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Abstract. We study the sequence lengths required by neighbor-joining,
greedy parsimony, and a phylogenetic reconstruction method
(DCMns+MP) based on disk-covering and the maximum parsimony cri-
terion. We use extensive simulations based on random birth-death trees,
with controlled deviations from ultrametricity, to collect data on the scal-
ing of sequence-length requirements for each of the three methods as a
function of the number of taxa, the rate of evolution on the tree, and the
deviation from ultrametricity. Our experiments show that DCMy;+MP
has consistently lower sequence-length requirements than the other two
methods when trees of high topological accuracy are desired, although
all methods require much longer sequences as the deviation from ul-
trametricity or the height of the tree grows. Our study has significant
implications for large-scale phylogenetic reconstruction (where sequence-
length requirements are a crucial factor), but also for future performance
analyses in phylogenetics (since deviations from ultrametricity are prov-
ing pivotal).

1 Introduction

The inference of phylogenetic trees is basic to many research problems in biology
and is assuming more importance as the usefulness of an evolutionary perspective
is becoming more widely understood.

The inference of very large phylogenetic trees, such as might be needed for
an attempt on the “Tree of Life,” is a big computational challenge. Indeed, such
large-scale phylogenetic analysis is currently beyond our reach: the most popular
and accurate approaches are based on hard optimization problems such as maxi-
mum parsimony and maximum likelihood. Even heuristics for these optimization
problems sometimes take weeks to find local optima; some datasets have been
analyzed for years without a definite global optimum being found.

Polynomial-time methods would seem to offer a reasonable alternative, since
they can be run to completion even on large datasets. Recent simulation studies
have examined the performance of fast methods (specifically, the distance-based
method neighbor-joining [21] and a simple greedy heuristic for the maximum
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parsimony problem) and have shown that both methods might perform rather
well (with respect to topological accuracy), even on very large model trees.

These studies have focused on trees of low diameter that also obey the strong
molecular clock hypothesis (so that the expected number of evolutionary events is
roughly proportional to time). Our study seeks to determine whether these, and
other, polynomial-time methods really do scale well with increasing number of
taxa under more difficult conditions—when the model trees have large diameters
and do not obey the molecular clock hypothesis.

Our paper is organized as follows. In Section [2] we review earlier studies and
the issues they addressed. In Section[3, we define our terms and present the basic
concepts. In Section El we outline our experimental design and in Section [ we
report the results of our experiments. We conclude with some remarks on the
implications of our work.

2 Background

The sequence-length requirement of a method is the sequence length that this
method needs in order to reconstruct the true tree topology with high probabil-
ity. Earlier studies established analytical upper bounds on the sequence-length
requirements of various methods, including the popular neighbor-joining (NJ)
[21] method. These studies showed that standard methods, such as NJ, recover
the true tree with high probability from sequences of lengths that are exponen-
tial in the evolutionary diameter of the true tree. Based upon these studies, we
defined a parameterization of model trees in which the longest and shortest edge
lengths are fixed [6/7], so that the sequence-length requirement of a method can
be expressed as a function of the number, n, of taxa. This parameterization
led us to define fast-converging methods, methods that recover the true tree
with high probability from sequences of lengths bounded by a polynomial in n
once f and g, the minimum and maximum edge lengths, are bounded. Several
fast-converging methods were subsequently developed [45[11]/24]. We and others
analyzed the sequence-length requirements of standard methods, such as NJ, un-
der the assumptions that f and g are fixed. These studies [1l[7] showed that NJ
and many other methods can recover the true tree with high probability when
given sequences of lengths bounded by a function that grows exponentially in n.

We then performed studies on a different parameterization of the model tree
space, where we fixed the evolutionary diameter of the tree and let the number
of taxa vary [1I7]. This parameterization, suggested to us by J. Huelsenbeck,
allowed us to examine the differential performance of methods with respect to
“taxon-sampling” strategies [10]. In these studies, we evaluated the performance
of NJ and DCMy;+MP on simulated data, obtained from random birth-death
trees with bounded deviation from ultrametricity. We found that DCMy ;+MP
consistently dominated NJ throughout the parameter space; we also found that
the difference in performance increased as the number of taxa increased or the
evolutionary rate increased.
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In previous studies [15] we had studied the sequence-length requirements for
NJ, Weighbor [3], Greedy MP, and DCMy;+MP as a function of the numbers of
taxa, with fixed height and deviation. We had found that DCMy j+ MP requires
shorter sequences than the other four methods when trees of high topological
accuracy are desired. However, we had used datasets of modest size and had
not explored a very large range of evolutionary rates and deviations from ultra-
metricity. In this paper we remedy these limitations.

3 Basics

3.1 Simulation Study

Simulation studies are the standard technique used in phylogenetic performance
studies [QT0/T4]. In a simulation study, a DNA sequence at the root of the
model tree is evolved down the tree under some assumed stochastic model of
evolution. This process generates a set of sequences at the leaves of the tree.
The sequences are then given to phylogenetic reconstruction methods, with each
method producing a tree for the set of sequences. These reconstructed trees are
then compared against the model tree for topological accuracy. The process is
repeated many times in order to obtain a statistically significant test of the
performance of the methods under these conditions.

3.2 Model Trees

We used random birth-death trees as model trees for our experiments. They
were generated using the program r8s [22], where we specified the option to gen-
erate birth-death trees using a backward Yule (coalescent) process with waiting
times taken from an exponential distribution. An edge e in a tree generated by
this process has length ., a value that indicates the expected number of times a
random site changes on the edge. Trees produced by this process are by construc-
tion ultrametric (that is, the path length from the root to each leaf is identical).
Furthermore, a random site is expected to change once on any root-to-leaf path;
that is, the (evolutionary) height of the tree is 1.

In our experiments we scale the edge lengths of the trees to give different
heights. To scale the tree to height i, we multiply the length of each edge of T’
by h. We also modify the edge lengths as follows in order to deviate the tree away
from ultrametricity. First we pick a deviation factor, ¢; then, for each edge e € T,
we choose a number, z, uniformly at random from the interval [— 1g(c), lg(c)]. We
then multiply the branch length A\, by e*. For deviation factor ¢, the expected
deviation is (¢ — 1/c)/2lnc, with a variance of ((¢? — %) — 2(c — 1)) /4Inc. For
instance, for an expected deviation of 1.36, the standard deviation has the rather
high value of 1.01.

3.3 DNA Sequence Evolution

We conducted our experiments under the Kimura 2-parameter [I3] + Gamma
[25] model of DNA sequence evolution, one of the standard models for studying
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the performance of phylogenetic reconstruction methods. In this model a site
evolves down the tree under the Markov assumption and all site substitutions are
partitioned into two classes: transitions, which substitute a purine for a purine;
and transversions, which substitute a pyrimidine for a pyrimidine. This model
has a parameter to indicate the transition/transversion ratio; in our experiments,
we set it to 2 (the standard setting).

We assume that the sites have different rates of evolution drawn from a
known distribution. In our experiments we use the gamma distribution with
shape parameter a (which we set to 1, the standard setting), which is the inverse
of the coefficient of variation of the substitution rate.

3.4 Measures of Accuracy

Since the trees returned by each of the three methods are binary, we use the
Robinson-Foulds (RF) distance [20], which is defined as follows. Every edge e
in a leaf-labeled tree T' defines a bipartition, ., of the leaves (induced by the
deletion of e); the tree 7' is uniquely encoded by the set C(T) = {7, : e € E(T)},
where E(T) is the set of all internal edges of T. If T is a model tree and T" is
the tree obtained by a phylogenetic reconstruction method, then the set of False
Positives is C(T") — C(T") and the set of False Negatives is C(T') — C(T"). The
RF distance is then the average of the number of false positives and the number
of false negatives. We plot the RF rates in our figures, which are obtained by
dividing the RF distance by n — 3, the number of internal edges in a binary tree
on n leaves. Thus the RF rate varies between 0 and 1 (or 0% and 100%). Rates
below 5% are quite good, while rates above 25% are unacceptably large. We
focus our attention on the sequence lengths needed to get at least 75% accuracy.

3.5 Phylogenetic Reconstruction Methods

Neighbor-Joining. Neighbor-Joining (NJ) [21]] is one of the most popular poly-
nomial time distance-based methods [23]. The basic technique is as follows: first,
a matrix of estimated distances between every pair of sequences is computed.
(This step is standardized for each model of evolution, and takes O(kn?) time,
where k is the sequence length and n the number of taxa.) The NJ method then
uses a type of agglomerative clustering to construct a tree from this matrix of
distances. The NJ method is provably statistically consistent under most models
of evolution examined in the phylogenetics literature, and in particular under
the K2P model that we use.

Greedy Maximum Parsimony. Maximum Parsimony is an NP-hard opti-
mization problem for phylogenetic tree reconstruction [§]. Given a set of aligned
sequences (in our case, DNA sequences), the objective is to reconstruct a tree
with leaves labelled by the input sequences and internal nodes labelled by other
sequences so as to minimize the total “length” of the tree. This length is calcu-
lated by summing up the Hamming distances on the edges. Although the MP
problem is NP-hard, many effective heuristics (most based on iterative local re-
finement) are offered in popular software packages. Earlier studies [I9)2] have
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suggested that a very simple greedy heuristic for MP might produce as accurate
a reconstructed tree as the best polynomial-time methods. Our study tests this
hypothesis by explicitly looking at this greedy heuristic. The greedy heuristic
begins by randomly shuffling the sequences and building an optimal tree on the
first four sequences. Each successive sequence is inserted into the current tree, so
as to minimize the total length of the resulting, larger tree. This method takes
O(kn?) time, since finding the best place to insert the next sequence takes O(kn)
time, where k is the sequence length and n is the number of taxa.

DCMnj+MP. The DCMpy;+MP method was developed by us in a series of
papers [16]. In our previous simulation studies, DCMy 4+ MP outperformed, in
terms of topological accuracy, both DCM3, ; (a provably fast-converging method
of which DCMy+MP is a variant) and NJ. Let d;; represent the distance be-
tween taxa ¢ and j; DCMy;+MP operates in two phases.

— Phase 1: For each choice of threshold ¢ € {d;;}, compute a binary tree Ty,
by using the Disk-Covering Method from [I1], followed by a heuristic for
refining the resultant tree into a binary tree. Let T = {T, : ¢ € {d;;}}. (For
details of Phase I, the reader is referred to [11].)

— Phase 2: Select the tree from 7 that optimizes the maximum parsimony
criterion.

If we consider all (g) values for the threshold ¢ in Phase 1, then DCMy;+MP
takes O(n%) time; however, if we consider only a fixed number p of thresholds,
it only takes O(pn?) time. In our experiments we use p = 10 (and p = 5 for
800 taxa), so that the running time of DCMy+MP is O(n*). Experiments (not
shown here) indicate that choosing 10 thresholds does not reduce the perfor-
mance of the method significantly (in terms of topological accuracy).

4 Experimental Design

We explore a broad portion of the parameter space in order to understand the
factors that affect topological accuracy of the three reconstruction methods un-
der study. In particular, we are interested in the type of datasets that might
be needed in order to attempt large-scale phylogenetic analyses that span dis-
tantly related taxa, as will be needed for the “Tree of Life.” Such datasets will
have large heights and large numbers of taxa. Therefore we have created random
model trees with heights that vary from quite small (0.05) to quite large (up to
4), and with a number of taxa ranging from 100 to 800. We have also explored
the effect of deviations from the molecular clock, by using model trees that obey
the molecular clock (expected deviation 1) as well as model trees with significant
violations of the molecular clock (expected deviation 2.87). In order to keep the
experiment tractable, we limited our analysis to datasets in which the sequence
lengths are bounded by 16,000; this has the additional benefit of not exceeding
by too much what we might expect to have available in a phylogenetic analysis
in the coming years. In contrast the trees in [2] have smaller heights (up to a
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maximum of 0.5) and smaller expected deviations with less variance (their ac-
tual deviation is truncated if it exceeds a preset value), providing much milder
experimental conditions than ours. The trees studied in [19] are even simpler,
being ultrametric (no deviation from molecular clock) with a very small height
of 0.15.

For the two distance-based methods (NJ and DCMy;+MP), we computed
evolutionary distances appropriately for the K2P+gamma model with our set-
tings for o and the transition/transversion ratio. Because we explore performance
on datasets with high rates of evolution, we had to handle cases in which the
standard distance correction cannot be applied because of saturation. In such a
case, we used the technique developed in [12], called “fix-factor 1:” distances
that cannot be set using the distance-correction formula are simply assigned the
largest corrected distance in the matrix.

We used seqgen [18] to generate the sequences, and PAUP* 4.0 to construct
Greedy MP trees as described. The software for the basic DCMy; was written
by D. Huson. We generated the rest of the software (a combination of C++
programs and Perl scripts) explicitly for these experiments. For job management
across the cluster and public laboratory machines, we used the Condor software
package.

5 Experimental Results

We present a cross-section of our results in three major categories. All address
the sequence lengths required by each reconstruction method to reach prescribed
levels of topological accuracy on at least 80% of the reconstructed trees as a func-
tion of three major parameters, namely the deviation from ultrametricity, the
height of the tree, and the number of taxa. We compute the sequence-length
requirements to achieve a given accuracy as follows. For each method and each
collection of parameter values (number of taxa, height, and deviation), we per-
form 40 runs to obtain 40 FN rates at each sequence length of the input dataset.
We then use linear interpolation on each of the 40 curves of FN rates vs. sequence
length to derive the sequence-length requirement at a given accuracy level. (Some
curves may not reach the desired accuracy level even with sequences of length
16,000, in which case we exclude those runs.) We then average the computed
sequence lengths to obtain the average sequence-length requirement at the given
settings. Points not plotted in our curves indicate that less than 80% of the trees
returned by the method did not have the required topological accuracy even at
16000 characters.

In all cases the relative requirements of the three methods follow the same
ordering: DCMy j+MP requires the least, followed by NJ, with greedy MP a
distant third. However, even the best of the three, DCMy;+ MP, demonstrates
a very sharp, exponential rise in its requirements as the deviation from ultra-
metricity increases—and the worst of the three, Greedy MP, cannot be used at
all with a deviation larger than 1 or with a height larger than 0.5. Similarly
sharp rises are also evident when the sequence-length requirements are plotted
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as a function of the height of the trees. (In contrast, increases in the number of
taxa cause only mild increases in the sequence length requirements, even some
decreases in the case of the greedy MP method.)

5.1 Requirements as a Function of Deviation

Figure [ shows plots of the sequence-length requirements of the three methods
for various levels of accuracy as a function of the deviation. Most notable is the
very sharp and fast rise in the requirements of all three methods as the devi-
ation from ultrametricity increases. The greedy MP approach suffers so much
from such increases that we could not obtain even 80% accuracy at expected
deviations larger than 1.36. DCMy;+MP shows the best behavior among the
three methods, even though it requires unrealistically long sequences (signifi-
cantly longer than 16,000 characters) at high levels of accuracy for expected
deviations above 2.

5.2 Requirements as a Function of Height

Figure Bl parallels Figure [ in all respects, but this time the variable is the
height of the tree, with the expected deviation being held to a mild 1.36. The
rises in sequence-length requirements are not quite as sharp as those observed
in Figure [l but remain severe enough that accuracy levels beyond 85% are
not achievable for expected deviations above 2. Once again, the best method
is clearly DCMpyj+MP and greedy MP is clearly inadequate. Figure [3 repeats
the experiment with a larger expected deviation of 2.02. At this deviation value,
greedy MP cannot guarantee 80% accuracy even with strings of length 16,000,
so the plots only show curves for NJ and DCMy;+MP, the latter again proving
best. But note that the rise is now sharper, comparable to that of Figure [l
Taken together, these two figures suggest that the product of height and devi-
ation is a very strong predictor of sequence-length requirements and that these
requirements grow exponentially as a function of that product. The number of
taxa does not play a significant role, although, for the larger height, we note
that increasing the number of taxa decreases sequence-length requirements—a
behavior that we attribute to the gradual disappearance of long tree edges under
the influence of better taxon sampling.

5.3 Requirements as a Function of the Number of Taxa

Figure @l shows the sequence-length requirements as a function of the number of
taxa over a significant range (up to 800 taxa) at four different levels of accuracy
for our three methods. The tree height here is quite small and the deviation
modest, so that the three methods place only modest demands on sequence
length for all but the highest level of accuracy. (Note that parts (a) and (b) of the
figure use a different vertical scale from that used in parts (c) and (d).) At high
accuracy (90%), NJ shows distinctly worse behavior than the other two methods,
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Fig. 1. Sequence-length requirements as a function of the deviation of the tree, for a

height of 0.5, two numbers of taxa, and three levels of accuracy.
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with nearly twice the sequence-length requirements. Figure Bl focuses on just the
greedy MP method for trees with larger height. On such trees, initial length
requirements are quite high even at 80% accuracy, but they clearly decrease as
the number of taxa increases. This curious behavior can be explained by taxon
sampling: as we increase the number of taxa for a fixed tree height and deviation,
we decrease the expected (and the maximum) edge length in the model tree.
Breaking up long edges in this manner avoids one of the known pitfalls for MP:
its sensitivity to the simultaneous presence of both short and long edges.

Figure [0l gives a different view on our data. It shows how DCMp;+MP and
NJ are affected by the number of taxa as well as by the height of the model tree.
Note that the curves are not stacked in order of tree heights because Figures
and [J show that the sequence-length requirements decrease from height 0.05
to 0.25 and then start to increase gradually. The juxtaposition of the graphs
clearly demonstrate the superiority of DCMy;+MP over NJ: the curves for the
former are both lower and flatter than those for the latter—that is, DCMy ;+MP
can attain the same accuracy with significantly shorter sequences than does NJ
and the growth rate in the length of the required sequences is negligible for
DCMpy j+MP whereas it is clearly visible for NJ.

6 Conclusions and Future Work

6.1 Summary

We have explored the performance of three polynomial-time phylogenetic re-
construction methods, of which two (greedy maximum parsimony and neighbor-
joining) are well known and widely used. In contrast to earlier studies, we have
found that neighbor-joining and greedy maximum parsimony have very different
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Fig. 6. Sequence-length requirements (for at least 70% of trees) as a function of the
number of taxa, for an expected deviation of 1.36, various heights, and two levels of
accuracy, for each of DCMy;+MP and NJ.

performance on large trees and that both suffer substantially in the presence of
significant deviations from ultrametricity. The third method, DCMy;+MP, also
suffers when the model tree deviates significantly from ultrametricity, but it is
significantly more robust than either NJ or greedy MP. Indeed, for large trees
(containing more than 100 taxa) with large evolutionary diameters (where a site
changes more than once across the tree), even small deviations from ultrametric-
ity can be catastrophic for greedy MP and difficult for NJ.

Several inferences can be drawn from our data. First, it is clearly not the
case that greedy MP and NJ are equivalent: while they both respond poorly to
increasing heights and deviations from ultrametricity, greedy MP has much the
worse reaction. Secondly, neither of them has good performance on large trees
with high diameters—both require more characters (longer sequences) than are
likely to be easily obtained. Finally, the newer method, DCMy;+MP, clearly
outperforms both others and does so by a significant margin on large trees with
high rates of evolution.
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6.2 Future Work

A natural question is whether a better, albeit slower, heuristic for maximum
parsimony might demonstrate better behavior. Other polynomial-time meth-
ods could also be explored in this same experimental setting, and some might
outperform our new method DCMy;+ MP. Maximum-likelihood methods, while
typically slower, should also be compared to the maximum-parsimony methods;
to date, next to nothing is known about their sequence-length requirements.

Also of interest is the impact of various aspects of our experimental setup on
the results. For example, a different way of deviating a model tree from the molec-
ular clock might be more easily tolerated by these reconstruction methods—and
might also be biologically more realistic. The choice of the specific model of site
evolution (K2P) can also be tested, to see whether it has a significant impact on
the relative performance of these (and other) methods.
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