# CS 361, HW1 

Prof. Jared Saia, University of New Mexico

Feb 4, 2003, Due: Feb 11, 2003

You are encouraged to work with people in your group on this homework. You are also free to ask a friend for help, or use any book or the web as a resource. However, you must write up the work yourself.

If you have an older version of the book, check with a friend to make sure you get the right numbers for exercises (the numbers are different for the first and second editions)

1. CLRS Exercise 3.1-4: a) Is $2^{n+1}=O\left(2^{n}\right)$ ? b) Is $2^{2 n}=O\left(2^{n}\right)$ ? Justify your answers.
2. Exercise 1.2-2
3. Exercise 1.2-3
4. Problem 1-1
5. Using Figure 2-2 as a model, illustrate the operation of Insertion-Sort on the array $A=\{6,2,3,8,10,1\}$
6. Ex 2.1-3
7. Problem 2-2 (all 4 parts)
8. For each of the following, say whether or not a function $f(n)$ exists which meets the constraints. If a function exists, give an example of such a function. (You may find it useful to refer to the precise definition of $\mathrm{O}, \mathrm{o}, \Omega$, etc given in lecture and in the book!)
(a) $f(n)=o\left(n^{2}\right)$ and $f(n)=\Omega(n)$
(b) $f(n)=o(n \log n)$ and $f(n)=\omega(n)$
(c) $f(n)=o(1)$
(d) $f(n)=O\left(\log ^{2} n\right)$ and $f(n)=\Theta\left(\log ^{2} n\right)$
(e) $f(n)=\Theta\left(\log ^{100} 10 n^{5}\right)$ and $f(n)=\Theta(\log n)$
(f) $f(n)=\Theta\left(\log ^{2} n^{5}\right)$ and $f(n)=\Theta\left(\log _{10}^{2} 100 n\right)$
(g) $f(n)=O\left(n^{10 \log n}\right)$ and $f(n)=\Omega\left(2^{\log ^{2} n^{10}}\right)$
