CS 361, HW3

Prof. Jared Saia, University of New Mexico

Due: March 13, 2003

You are free to work with your group, or use any book or the web as a resource in doing this homework assignment. However, you must write up the work yourself. In the first three questions, assume $T(n)$ is a constant for $n \leq 2$.

1. Consider the recurrence $T(n)=2 T(n / 2)+n^{3}$
(a) Use the recurrence tree method to get a tight upper bound (i.e. big-O) on the solution to this recurrence
(b) Now use annihilators (and change of variables) to get a tight upper on the solution to this recurrence. (your two bounds should match)
2. Consider the recurrence $T(n)=16 T(n / 4)+n^{2}$
(a) Use the recurrence tree method to get a tight upper bound (i.e. big-O) on the solution to this recurrence
(b) Now use annihilators (and change of variables) to get a tight upper on the solution to this recurrence. (your two bounds should match)
3. Consider the recurrence $T(n)=2 T(n / 4)+1$
(a) Use the recurrence tree method to get a tight upper bound (i.e. big-O) on the solution to this recurrence
(b) Now use annihilators (and change of variables) to get a tight upper on the solution to this recurrence. (your two bounds should match)
4. Consider the following function:
```
int f (int n){
    if (n==0) return 0;
    else if (n==1) return 1;
    else{
        int val = 4*f (n-1);
        val = val - 4*f (n-2);
        return val;
    }
}
```

(a) Write a recurrence relation for the value returned by f. Solve the recurrence exactly. (Don't forget to check it)
(b) Write a recurrence relation for the running time of f. Get a tight upperbound (i.e. big-O) on the solution to this recurrence.
5. CLRS Exercise 6.4-2 (prove the correctness of HeapSort)

