rec−I−DCM3(TNT)

(a) Dataset #10 (13,921 sequences)

Figure 7. Average MP scores of TNT and Rec-
I-DCM3(TNT) on Dataset 10, given as the per-
centage above the best score. Also shown
are the datapoints of all five runs of both
methods indicated by small symbols. Note
that the variances are very low and after the
third hour there is no overlap of points.

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

0 4 8 12 16 20 24
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 b
es

t s
co

re

1
2
3
4
5
6
7

0 4 8 12 16 20 24
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 b
es

t s
co

re

8
9
10

Figure 8. Decrease in error rates with time on
all datasets for Rec-I-DCM3(TNT)

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

