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1 High-Performance Phylogeny
Reconstruction Under Maximum
Parsimony

DAVID A. BADER †, BERNARD M.E. MORET‡, TIFFANI L. WILLIAMS §,

and MI YAN†

1.1 INTRODUCTION

The similarity of the molecular matter of the organisms on Earth suggest that they

all share a common ancestor. Thus any set of species is related, and this relation-

ship is called a phylogeny. The links (or evolutionary relationships) among a set of

organisms (or taxa) form a phylogenetic tree, where modern organisms are placed

at the leaves and ancestral organisms occupy internal nodes, with the edges of the

tree denoting evolutionary relationships. Scientists are interested in evolutionary

trees for the usual reasons of scientific curiosity. However, phylogenetic analy-

sis is not just an academic exercise. Phylogenies are the organizing principle for

most biological knowledge. As such, they are a crucial tool in identifying emerg-

ing diseases, predicting disease outbreaks, and protecting ecosystems from invasive

species [Bader et al., 2001, Cracraft, 2002]. The greatest impact of phylogenetics

will be reconstructing the Tree of Life, the evolutionary history of all-known or-

ganisms. No one precisely knows the number of organisms that exist in the world.

Estimates often cited range from 10 - 100 million species. Today, only about 1.7
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2 HIGH-PERFORMANCE PHYLOGENY UNDER MP

million species are known, and a very small fraction (i.e., on the order of 0.4%) are

included in any sort of phylogenetic tree [Yates et al., 2004].

Given the societial benefits of phylogenetic trees, reconstructing the evolutionary

history from present-day taxa is a very difficult problem. Forn organisms, there

are(2n − 5)(2n − 3) · · · (5)(3) distinct binary trees; each a possible hypothesis for

the “true” evolutionary history. (There are over 13 billion possible trees for 13 taxa.)

Since the size of the tree space increases exponentially with the number of taxa, it im-

possible to explore all possible hypothesis for them within a reasonable time frame.

Most phylogenetic methods limit themselves to exhausitive searches on extremely

small datasets (< 50 sequences) or heuristic strategies for larger datasets. Another

difficulty lies in accessing the accuracy of the reconstructed tree. Short of traveling

back into time, there is no way of determining whether the proposed evolutionary

history is 100% correct. The best conclusion is simply the best hypothesis of what

might have happened.

There is an ongoing search for tree-building methods that are the most robust

(i.e., that are more likely to estimate the true topology even when the evolutionary

assumptions are violated), consistent (that converge on the true topology as more

data are added), and efficient (that converge on the topology most quickly). These

attempts to improve the accuracy of molecularly based phylogenies have resulted in

the development of hundreds of methodological variations to take account of biases

that result from different evolutionary processes. For example, various methods aim

to correct for inconstancy of overall evolutioary rates, or for inequalities in transition

and transversion rates, and for various other problems.

1.1.1 Phylogenetic Data

Early evolutionary trees were built from the existence of morphological characters

(i.e., observable) in the organisms of interest. We represent species with binary se-

quences corresponding the morphogical data. Each bit corresponds to a feature called

a character. If a species has a given feature, the corresponding bit is one; otherwise, it

is set to zero. Today, trees are almost exclusively built from by molecular sequences.
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INTRODUCTION 3

In sequence data, characters are individual positions (or sites) in the string. Depend-

ing upon the type of sequence data, characters can assume one of a few states: 4

states for nucleotides (A,C,G,T) or 20 states for amino-acids.

Large amounts of sequence data are easily attainable from databases such as Gen-

Bank, along with search tools (such as BLAST). However, “raw” sequence data must

first be refined into a format suitable for use in a phylogenetic analysis. The refine-

ment process consists of:

1. identifying homologousgenes (i.e., genes that have evolved from a common

ancestral gene—and most likely fulfill the same function in each organism)

across the organisms of interest;

2. retrieving followed by aligning the sequences of these genes across the en-

tire set of organism, in order to identify gaps (corresponding to insertions or

deletions) and matches or mutations; and

3. deciding whether to use all available data at once for acombinedanalysis or

use each gene separately andreconcilethe resulting trees.

Many packages requiring sequence data are available to reconstruct phylogenetic

trees such as PAUP* [Swofford, 2002], MacClade, Mesquite [Maddison and Maddison, ],

Phylip [Felsenstein, ], MrBayes [Huelsenbeck and Ronquist, 2001], and TNT [Goloboff, 1999].

These packages are available either freely or for a modest fee, are in widespread use,

and have provided biologists with satisfactory results on many datasets.

Other types of phylogenetic data exist to reconstruct phylogenies. Phylogenetic

inference based on gene order data provide an alternative to using sequence data.

Gene order data is based on the structural arrangement of genes in an organism’s

entire genome. Hence, thegene tree vs. species treeproblem (i.e., the evolution

of any given of any given gene need not be identical to that of the organism) is

avoided when using gene order data. Yet, gene order data is sparsely available in

comparison to sequence data. Consequently, most tree reconstruction efforts are

focused on the reconstruction of phylogenetic trees based on sequence data. See

(Moret and Warnow refs) for a more detailed overview of phylogeny reconstruction

based on gene-order data.
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4 HIGH-PERFORMANCE PHYLOGENY UNDER MP

1.1.2 Phylogenetic Methods

Different tree reconstructing methods commonly produce different tree topologies

from the same data. Thus, there is a problem in deciding which are more correct for

the given data. There is an ongoing search for tree-building methods that are the most

robust (that are more likely to estimate the true topology even when the evolutionary

assumptions are violated), consistent (that converge on the true topology as more

data is added), and efficient (that converge on the topology most quickly).

Attempts to improve the accuracy of phylogenies have resulted in hundreds of

methodological variations to take account of biases that result from different evo-

lutionary processes. Yet, the plethora of methods can be divided into two broad

categories.Distance-methodstransform the sequence data into a numerical repre-

sentation of the data. On the other hand,Criteria-methodsrely on optimality criteria

to score the tree based on the individual contribution of the characters in the sequence

data.

1.1.2.1 Distance-based methodsNucleotide sequence similarities may be con-

verted to sequence distances in order to calculate the positions of the nodes in the

phylogenetic tree. Distances are calculated for all pairs of sequences under study,

thus creating a distance matrix. If mutations occur at random, there will be a certain

number of positions withsilent mutations–changes that are subsequently reversed

in the course of evolution, leaving no trace in modern organisms. Although a se-

quence is evolving, a fraction of the evolutionary change will be hidden. Computing

the Hamming distance between each pair of sequences is an underestimation of the

true genetic distance. Therefore, in distance-based methods, one tries to estimate

the number of substitutions that have actually occurred by applying a specificevolu-

tionary modelthat makes assumptions the nature of evolutionary changes. When all

the pairwise distances have been computed for a set of sequences, a tree can then be

inferred.

Distance-based methods build the search for the tree into the algorithm, thus re-

turning a unique final topology for a distance matrix associated with a given set of se-

quences. The most popular distance-based algorithm is Neighbor-Joining (NJ) [Saitou and Nei, 1987].
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INTRODUCTION 5

The NJ algorithm begins with each species in its own subtree. The algorithm joins

the pair with the minimum score, making a subtree whose root replaces the two cho-

sen taxa in the matrix. Distances are recalculated based on this new node, and the

“joining” continues until three nodes remain. These nodes are joined to form an un-

rooted binary tree. Appealing features of NJ are its simplicity and speed—it runs in

O(n3) time. Other distance methods include UPGMA and refinements of NJ such

as BioNJ [Gascuel, 1997] and Weighbor [Bruno et al., 2000].

1.1.2.2 Criteria-based methodsCriterial-based methods explicitely rank the tree

topologies by explcitely defining an objective function to score the trees. Tree scores

allows any two or more trees to be ranked according to the chosen optimality crite-

rion. Unlike distance-based approaches, there are many possible solutions given a

set of sequences for critera-based approaches. Hence, there is an explicit search for

the “optimal” tree. Criteria-based methods can be divided into two broad categories:

exact methods (i.e., methods that solve the problem exactly by considering all pos-

sible trees and heuristic approaches (i.e., methods that consider a very small fraction

of the possible tree space). Exact methods are limited to extremely small dataset

sizes. Anything larger is territory for a heuristic approach.

Parsimony methodsAn intuitive score for ranking phylogenetic trees is counting

the total number of mutations required to explain all of the observed character se-

quences. The maximum parsimony approach attempts to minimize this score fol-

lowing the philosophy of Occam’s razor—the simplest explanation of the data is

preferred. Under the parsimony approach, a total cost is assigned to each tree, and

the optimal tree is defined as the one with the smallest total cost. In maximum par-

simony, a unit cost is given for each nucleotide substitution. A central step in the

procedure is to allocate sequences to the internal nodes in the tree. For any set of

sequence allocations, the total cost of the tree is the sum of the costs of the vari-

ous edges, where the cost of joining two internal nodes, or an internal node and a

leaf, is the number of substitutions need to move from the sequence at one to the se-

quence at the other. Many software packages implement MP heuristics, among them

PAUP* [Swofford, 2002], Phylip [Felsenstein, ], and TNT [Goloboff, 1999].
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6 HIGH-PERFORMANCE PHYLOGENY UNDER MP

Likelihood methods Likelihood methods require the specification of a substitution

model of evolution. (Sequence segments that include gaps are discarded.) For a given

phylogenetic arrangement, the question is: what is the likelihood that evolution un-

der the specified parameters will produce the observed nucleotide sequences? For

a given evolutionary hypothesis, the likelihood of the observed change is computed

for each position, and then the product of the likelihoods is expressed as a distance

or branch length between the sequences. The parameters are then varied, and the

combination with the highest likelihood is accepted. This procedure is then repeated

for another arrangement, the two topologies compared, and the one with the highest

likelihood selected. The selective process is continued (via some algorithm) until an

arrangement is found with the combined maximum likelihood of both an evolution-

ary hypothesis and a topology. This method is probably the most computationally

demanded of the methods discussed here.

Like MP, ML is an optimization problem. ML seeks the tree and associated

model parameter values that maximizes the probability of producing the given set

of sequences. ML thus depends explicitly on an assumed model of evolution. For

example, the ML problem under the Jukes-Cantor mode needs to estimate one para-

meter (the substitution probability) for each edge of the tree, while under the General

Markov model 12 parameters must be estimated on each edge. Unlike MP, scoring

a fixed tree, cannot be done in polynomial time for ML [Steel, 1994], whereas it is

easily accomplished in linear time for MP using Fitch’s algorithm [Fitch, 1971]. Var-

ious software packages provide heuristics for ML, include PAUP* [Swofford, 2002],

Phylip [Felsenstein, ], fastDNAml [Olsen et al., 1994], and PHYML [Guindon and Gascuel, 2003].

1.1.3 Performance issues

The rest of this paper concentrates exclusively on high-performance approaches

to MP. Experimental results demonstrate that distance-based methods reconstruct

poor trees (refs). Moreover, MP has received the most attention from the biology

community. Indeed, a survey of 882 phylogenetic analyses published in 76 jour-
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MAXIMUM PARSIMONY 7

nals revealed that 60% of the phylogenies were constructed using MP heuristics

(see [Sanderson et al., 1993] for more details).

[more here]

1.2 MAXIMUM PARSIMONY

Maximum parsimony is an optimization problem for inferring the evolutionary his-

tory of different taxa, in which it is assumed that each of the taxa in the input is

represented by a string over some alphabet. The input consists of a setS of n strings

over a fixed alphabetΣ, whereΣ = A,C,G, T represents the set of four nucleotides.

Σ could also represent the set of amino-acid sequences. The elements ofΣ are also

called “states”. We assume that the sequence data has been properly prepared; par-

ticularly, the sequences are already aligned so that all sequences are of lengthk.

Positions within the sequences are sometimes called sites.

A formal definition of the maximum parsimony problem is as follows. Given two

sequencesa andb of lengthk, the Hamming distancebetween them is defined as

H(a, b) = |{i : ai 6= bi}|. Let T be a tree whose nodes are labeled by sequences

of lengthk overΣ, and letH(e) denote the Hamming distance of the sequences at

each endpoint ofe. Then theparsimony lengthof the treeT is
∑

e∈E(T ) H(e). The

MP problem seeks the treeT with the minimum length; this is the same as seeking

the tree with the smallest number of point mutations for the data. MP is an NP-

hard problem [Foulds and Graham, 1982], but the problem of assigning sequences

to internal nodes of a fixed leaf-labelled tree is polynomial [Fitch, 1971].

Long-Branch Attraction Long-branch attraction refers to the generation of incor-

rect phylogenetic trees when various subsets of taxa exhibit different rates of change

in their divergences. It is sometimes referred to as the ”Felsenstein Zone Problem”.

Consider a set of four taxa A, B, C, and D. A and B are evolutionary the closer kin.

C and D are evolutionary close. For whatever reason, B and D are changing signifi-

cantly faster than A and C, then MP can yield a misleading relationship in which B

and D are cluster with each other and A with C. The problem has always been that
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8 HIGH-PERFORMANCE PHYLOGENY UNDER MP

one cannot tell whether the zone has been entered or not. When is the generated phy-

logeny telling the truth, and when is it exhibiting LBA? For extremely large datasets,

it is unclear the effect of LBA on reconstructing phylogenies.

If a gene sequence evolves rapidly in one taxon and slowly in another, it will

appear that the rapidly evolving taxon is more distantly related to their common

ancestor than is the slowly evolving one, which of course incorrect. It is clearly best

for estimates of relatedness if genes being compared have evolved at the same rates.

Furthermore, it seems intuitive that if longer and longer molecular sequences are

compared, the accuracy with which the relationships between their lineages would

be estimated should be correspondingly improved (statistical consistency), but as

shown by Felsenstein (1978), this is not necessarily the case. When some lineages’

branches have changed much more than others, most methods of establishing a tree

will indicate that the branches that have changed more (on average) are more closely

related, regardless of the actual case. The longer the sequences are compared the

more greivous this sort of error becomes. In other words, bringing more data to bear

on the problem merely worsens it (statistical inconsistency). The condition under

which this sort of inconsistency appears in molecular comparisons have been termed

the Felsenstein one (Huelsenbeck and Hillis 1993). An erroneously close relation

indicated between longer branches has been termed the unequal rate effect, or better,

as it depends on the branch lengths rather than rates per se, has been epitomized as

”long branches atract” (see Hendy and Penny 1989).

1.2.1 Scoring a tree

The problem is the following: Given the tree, and the labelling of the leaves, label the

internal nodes to minimize the number of changes. The algorithm has two steps—an

upward sweep(to compute the parsimony score and the possible states that lead to

that score) and adownward sweep(to assign sequences to the internal nodes).

Step 1: Upward SweepFirst, we define the possible states for each of the internal

nodes that minimize the score. LetSv ⊆ Σ denote the set of state assignments for

nodev. We assume thatT is binary and the children ofv areu andw. If v is a leaf,
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{A,G,T}

{A,T}

{T}

{A,G}

T
S2

A
S1

G
S4

A
S5

T
S3

Fig. 1.1 A tree with an MP score of 3.

thenSv is simply the state ofv. If v is an internal node, then it’s state is based on

the state of its two childrenu andw (Su andSw). The parsimony score increases

by one when the children of nodev have no states in common. Hence, the following

equality holds:

Sv ={state of v} if v is a leaf

Sv =Su ∩ Sw if Su ∩ Sw 6= ®
Sv =Su ∪ Sw otherwise

This allows us to computev for every nodev in T , from the bottom up. The optimal

cost (or maximum parsimony score) ofT can be calculated from the bottom-up at

the same time. Every timeSu ∪ Sw = ®, we increment the parsimony score of the

tree by one. The sum of these values over all the sites is the parsimony score of the

tree.
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10 HIGH-PERFORMANCE PHYLOGENY UNDER MP

Step 2: Downward SweepDuring the second phase, we obtain the labeling on

the internal nodes using pre-order traversal. Once again, we can handle the positions

(sites) independently. For the rootr arbitrarily assign the state forr to be any element

of Sr. Then, visit the remaining nodes in turn, every time assigning a state to the node

v from its setSv. When we visit a nodev we will have already set the state of its

parent,p. If the selected state forp is an element ofSv, then we use the same state.

Otherwise we pick a state arbitrarily fromSv.

This algorithm requiresO(nk) time to compute the labeling of every node inT

and the optimal length (i.e., maximum parsimony score) ofT , wheren = |S|, andk

is the sequence length.

Parsimony-Informative CharactersIf two characters are observed at a site, but one

of the two occurs in one taxon only, the site will require one change for any tree. In

other words, if the change is only valid for one taxa, the parsimony score for that

site will be the same. Such singleton sites require one change for any tree and are

not informative. Parsimony-informative sites include only those sites at which at

least two distinct characters are observed two or more times. So for four taxa, only

three site configurations or site patterns are informative: xxyy, xyxy, xyyx, where x

and y are two different states fromΣ. Informative and non-informative sites affect

only parsimony. Distance and likelihood methods, all sites including the constant

site affect the calculation and should be included.

1.2.2 Exact MP

A brute-force exhaustive search is feasible; an algorithm is needed that can guarantee

generation of all possible trees for evaluation of all possible trees. One procedure for

for generating all possible trees is as follows. The algorithm recursively adds the

i taxon in a stepwise fashion to all possible trees containing the firstt − 1 taxa

until all n taxa have been joined. The algorithm is easily modified for rooted trees

by including an additional artificial taxon that locates the root of each tree. In this

case, the first three trees generate represent each of the tree possible rootings of an

unrooted three-taxon tree, and the algorithm proceeds as in the unrooted case. Thus,
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EXACT MP: PARALLEL BRANCH & BOUND 11

the number of rooted trees forn taxa is equal to the number of unrooted trees for

n + 1 taxa.

The above algorithm makes it clear that the number of possible trees grows by

a factor that increase by two with each additional taxon. This relationship is ex-

pressed asB(t) =
∏t

i=3(2i − 5), whereB(t) is the number of unrooted trees for

t taxa. Clearly, the exhaustive search method can only be used for only a relatively

small number of taxa. An alternative exact procedure, the branch-and-bound method

(Hendy.1982.A) operates implicitly by evaluating all possible trees, but cutting off

paths of the search tree when it is determined that they cannot possibly lead to opti-

mal trees. We provide an example B&B algorithm in section 1.3.

1.2.3 Approximate MP

When data sets become too large to use the exact searching methods, it becomes

necessary to resort to the use of heuristics: approximate methods that attempt to find

optimal solutions but provide no guarantee of success. Generally, a two-phase system

is used to conduct approximate searches. In the simplest case, an initial starting tree

is generated using a ”greedy” algorithm that builds a tree sequentially according to

some set of rules. In general, this tree will not be optimal since decisions are made

in early stages without regard for their long-term implications. After this starting

tree is obtained, it is submitted to a round of pertubations in which neighboring trees

in the perturbation scheme are evaluated. If some perturbation yields a better tree

according to the optimality criterion, it becomes the new ”best” tree and it is then

submitted to a new round of pertubations. This process continues until no better tree

can be found in a full round of the perturbation process.

1.3 EXACT MP: PARALLEL BRANCH & BOUND

Although it takes polynomial time to compute the tree cost by Fitch’s method ([Fitch, 1971]),

it is still very time-consuming to compute the exact MP by exhaustive search due to

the enormous size of search space. Hence we use branch-and-bound (B&B) to prune
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12 HIGH-PERFORMANCE PHYLOGENY UNDER MP

the search space in phylogeny reconstruction. The underlying idea of the B&B al-

gorithm is successive decomposition of the original problem into smaller disjoint

subproblems and pruning those subproblems whose lower bound is greater than up-

per bound until an optimal or all optimal solutions are found.

1.3.1 Basic issues in branch and bound approach

Our B&B approach have five aspects that mainly affect the performance of the al-

gorithms: branching scheme, search strategy, lower bounding function, initial global

upper bound, and the data structure. We will discuss these five aspects respectively

in the following.

1.3.1.1 Branching scheme The branch scheme decides how to decompose a sub-

problem in the search space. In phylogeny reconstruction, each subproblem is asso-

ciated with a partial tree and the obejective is to find the exact MP among those trees

built from the partial tree. Our branch scheme employs the same mechanism to gen-

erate all possible unrooted binary trees for a given set of taxa. Consider the only

unrooted tree for three taxa. The remainingn − 3 taxa are added tothe tree in step-

wise fashion as described in Section 1.3. Each new position location for taxoni of

the partial tree is considered a subproblem. Thus, a subproblem associated with the

original partial tree is decomposed into a set of disjoint subproblems; each associated

with a new partial tree.

1.3.1.2 Search strategySearch strategy decides which of the currently open sub-

problems to be selected for decomposition. The two strategies most commonly used

are depth-first search (DFS)andbest-first search (BeFS). DFS is space-saving and

BeFS is more targeted towards a better global upper bound. In the case when the

initial global upper bound obtained by heuristic approaches is exactly optimal or

very close to exact optimal value, there is no significant difference in the number

of examined subproblems between DFS search and BeFS search, therefore DFS has

more advantage for reasons of space efficiency. Since our experiment shows that the

heuristic approaches we use can provide a very good solution, we employ DFS as
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EXACT MP: PARALLEL BRANCH & BOUND 13

our primary B&B search strategy and adopt BeFS as the second strategyto break the

tie.

1.3.1.3 Lower bounding function of the subproblemsHendy and Penny ([Hendy and Penny, 1982])

used the cost of the associated partial tree as the lower bound of a subproblem. In

([Purdom et al., 2000]), Purdom et al. used the sum of the single column discrepancy

and the cost of the associated tree as the lower bound. For each column (character),

the single column discrepancy is the number of states that do not occur among the

taxa in the associated tree but only occur among the remaining taxa. We employ Pur-

dom’s lower bounding function since it is much tighter than than Hendy and Penny’s.

1.3.1.4 Initial global upper bound We do not compute the upper bound for each

subproblem. Instead, before the B&B search, a global upper bound is obtained by

fast heuristic algorithms. We investigate the performance of both the neighbor-

joining (NJ) and greedy algorithm. From experiments, we found that the tree ob-

tained from NJ is usually much worse than the one obtained from the greedy algo-

rithm. The greedy algorithm constructs a tree in a stepwise fashion, at each step, the

new taxon is added into the best position which results a partial tree with minimum

score. Since adding taxa in different orders yields different trees, we use the greedy

algorithm with two different addition orders and let the better score to be the initial

global upper bound.

1.3.1.5 Data structure Each subproblem in the search space of the B&B phy-

logeny reconstruction is associated with a partial tree and the lower bound. The

lower bound serves as the priority and priority queues are used to save the open

problems. Since we use DFS search, it is natural to use a priority queue for each

depth. Several types of heaps can be found in literature. For simplicity, a traditional

D-heap ([Knuth, 1973]) is chosen to represent a priority queue. A D-heap is orga-

nized as an array, using the rule that the first location is the root of the tree, and the

locations2i and2i + 1 are the children of locationi.
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14 HIGH-PERFORMANCE PHYLOGENY UNDER MP

1.3.2 Preprocessing before B&B search

We adopt a series of preprocessing in order to conduct the B&B search efficiently.

1.3.2.1 Binary encoding of original statesThe basic operation of Fitch’s method

is to compute the intersection or union of state sets. Since most modern computers

can perform efficient bitwise logical operations, we decide to use the binary encoding

of state sets in order to implement intersection and union by bitwise AND and bitwise

OR. Assign a one-to-one map between the bits of code and the character states.

Given a species, if a state is present, then the corresponding bit is set to one otherwise

it is set to zero.

1.3.2.2 Decide the addition order of the speciesOur experiments show that the

overall execution time of B&B phylogeny reconstruction can change drastically de-

pending on the order in which the taxa are added. This can be explained in theory.

The lower bounding function we adopt heavily depends on the cost of the associated

partial tree. This can also explain why the addition order decided by max-mini rule

performs best in most cases. Starting with the initial core tree of three taxa, at each

step, for each of the remaining taxa, we find the best inserting position which results

the minimum score. Then, we choose the taxon with maximum minimum-score to

be added at its best position and go onto next step until all taxa are added. This

procedure is called the maxmini approach.

1.3.2.3 Reorder sitesFitch([Fitch, 1977]) made a basic classification of sequence

sites (the columns of the sequence matrix). At a given site, the state that appears more

than once is said to be anon-singleton state. A site with at most one non-singleton

states is said to be aparsimony uninformative sitesince the state changes at such

kind of a site can always be explained by the same number of substitutions in all

topologies. At the lower levels of B&B phylogeny reconstruction, only a few sites

are parsimony informative and with the addition of taxa, more and more sites turn

from parsimony uninformative to parsimony informative. Hence, we may compute

at which level a site turns into parsimony informative, then reorder sites so that at
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EXACT MP: PARALLEL BRANCH & BOUND 15

each level all of the parsimony informative sits are kept in a contiguous segment of

memory. By reordering sites, not only the computation on parsimony uninformative

sites are saved, but also the ratio of cache misses is greatly reduced.

1.3.3 Fast algorithm to compute tree length

Even in the B&B search, an enormous size of trees are required to be evaluated.

Given an original tree, how can we compute the scores of each new tree generated by

adding a taxon in the original one? As described in Section??, Fitch ([Fitch, 1971])

proposed a method to score a tree. Fitch’s method involves one bottom-up pass and

one top-down pass of the tree. Each pass compute a set of states for each inter-

nal node by different rules, the states obtained in the first pass is calledpreliminary

statesand the states obtained in the second pass is calledfinal states. Goloboff

([Goloboff, 1993]) proposed a method to preprocess the original tree in two passes

as Fitch’s method does, then it takes const time to compute the score for each new

tree. Gladstein ([Gladstein, 1997]) described an incremental algorithm based on pre-

liminary state sets obtained from Fitch’s first pass. Practically Goloboff’s method

works better than Gladstein’s. We put forward an approach that requires preprocess

the original tree in one pass and for each new tree it takes const time to compute the

score.

We do the first pass bottom-up using the rules of Fitch’s first pass, then do the

second pass top-down using the rules of Fitch’s first pass instead of Fitch’s second

pass. By these two passes, we finally obtain a set of state for each edge, which is

right the preliminary states of the root assuming the root to be the newly introduced

node by subdividing that edge. Therefore, when inserting a new taxon in the original

tree at an edge, we only compare the states of the new taxon and the states of that

edge and actually obtain the same result as our bottom-up pass does on the new tree.

If the result of the new tree is kept in memory, when we decompose this new tree

later, only the top-down pass is required. Thus, in B&B search, our method saves

one pass compareds to Globoff’s method. Besides the B&B search, our method can

also be applied into heuristic searches such as SPR and TBR search.
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16 HIGH-PERFORMANCE PHYLOGENY UNDER MP

1.3.4 Parallel implementation on SMPs

To utilize the computation power of parallel computers, we implement the B&B

phylogeny reconstruction on Cache-Coherent Uniform Memory Access (CC-UMA)

SMPs. In the parallel implementation, each processor selects different active nodes

then processes the computation on it. We use the SPMD asynchronous model in

which each processor works at its own pace and does not have to wait at predeter-

mined points for predetermined data to become available. Since the B&B search

space tends to be highly irregular, any static distribution of search space is bound to

result in significant load imbalance, and the dynamic distribution methods usually

involve very complex protocols to exchange subspace between processors to obtain

load balance. Compared to the distributed data structure, a single shared data struc-

ture balance is easily to maintained on SMPs and there is no problem of load balance

with it. We modify the serial data structure by adding a lock for each heap to get the

shared data structure. Each heap is protected by a lock and the entire heap is locked

whenever it is being modified. Due to the small size of heaps in B&B phylogeny

reconstruction, D-heap is used for simplicity and efficience.

To minimize the concurrent access contention, a relaxed DFS search strategy is

adopted. A heap is allowed to be accessed if all the heaps at higher levels are empty

or locked by other processors. When a processor detects that all the heaps are un-

locked and empty, this processor can terminate its own execution of the algorithm.

1.3.5 Experimental results

We use the benchmark collection at http://www.lirmm.fr/ ranwez/PHYLO/benchmarks24.html.

Each data set consists of 24 sequence and the length of DNA sequences is 500. These

tests allow comparison on trees whose internal branch lengths are not all equal, and

over a wide variety of tree shapes and evolutionary rates.

We compared the running time between our serial code and PAUP* using the

subcommandbandb addseq=maxminion a Sun UltraSparcII workstation. Among

20 data sets randomly chosen from the benchmark, for 10 data sets our code is 1.2-7

times faster than PAUP*, for 5 data sets ours code runs as fast as PAUP*, for 5 data
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sets our code is 1.2-2 times slower than PAUP*. The experiment on our parallel code

was carried out on Sun E4500, a uniform-memory-access (UMA) shared-memory

parallel machine with 14 UltraSparcII 400MHz processors. We conducted the exper-

iment on 200 data sets randomly chosen from the benchmark, in average we achieve

speedups of 1.92, 2.78, and 4.34, on 2, 4, and 8 processors, respectively. The above

experimental results show that our strategies on the B&B phylogeny reconstruction

are efficient.

1.4 APPROXIMATE MP: DISK-COVERING METHODS

Disk-Covering Methods (DCMs)[Huson et al., 1999a, Huson et al., 1999b, Nakhleh et al., 2001,

Roshan et al., 2004b, Warnow et al., 2001] are a family of divide-and-conquer meth-

ods designed to “boost” the performance of existing phylogenetic reconstruction

methods. All DCMs proceed in four major phases: (i) decomposing the dataset,

(ii) solving the subproblems, (iii) merging the subproblems, and (iv) refining the re-

sulting tree. Variants of DCMs come from different decomposition methods—the

last three phases are unaffected. The first DCM [Huson et al., 1999a], also called

DCM1, was designed for use with distance-based methods and has provable the-

oretical guarantees about the sequence length required to reconstruct the true tree

with high probability under Markov models of evolution [Warnow et al., 2001]. The

second DCM [Huson et al., 1999b], also called DCM2, was designed to speed up

heuristic searches for MP trees; we showed that when DCM2 was used with PAUP*-

TBR search, it produced better trees faster on simulated datasets.

1.4.1 DCM3

We designed the third DCM. orDCM3, from the lessons learned with our first two

DCMs. DCM1 can be viewed, in rough terms, as attempting to produce overlapping

clusters of taxa to minimize the intracluster diameter; it produces good subproblems

(small enough in size), but the structure induced by the decomposition is often poor.

DCM2 computes a fixed structure (a graph separator) to overcome that drawback, but
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18 HIGH-PERFORMANCE PHYLOGENY UNDER MP

the resulting subproblems tend to be too large. Moreover, both DCM1 and DCM2

operate solely from the the matrix of estimated pairwise distances, so that they can

produce only one (up to tiebreaking) decomposition. In contrast, DCM3 uses a dy-

namically updatedguide tree(in practice, the current estimate of the phylogeny) to

direct the decomposition—so that DCM3 will produce different decompositions for

different guide trees. This feature enables us to focus the search on the best parts

of the search space and is at the heart of the iterative use of the decomposition:

roughly speaking, the iteration inRec-I-DCM3consists of successive refinements

of the guide tree. Thanks to the guide tree, DCM3 also produces smaller subprob-

lems than DCM2: the guide tree provides the decomposition structure, but does so

in a manner responsive to the phylogenetic estimation process. Finally, we designed

DCM3 to be much faster than either DCM1 or DCM2 in producing the decompo-

sitions (mostly by not insisting on their optimality), since previous experiments had

shown that dataset decomposition used most of the running time with DCM2.

1.4.1.1 The optimal decompositionWe begin by describing the algorithm to find

anoptimalDCM3 decomposition. (As noted, it is not the decomposition used in our

implementation, but we need it to establish the framework.) Consider a treeT on

our setS of taxa and an edge weightingw of T , w : E(T ) → <+. (A possible edge

weighting is given by the Hamming distances under the MP labelling of the nodes

of T .) We construct theshort subtree graph, which is the union of cliques formed

on “short subtrees” around each edge. Lete be an internal edge (not touching a leaf)

in T ; then removinge and its two endpoints fromT breaksT into four subtrees. A

short quartetarounde is composed of four leaves, one from each of these four sub-

trees, where each leaf is selected to be the closest (according to the edge weights) in

its tree toe. This short quartet need not be unique: several leaves in the same subtree

may lie at the same shortest distance frome. Thus we define theshort subtreearound

e to be the setX(e) of all leaves that are part of a short quartet arounde. We will use

thecliqueonX(e): the graph withX(e) as its vertices and with every pairwise edge

present, weighted according tow; denote this clique byK(e). The short subtree

graph is then the union, over all internal edgese of the guide tree, of theK(e).

D R A F T November 29, 2004, 2:22pm D R A F T



APPROXIMATE MP: DISK-COVERING METHODS 19

Theorem 1. The short subtree graphG of an edge-weighted binary treeT is trian-

gulated (that is, it does not contain any simple induced cycle with more than three

edges).

(Proof omitted due to space constraints.) Since the short subtree graphG is trian-

gulated, we can find in polynomial time, as proved in [Golumbic, 1980], a maximal

clique separatorX that minimizesmaxi|X ∪ Ci|, whereG −X is the union ofm

componentsC1, C2, . . . , Cm. UsingX, we can define theOptimal DCM3 Decom-

positionto be formed of the subsetsCi ∪ X, for i = 1, 2, . . . , m. Its computation

thus proceeds in two steps:

1. Construct the short subtree graph.

2. For each of the maximal cliques in the short subtree graph, determine if it is

a separator. If so, then compute the maximum size of any created subproblem

and choose that separator which minimizes it.

Theorem 2. The Optimal DCM3 decomposition can be computed inO(n3) time.

Proof. Constructing the short subtree graph takesO(n3) time. There areO(n) max-

imal cliques [Golumbic, 1980]. For each maximal clique, determining whether it is

a separator and, if so, computing the sizes of the components, takesO(n2) time.

Constructing the short subtree graph is the costliest part of this decomposition. Al-

though it may be possible to compute the graph faster, it seems likely that obtaining

an Optimal DCM3 decomposition requiresΩ(n2) time. Thus the optimal decompo-

sition is too expensive to compute for the kind ofn we have in mind—even if we can

obtain one optimal decomposition relatively fast for one tree on a million taxa, we

will need to iterate this computation many, many times.

1.4.1.2 A fast suboptimal decompositionWe now describe a fast heuristic to

obtain a good, if not optimal, decomposition based on the guide tree. Our approach

is based on the notion of acentroid edgein T—that is, an edge that, when removed,

produces the most balanced bipartition of the leaves. LetX be the leaves of the short

subtree around a centroid edgee. In our experience to date,X is always a separator
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20 HIGH-PERFORMANCE PHYLOGENY UNDER MP

of the short subtree graph, so we can define the subproblems asAi = X ∪Ci, where

G−X hasm distinct connected components,C1, C2, . . . , Cm. (ShouldX fail to be

a separator in the short subtree graph, we would then resort to computing all maximal

clique separators inG.) Since we cannot afford to compute the short subtree graph,

we cannot directly verify thatX is a separator, but the following theorem shows that

we can proceed without knowing the short subtree graph.

Theorem 3. Let e = {a, b} be an edge in the guide treeT andX(e) the leaves in

the short subtree arounde. Let A, B, C, andD be the sets of leaves in the four

subtrees obtained by deletinga and b from T . Finally, let G be the short subtree

graph defined byT . Then every component ofG − X(e) is a subset of one of the

following sets:A ∪X(e), B ∪X(e), C ∪X(e), andD ∪X(e).

(Proof omitted due to space constraints.) By using this result, we can compute a

decomposition that is not exactly that induced by the centroid edge, but that retains

good characteristics (a small number of small subproblems).

Theorem 4. The heuristic Centroid-Edge DCM3 decomposition can be computed in

O(n) time.

Proof. We begin by finding a centroid edgee through a simple tree traversal, then

computeX(e), also in linear time. We can then compute the subproblemsA∪X(e),

B ∪X(e), C ∪X(e), andD ∪X(e) in linear time.

1.4.1.3 Comparison of DCM decompositionsWe designed DCM3 in part to

avoid producing large subsets, as DCM2 is prone to do. Yet, of course, the sub-

problems produced from a very large dataset remain too large for immediate so-

lution by a base method. Hence we used the approach successfully pioneered by

Tang and Moret with DCM-GRAPPA[Tang and Moret, 2003] and used DCM3 re-

cursively, producing smaller and smaller subproblems until every subproblem was

small enough to be solved directly. Figure 1.2 shows that DCM3 produces subprob-

lems of sizes bounded by about half the initial subproblem size and much smaller

than those produced by DCM2. (Rec-DCM3 in this series of tests was set up to

recurse until each subproblem was of size at most one eighth of the original size.)
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Fig. 1.2 Comparison of DCM2, DCM3 and Recursive-DCM3 decompositions. DCM2

decompositions on datasets 5–10 could not be computed due to memory limitations.

1.4.1.4 Subtree construction and assemblyOnce the dataset is decomposed into

overlapping subsetsA1, A2, . . . , Am (for us, m ≤ 4 is typical), subtrees are con-

structed for each subset,Ai, using the chosen “base method,” and then combined

using the Strict Consensus Merger [Huson et al., 1999a, Huson et al., 1999b] to pro-

duce a tree on the combined dataset. The proof that the resulting tree is accurate

(i.e., agrees, with high probability and in the limit, with the unknown underlying

“true tree”) follows from the following structural theorem (we omit the proof which

is along the same lines as in [Huson et al., 1999a]).

Theorem 5. Let T be the true tree and letA1, A2, . . . , Am be the subproblems

obtained in some DCM3 decomposition. If every short quartet inT is a four-clique

in someAi and if the base method applied toAi returns the true tree for that subset

(i.e.,Ti = T |Ai), then the strict consensus merger of treesT1, T2, . . . , Tk yields the

true treeT .

Our Rec-I-DCM3algorithm takes as input the setS = {s1, . . . , sn} of n aligned

biomolecular sequences, the chosen base method, and a starting treeT . In our ex-

periments, we have used TNT (with default settings) as our base method, since it

is the hardest to improve (in comparison, the PAUP* implementation of the parsi-

mony ratchet [Bininda-Emonds, 2003] is easier to improve). Our algorithm produces

smaller subproblems by recursively applying the centroid-edge decomposition until

each subproblem is of size at mostk. The subtrees are then computed, merged, and
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resolved (from the bottom-up, using random resolution) to obtain a binary tree on

the full dataset. These steps are repeated for a specified number of iterations.

1.4.2 Experimental design

Having designed a new algorithm and having preliminary evidence (on small sim-

ulations) that it outperforms existing techniques, we now need to evaluate its per-

formance in practice. The experimental evaluation of algorithms for phylogenetic

reconstruction is a difficult endeavor (see [Moret, 2002, Moret and Warnow, 2002]

for details). Because credible simulations of evolution remain lacking at the scale of

10,000 or more taxa, we chose to use biological datasets in our study. This choice

ensures biological relevance of our results, but it prevents us from evaluating the ac-

curacy of reconstructed trees, since the “true” tree is not available. However, other

work from our group [Williams et al., 2004] tells us that we need to achieve excel-

lent approximation of the parsimony score (tree length) in order to have any chance

at reconstructing the true topology. Thus, we focused our testing on the quality of

approximation in terms of the parsimony score.

Parameters and measurements:We chose to test performance during the first 24

hours of computation on each dataset for each method, taking hourly “snapshots”

along the way in order to evaluate the progress of each method. We asked the follow-

ing two questions: (i) how much of an improvement is gained by usingRec-I-DCM3

versus TNT, if any? and (ii) how long does the best TNT trial (out of five runs) take

to attain the average MP score obtained at 24 hours byRec-I-DCM3? To answer

these questions, we ran TNT andRec-I-DCM3(TNT), which uses TNT as its base

method, on our ten biological datasets, using five independent runs, all on the same

platform, with computed variances for all measurements.

Implementation and platform: Our DCM implementations are a combination of

LEDA, C++, and Perl scripts. The TNT Linux executable was obtained from Pablo

Goloboff, one of the authors of TNT. We ran our experiments on three sets of proces-

sors, all running Linux: thePhylofarm cluster of 9 dual 500MHz Pentium III
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Fig. 1.3 Part (a) shows the average deviation above optimal after 24 hours by TNT and

Rec-I-DCM3(TNT); Part (b) shows the time taken by the single best TNT trial, extended to

run for up to a week, to match the averageRec-I-DCM3(TNT)score at 24 hours—bars that

reach the top indicate that TNT could not reach a match after a week of computation.

processors; a part of the 132-processorSCOUTcluster, consisting of 16 dual 733MHz

Pentium III processors, and thePhylocluster of 24 dual 1.5GHz AMD Athlon

processors, all at the University of Texas at Austin. For each dataset all the methods

were executed on the same cluster; larger datasets were run on the faster machines.

1.4.3 Results

We defined the “optimal” MP score on each dataset to be the best score found over

all five runs among all methods in the 24-hour period we allowed; on our datasets,

this optimal score was always obtained byRec-I-DCM3(TNT). On each dataset and

for each method, we computed the average MP score at hourly intervals and reported

this value as a percentage of deviation from optimality. In our experiments, on every

dataset and at every point in time (within these 24 hours), the best performance was

obtained byRec-I-DCM3(TNT). Since only error rates less than 0.01% are tolerable,

Rec-I-DCM3’s performance is very impressive; all trees are at least 99.99% correct.

TNT, on the other hand, failed to reach this level of accuracy consistently—especially

on datasets with more than 4,500 sequences.

Figure 1.3(a) shows the performance ofRec-I-DCM3(TNT)and of TNT at 24

hours. As the size of the dataset increases, the relative error in MP scores increases,
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but at a much faster rate for TNT than forRec-I-DCM3(TNT), so that the accuracy

gap between the two increases quite rapidly. Figure 1.3(b) indicates how long it

took TNT, in the best of five runs, to match the average scores obtained byRec-I-

DCM3(TNT)after 24 hours—we stopped the clock after one week of computation

if the TNT run had not achieved a match by then, something that happened on the

seven largest datasets. (The standard deviations of the MP scores at 24 hours for all

the methods on all the datasets were very low, at most 0.035%.)

Figure 1.4

compares the time-dependent behaviors of TNT andRec-I-DCM3(TNT)on our

three smallest datasets (1, 2, and 3), while Figure 1.5

shows the same for three medium datasets (4, 5, and 6). and Figure 1.6 shows

the same for our three largest datasets (8, 9, and 10). (It should be noted that the
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Fig. 1.4 Average MP scores of TNT andRec-I-DCM3(TNT)on datasets 1, 2, and 3, given

as the percentage above the optimal score. Note: the vertical range varies across the datasets.
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Fig. 1.5 Average MP scores of TNT andRec-I-DCM3(TNT)on datasets 4, 5, and 6, given

as the percentage above the optimal score. Note: the vertical range varies across the datasets.
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Fig. 1.6 Average MP scores of TNT andRec-I-DCM3(TNT)on datasets 8, 9, and 10, given

as the percentage above the optimal score. Note: the vertical range varies across the datasets.

0 4 8 12 16 20 24
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 b
es

t s
co

re

1
2
3
4
5
6
7

0 4 8 12 16 20 24
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 b
es

t s
co

re

8
9
10

Fig. 1.7 Decrease in error rates with time on all datasets forRec-I-DCM3(TNT)

24-hour time limit was perhaps overly limiting for the largest dataset: a quick look

at the curves appears to indicate that evenRec-I-DCM3(TNT)has not yet reached

a plateau at that point.) The improvement achieved by boosting TNT withRec-I-

DCM3 is significant on all datasets as well as at all time intervals. In particular, note

that the boosted version of TNT shows much stronger decreases in MP scores in the

first several hours than the unboosted version.

Figure 1.7 shows how the error rate (deviation above the optimal MP score) of

Rec-I-DCM3(TNT)decreases with computation time on each of the ten datasets.

While the initial trees computed for the large datasets tend to exhibit large error

(as large as 0.35%), the error drops very rapidly—even more rapidly for the large

datasets than for the smaller ones. Thus, not only do the error rates ofRec-I-
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DCM3(TNT) fall more rapidly than those of TNT alone, but they have a positive

second derivative: the larger they are, the faster they fall.

1.4.4 Related Work and Discussion

Because of the importance of MP analyses in phylogeny reconstruction, systematists

and algorithms researchers in phylogeny have studied the existing methods (specifi-

cally, implementations of heuristics in different software packages) to see which per-

formed the best. The main criterion by which these methods have been studied is the

time needed to get to the optimal score (or, more accurately, the best known score)

on various real datasets, preferably of at least one hundred sequences. These studies

[Goloboff, 1999, Nixon, 1999, Quicke et al., 2001, Roshan et al., 2004a, Soltis et al., 2000]

have suggested that the “parsimony ratchet” [Nixon, 1999] was more effective than

Tree-Bisection and Reconnection (TBR) hill-climbing [Maddison, 1991], and that

TNT (which uses the parsimony ratchet) was more efficient than PAUP*’s imple-

mentation of the ratchet.

Our previous studies of our DCM variants included a study of the performance

of boosted PAUP* MP heuristics using DCM2, which showed good results [Huson et al., 1999b].

However, our own analyses of phylogenetic reconstruction methods showed con-

vincingly that the default PAUP* heuristic was not as powerful as the default TNT

heuristics; they also showed that DCM2 failed to boost TNT. DCM3 was our attempt

to remedy this situation, but it, too, failed to boost TNT reliably. The two key ideas

were to use (i) iteration in order to refine the guide tree (since, obviously, the initial

guide tree is perforce poor), and (ii) recursion, which had been used with spectac-

ular success by Tang and Moret [Tang and Moret, 2003] in boosting theGRAPPA

reconstruction software (for gene-order data) over three orders of magnitude.

Looking over our experience with bothRec-I-DCM3and DCM-GRAPPA, we can

make reasonable inferences as to the reasons for the success of both. Recursion is

necessary to bridge the gap between datasets that can be analyzed today by the base

method (2,000–3,000 sequences for TNT, 14–15 genomes forGRAPPA) and large

datasets. DCM-GRAPPAbridged three orders of magnitude in simulation studies
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(from 14 to 1,200 taxa); ourRec-I-DCM3bridges a least one order, but may be ca-

pable of more—biological datasets with 100,000 aligned sequences do not yet exist!

But speed is only one component of the equation: the other is accuracy. In the case

of DCM-GRAPPA, which uses no iteration and a simple DCM1 decomposition, the

accuracy derives in good part from the excellent properties of gene-order data in

phylogenetic reconstruction—and only simulations were used. In our case, recur-

sion alone (a version we could callRec-DCM3, which we tested), does not suffice:

we need the ability, through iteration, to modify the guide tree at every level of the

recursion. The combination of the two has synergistic effects: the decomposition

is dictated by the guide tree, and thus by the successive iterations, and localizes the

work for the recursive stages and the base method; and recursion enables the same

process to take place at finer and finer levels of resolution, while communicating the

results back to the coarser levels. Our results suggest that DCM-GRAPPAcould be

significantly enhanced by using a version ofRec-I-DCM3, but also that a more dis-

criminating use of the guide tree, yielding more than just four subsets (e.g., by using

a type of DCM1 decomposition guided by the guide tree), would probably work bet-

ter for us, especially when tackling truly large datasets (on the order of millions of

sequences) where several orders of magnitude will have to be bridged.

1.5 TREE ACCURACY

The preferred phylogenetic topology that is established by one or more of the avail-

able analytical methods may be very weakly supported, even though it is the best

that the data will provide. In general, the quality of support varies among the nodes,

available data supporting some relationships strongly while for others the data may

be quite equivocal. A number of methods have been developed to provide some

insight into which nodes are best supported in any given analysis.
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1.5.1 Bootstrapping

One technique that has been widely applied to molecular phylogenies is bootstrap-

ping (Felsenstein 1985; Efron et al. 1996). The basic procedure is conceptually

simple (see Felsenstein 1988). A data set—of nucleotide sequences in this case—is

randomly sampled repeatedly (often 1,000 or more times), with replacement. Each

sample is made as large as the original data set. Any given nucleotide may fail to

be included in a given sample, or may be included multiple times. Each sample is

then evaluated by the method of choice. The percentage of times that a given node is

supported in the replicate samples is taken as a measure, or at least an indication, of

the reliability of that node with respect to the database. Thus, strong bootstrapping

support reduces the possibility that random errors have influenced the topology but

does not certify that the phylogeny is correct.

1.5.2 Bremer support

Another estimate of support that been used is the Bremer support index (Bremer

1988). In principle, one begins with the most parsimonious cladogram for a given

data set, and all cladograms that are one step longer are constructed, and consensus

tree is found. There will be some groups, present in the most parsimonious clado-

gram, that are not supported in this tree. This process is repeated for two steps longer,

three steps longer, and so forth, until a tree is found in which there is no unambiguous

support for any clade. Each node can now be assigned a Bremer support index—the

number of steps at which the node disappears from the tree. Thus the lower Bremer

indexes indicate higher levels of support for a given branch within the topology of

the most parsimonious cladogram. The algorithms that produce Bremer support in-

dexes do not proceed in this precise manner because of the number of calculations

involved, but the logic of support is the same.
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1.5.3 Simulated vs. Real data

Under the direction of Professor Moret at UNM, I have learned to appreciate the

value of experimentally verifying the performance of a method. All algorithms de-

veloped by me and my colleagues will be extensively tested on both biological and

simulated datasets. Simulated datasets are necessary as it is the only way to to test the

accuracy of an algorithm since we generate the “true” tree. Furthermore, simulated

datasets can be used to test specific aspects of reconstruction algorithms. Therefore,

the main use of “real-world” data is in spot-checking—confirming that predictions

made on the basis of simulation results hold for biological data or pinpointing prob-

lems with models when the datasets yield incompatible results [Moret, 2002].

As a co-PI on the “Building the Tree of Life” project, collaborations with life

scientists will ensure that our simulated data is acceptable to the biological commu-

nity as a substitute for real data. Furthermore, they will also provide real datasets

to test further the quality of our methods. The above collaborations (along with

those formed at the Radcliffe Institute for Advanced Study and Harvard University)

will ensure that the computational solutions obtained are biologically relevant and

applied to existing problems in biology.

1.5.4 Scoring accuracy

1.5.5 Topological accuracy

Several interesting and striking facts are uncovered from our study. First, topologi-

cal accuracy correlates significantly with MP scores, but only within a certain range.

When MP scores are within1% of optimal the inferred trees tend to have poor topo-

logical accuracy. However, for MP scores within0.01% of the optimal score, negli-

gible improvement in topological accuracy is gained by better scores. Secondly, our

experiments demonstrate that the “parsimony ratchet” [Nixon, 1999] can find trees

within 0.01% of optimal an order of magnitude faster than searching for the opti-

mal tree. Moreover, these near-optimal solutions have topologies that are very good

approximations of the optimal solution. Since we cannot know the optimal score in
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advance, we consider a candidate stopping rule for terminating a search early. Our

stopping rule allows us to find reasonable trees in a fraction of the time; a remarkably

positive consequence for large-scale phylogenetic analysis. Thus, the development

of stopping criteria for reconstructing phylogenies deserves serious consideration as

an optimization technique for finding good solutions quickly.

Performance studies evaluating the performance of MP heuristics have gener-

ally focused on two issues: speed and topological accuracy. Studies that explore

speed have examined how quickly each heuristic can solve MP (or reach the cur-

rent best known score) for specific real biological datasets (see [Goloboff, 1999,

Roshan et al., 2004a] for examples of such studies). However, the relative scarcity

of large datasets (containing more than 200 or so sequences) has made it hard to

investigate the performance of heuristics on datasets for which MP might be quite

hard to solve.

Assessing the topological accuracy of an inferred tree on a real dataset is difficult

because the true tree cannot be known precisely. As a result, estimations of topolog-

ical accuracy have required simulations. Here, a DNA sequence is evolved down a

known model tree, producing a set of sequences at the leaves of the model tree; the

phylogeny reconstruction method is then applied to the set of sequences, and a tree is

returned. Comparisons between the model and inferred tree provide a precise mea-

sure of topological accuracy. Simulation studies have been highly influential, and

have suggested that good MP heuristics can produce reasonable estimates of trees,

with respect to having acceptably low RF error rates (bounded by 10% or so) with

respect to the true tree (see [Hillis, 1996]). On the other hand, we (along with other

phylogenetics researchers) have noted that MP seems easier to solve on simulated

data than on real data. We conjecture that the models used to represent sequence

evolution are too “well-behaved” resulting in data that are not sufficiently realistic.

Most studies attempt to evaluate the accuracy of a given phylogenetic reconstruc-

tion with respect to the true, unknown tree, which is typically limited to simulation

studies. Instead, we answer a different, but highly related question. Here, we wish to

determine the topological accuracy of near-optimal trees with respect to the optimal

solution. Since MP is NP-hard, we cannot know the true optima without resorting to
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exhaustive techniques, which is not possible on dataset sizes of interest to us (≥ 100

sequences). However, by establishing a set of “optimal” trees (i.e., trees with the best

known score for a particular dataset), topological accuracy can be examined in two

ways: (i) by measuring the topological distance between the majority consensus tree

obtained for the set of suboptimal trees and the majority consensus tree for the set of

optimal trees; and (ii) by measuring the topological distance between a random sub-

optimal tree and a random optimal tree. Both of the above measures provide us with

a mechanism for characterizing the error rate in an estimation of the evolutionary

history—especially in the context of terminating an MP analysis before it reaches

the optimal solution.

1.5.5.1 Results As stated earlier, the objective of our experimental analysis is to

investigate the relationship of MP scores and tree topologies. The following ques-

tions are of particular interest to us.

1. Does topological accuracy correlate with improved parsimony scores? If so,

for what range of parsimony scores does it correlate well?

2. What are the ramifications to phylogeny reconstruction of stopping a maxi-

mum parsimony search early?

3. How can we tell when it is safe to stop?

We consider each of the above questions, in turn, in the subsections below.

1.5.5.2 Topological Accuracy and MP ScoresWe examined the relationship be-

tween topological error (with respect to estimating the maximum parsimony trees)

and the error in the MP analysis, using two criteria. The first criterion examines the

RF distance between the two majority consensus trees (one of the “optimal” trees,

and the other of the suboptimal trees), and the second criterion examines the aver-

age RF distance between a random tree having the optimal score, and a random tree

having a score that isi steps worse, for small values ofi.

Comparison between majority consensus treesFigure 1.8 plots the relationship

between the topological distance between the two majority consensus trees, and the
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MP scores obtained, as a function of the number of iterations on each dataset. RF

distances below 5% are desirable but distances below 10% are relatively acceptable,

hence we are interested in solving parsimony so that the resultant majority trees are

within 10% of each other. In this figure, the initial majority trees can be further than

10% from the majority tree of the set of optimal trees, but the RF distance drops fairly

quickly to below 10%; john921 and will2000 are the two notable exceptions (see

Figures 1.8(g) and 1.8(h)). Although the MP score error decreases monotonically,

the RF distance may not decrease monotonically. However, the general decrease in

RF distance is consistent with the MP score error curve.

Additionally, note that on these datasets, whenever the RF distance is above 10%,

the MP error is also above.01% (i.e., one hundredth of a percent), and that almost

all the time if the MP error is below.01% the RF error will be below 10%. This

suggests that a sufficient condition (for these datasets) for acceptable (≤10% RF

distance) topological accuracy is to have the MP analysis be within one hundredth of

a percentage of optimal.

However, the above trends are not always present on the three largest datasets

(see Figures 1.8(g), 1.8(h), and 1.8(i)). john921 and will2000 never reach an RF

error of 10% even though their MP score error is near 0.01%. Moreover, when the

mari2594 achieves 0.01% MP score error at 50 iterations, the corresponding RF rate

is above 10%. For this dataset, the tolerable MP score error appears to be closer

to 0.001% to achieve a good approximation of the optimal solution. Since larger

datasets potentially have more optimal solutions and less resolved majority trees,

trends seen for small datasets may only hold for datasets with features comparable

to these datasets. Therefore, the relevant topological error rates will be greater on

larger datasets, for a correspondingly accurate MP analysis.

Proximity of optimal and near-optimal treesOur other criterion measures the topo-

logical distance between two randomly selected trees, one which has an optimal

score, and the other which has a score which isi steps worse, but only for small

values ofi. This study evaluates what additional information might be kept if we did

not only return a single consensus tree.
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dataset OPT0 OPT1 OPT2 OPT3 OPT4

aster328 8.94 9.82 10.68 11.16 11.72
lipsc459 4.69 5.44 6.08 6.53 7.14
eern476 6.45 10.33 12.44 13.88 14.40
rbcL500 8.61 9.40 10.19 11.04 11.72
three567 3.49 6.86 7.44 8.23 8.68
ocho854 8.82 9.90 10.46 11.10 11.59
john921 0.00 4.48 7.41 12.59 10.64
will2000 0.00 5.56 N/A† 9.32 15.41
mari2594 10.44 11.92 11.51 11.67 11.69

Table 1.1 Average RF distance between optimal trees and phylogenetic treesi steps

from optimal ( OPTi), where i = 0, 1, 2, 3, 4. † denotes noOPT2 trees were found for

the will2000 dataset.

Table 1.1 shows the average RF distance between optimally-scoring trees (OPT0)

and treesi steps from optimal (OPTi). Since the number of trees in OPTi is large,

we randomly select a treet0 from OPT0 and a treeti from OPTi and compute the

RF rate between them. The average RF rate is computed by repeating the above

step4 · |OPTi| times. Notice that the RF distance between two random optimal trees

ranges from 0% (only one optimal tree found for the john921 and will2000 datasets)

to almost 11% (the mari2594 dataset). Thus, the set of optimal trees is itself not a

highly specific estimator of the unknown true topology.

Note the following trends – typically (but not always) the RF distance increases as

the parsimony score worsens, but this value does not grow very quickly. Thus, the RF

distance between a random suboptimal tree and a random optimal tree is larger than

the RF distance between two random optimal trees, but not by a substantial amount.

For example, two randomly selected optimal trees for the lipsc459 dataset will differ

by 4.69%, but if we increase the parsimony score by 4 steps, a randomly selected

tree will differ from a randomly selected optimal tree by only 7.14%. Similar trends

can be seen for the other datasets. This suggests that near-optimal solutions to MP—

provided they are not too suboptimal—can yield estimates of the MP trees that are

not considerably different.

Maximum parsimony is the most popular optimization criterion for analyzing

large datasets. However, such datasets require an enormous amount of computa-
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tional effort to solve optimally. Given that the actual objective of MP heuristics is to

obtain a reasonable estimation of the underlying evolutionary history, we investigate

whether it is necessary to solve MP exactly. Our results demonstrate that once an MP

search is within 0.01% of the optimal score, little topological accuracy is gained by

continuing the search further. Although the search will terminate at trees with subop-

timal parsimony scores, our study demonstrates that topological differences between

optimal and near-optimal trees are not significantly different. Hence, the analysis of

large-scale datasets will benefit from new MP heuristics designed to quickly locate

near-optimal solutions.

In the absence of knowing the optimal solution, our results provide strong evi-

dence for the study of stopping criteria for MP heuristics. Currently, it seems that

what is considered to be a “appropriate” or “sufficient” running time for an MP

search depends mostly upon a researcher’s patience: some systematists are willing

to wait weeks or months for an MP search to terminate (even though termination

does not ensure proximity to the optimal solution). However, our results demon-

strate that such search times may be unnecessary. For most of the datasets analyzed

here, we were able to shave 50% off of the execution time required to find an op-

timal tree, without a significant loss in the quality of the outcome with respect to

the topological estimation. For such searches, the resulting majority tree is a good

approximation of the set of optimal trees found using a more thorough search. Al-

though the stopping rule described in this paper may only apply to our nine datasets,

the implications are clear: very good estimates of the set of optimal MP trees can

be obtained without doing a particularly thorough search. Stopping rules that work

well will enable highly accurate estimations of the optimal trees of extremely large

datasets (≥ 100, 000). Thus, heuristics that utilize stopping criteria provide a fruitful

approach to reconstructing the “Tree of Life”—the “holy grail” of phylogenetics.
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1.6 SUMMARY AND OPEN PROBLEMS

More powerful techniques will surely be developed, but the methods described in

this paper provide examples of the ways in which molecular phylogenies can be

constructed and evaluated.

Emphasis here is placed on SSU rRNA trees because they have provided the

bulk of molecular evidence. However, trees based on proteins should have some

advantages—for example, long branch-attraction should be lowered because there

are twenty or so different amino acids rather than four nucleotides, in the sequences.

In sum, perhaps the most reasonable approach to phylogenetic analysis using

DNA is to use molecules that display enough but not too much change from the

last common ancestral sequences (and thus tend to maximize the number of infor-

mative positions), and to use methods that provide the shortest branches consistent

with this requirement. It would also seem prudent to use as many methods as possi-

ble; results that are consistent among many methods are at least likely to be free from

contamination by the idiosyncrasies of a particular algorithm (Kim 1993; and see the

discussion in Avise and Nelson 1995). The use of more than one gen to establish

topologies is clearly recommended, assuming that that orthologs are used and that

the individual gene properties—that is, different rates of change—can be evaluated.
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Fig. 1.8 Plots (a)–(i) show the behavior of RF rates and MP scores on the aster328, lipsc439,

eern476, rbcL500, three567, ocho854, john921, will2000, and mari2594 datasets with average

runtime requirements of 1.80, 33.58, 5.75, 2.99, 11.96, 31.82, 30.06, 307.17, and 164.41

hours, respectively. Here, the left and right y-axis correspond to the optimal-best and MP-

score error curves, respectively. The optimal-best curve plots the RF rate between the majority

tree constructed from optimally-scoring trees and the majority tree constructed from the best-

scoring trees found by the end of iterationi. The MP score error curve is the percentage the

best score is above the optimal score. Since this curve is plotted on a log scale, an MP score

error of 0% is undefined.
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