CS 361, Lecture 10

Jared Saia
University of New Mexico

Outline

- Annihilators
\qquad

We define three basic operations we can perform on this sequence:

1. Multiply the sequence by a constant: $c A=\left\langle c a_{0}, c a_{1}, c a_{2}, \cdots\right\rangle$
2. Shift the sequence to the left: $\mathbf{L} A=\left\langle a_{1}, a_{2}, a_{3}, \cdots\right\rangle$
3. Add two sequences: if $A=\left\langle a_{0}, a_{1}, a_{2}, \cdots\right\rangle$ and $B=\left\langle b_{0}, b_{1}, b_{2}, \cdots\right\rangle$, then $A+B=\left\langle a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \cdots\right\rangle$

- We first express our recurrence as a sequence T
- We use these three operators to "annihilate" T, i.e. make it all 0 's
- Key rule: can't multiply by the constant 0
- We can then determine the solution to the recurrence from the sequence of operations performed to annihilate T
- Consider the recurrence $T(n)=2 T(n-1), T(0)=1$
- If we solve for the first few terms of this sequence, we can see they are $\left\langle 2^{0}, 2^{1}, 2^{2}, 2^{3}, \cdots\right\rangle$
- Thus this recurrence becomes the sequence:

$$
T=\left\langle 2^{0}, 2^{1}, 2^{2}, 2^{3}, \cdots\right\rangle
$$

Let's annihilate $T=\left\langle 2^{0}, 2^{1}, 2^{2}, 2^{3}, \cdots\right\rangle$

- Multiplying by a constant $c=2$ gets:

$$
2 T=\left\langle 2 * 2^{0}, 2 * 2^{1}, 2 * 2^{2}, 2 * 2^{3}, \cdots\right\rangle=\left\langle 2^{1}, 2^{2}, 2^{3}, 2^{4}, \cdots\right\rangle
$$

- Shifting one place to the left gets $\mathbf{L} T=\left\langle 2^{1}, 2^{2}, 2^{3}, 2^{4}, \cdots\right\rangle$
- Adding the sequence $\mathbf{L} T$ and $-2 T$ gives:

$$
\mathbf{L} T-2 T=\left\langle 2^{1}-2^{1}, 2^{2}-2^{2}, 2^{3}-2^{3}, \cdots\right\rangle=\langle 0,0,0, \cdots\rangle
$$

Distributive Property
 \qquad

- The distributive property holds for these three operators
- Thus can rewrite $\mathbf{L} T-2 T$ as $(\mathbf{L}-2) T$
- The operator $(\mathbf{L}-2)$ annihilates T (makes it the sequence of all 0 's)
- Thus $(\mathbf{L}-2)$ is called the annihilator of T

0 , the "Forbidden Annihilator"

\qquad

- Multiplication by 0 will annihilate any sequence
- Thus we disallow multiplication by 0 as an operation
- In particular, we disallow $(c-c)=0$ for any c as an annihilator
- Must always have at least one \mathbf{L} operator in any annihilator!

Uniqueness

\qquad

- An annihilator annihilates exactly one type of sequence
- In general, the annihilator $\mathbf{L}-c$ annihilates any sequence of the form $\left\langle a_{0} c^{n}\right\rangle$
- If we find the annihilator, we can find the type of sequence, and thus solve the recurrence
- We will need to use the base case for the recurrence to solve for the constant a_{0}

If we apply operator $(\mathbf{L}-3)$ to sequence T above, it fails to annihilate T

$$
\begin{aligned}
(\mathbf{L}-\mathbf{3}) T & =\mathbf{L} T+(-3) T \\
& =\left\langle 2^{1}, 2^{2}, 2^{3}, \cdots\right\rangle+\left\langle-3 \times 2^{0},-3 \times 2^{1},-3 \times 2^{2}, \cdots\right\rangle \\
& =\left\langle(2-3) \times 2^{0},(2-3) \times 2^{1},(2-3) \times 2^{2}, \cdots\right\rangle \\
& =(2-3) T=-T
\end{aligned}
$$

What does $(\mathbf{L}-c)$ do to other sequences $A=\left\langle a_{0} d^{n}\right\rangle$ when $d \neq c$?:

$$
\begin{aligned}
(\mathbf{L}-c) A & =(\mathbf{L}-c)\left\langle a_{0}, a_{0} d, a_{0} d^{2}, a_{0} d^{3}, \cdots\right\rangle \\
& =\mathbf{L}\left\langle a_{0}, a_{0} d, a_{0} d^{2}, a_{0} d^{3}, \cdots\right\rangle-c\left\langle a_{0}, a_{0} d, a_{0} d^{2}, a_{0} d^{3}, \cdots\right\rangle \\
& =\left\langle a_{0} d, a_{0} d^{2}, a_{0} d^{3}, \cdots\right\rangle-\left\langle c a_{0}, c a_{0} d, c a_{0} d^{2}, c a_{0} d^{3}, \cdots\right\rangle \\
& =\left\langle a_{0} d-c a_{0}, a_{0} d^{2}-c a_{0} d, a_{0} d^{3}-c a_{0} d^{2}, \cdots\right\rangle \\
& =\left\langle(d-c) a_{0},(d-c) a_{0} d,(d-c) a_{0} d^{2}, \cdots\right\rangle \\
& =(d-c)\left\langle a_{0}, a_{0} d, a_{0} d^{2}, \cdots\right\rangle \\
& =(d-c) A
\end{aligned}
$$

\qquad

- The last example implies that an annihilator annihilates one type of sequence, but does not annihilate other types of sequences
- Thus Annihilators can help us classify sequences, and thereby solve recurrences
\qquad
- The annihilator $\mathbf{L}-a$ annihilates any sequence of the form $\left\langle c_{1} a^{n}\right\rangle$

Consider the recurrence $T(n)=3 * T(n-1), T(0)=3$,

- Q1: Calculate $T(0), T(1), T(2)$ and $T(3)$ and write out the sequence T
- Q2: Calculate $\mathbf{L} T$, and use it to compute the annihilator of T
- Q3: Look up this annihilator in the lookup table to get the general solution of the recurrence for $T(n)$
- Q4: Now use the base case $T(0)=3$ to solve for the constants in the general solution

Example

\qquad

First calculate the annihilator:

- Recurrence: $T(n)=4 * T(n-1), T(0)=2$
- Sequence: $T=\left\langle 2,2 * 4,2 * 4^{2}, 2 * 4^{3}, \cdots\right\rangle$
- Calulate the annihilator:
$-\mathbf{L} T=\left\langle 2 * 4,2 * 4^{2}, 2 * 4^{3}, 2 * 4^{4}, \cdots\right\rangle$
$-4 T=\left\langle 2 * 4,2 * 4^{2}, 2 * 4^{3}, 2 * 4^{4}, \cdots\right\rangle$
- Thus LT-4T $=\langle 0,0,0, \cdots\rangle$
- And so $\mathbf{L}-4$ is the annihilator

Example (II)

Now use the annihilator to solve the recurrence

- Look up the annihilator in the "Lookup Table"
- It says: "The annihilator $\mathbf{L}-4$ annihilates any sequence of the form $\left\langle c_{1} 4^{n}\right\rangle$ "
- Thus $T(n)=c_{1} 4^{n}$, but what is c_{1} ?
- We know $T(0)=2$, so $T(0)=c_{1} 4^{0}=2$ and so $c_{1}=2$
- Thus $T(n)=2 * 4^{n}$
- We can apply multiple operators to a sequence
- For example, we can multiply by the constant c and then by the constant d to get the operator $c d$
- We can also multiply by c and then shift left to get $c \mathbf{L} T$ which is the same as $\mathbf{L} c T$
- We can also shift the sequence twice to the left to get LLT which we'll write in shorthand as $\mathbf{L}^{2} T$
\qquad
- We can string operators together to annihilate more complicated sequences
- Consider: $T=\left\langle 2^{0}+3^{0}, 2^{1}+3^{1}, 2^{2}+3^{2}, \cdots\right\rangle$
- We know that ($\mathbf{L}-2$) annihilates the powers of 2 while leaving the powers of 3 essentially untouched
- Similarly, $(\mathbf{L}-3)$ annihilates the powers of 3 while leaving the powers of 2 essentially untouched
- Thus if we apply both operators, we'll see that $(\mathbf{L}-2)(\mathbf{L}-3)$ annihilates the sequence T
\qquad
- Consider: $T=\left\langle a^{0}+b^{0}, a^{1}+b^{1}, a^{2}+b^{2}, \cdots\right\rangle$
- $\mathbf{L} T=\left\langle a^{1}+b^{1}, a^{2}+b^{2}, a^{3}+b^{3}, \cdots\right\rangle$
- $a T=\left\langle a^{1}+a * b^{0}, a^{2}+a * b^{1}, a^{3}+a * b^{2}, \cdots\right\rangle$
- $\mathbf{L} T-a T=\left\langle(b-a) b^{0},(b-a) b^{1},(b-a) b^{2}, \cdots\right\rangle$
- We know that $(\mathbf{L}-a) T$ annihilates the a terms and multiplies the b terms by $b-a$
- Thus $(\mathbf{L}-a) T=\left\langle(b-a) b^{0},(b-a) b^{1},(b-a) b^{2}, \cdots\right\rangle$
- And so the sequence $(\mathbf{L}-a) T$ is annihilated by $(\mathbf{L}-b)$
- Thus the annihilator of T is $(\mathbf{L}-b)(\mathbf{L}-a)$
- We now know enough to solve the Fibonnaci sequence
- Recall the Fibonnaci recurrence is $T(0)=0, T(1)=1$, and $T(n)=T(n-1)+T(n-2)$
- Let T_{n} be the n-th element in the sequence
- Then we've got:

$$
\begin{align*}
T & =\left\langle T_{0}, T_{1}, T_{2}, T_{3}, \cdots\right\rangle \tag{1}\\
\mathbf{L} T & =\left\langle T_{1}, T_{2}, T_{3}, T_{4}, \cdots\right\rangle \tag{2}\\
\mathbf{L}^{2} T & =\left\langle T_{2}, T_{3}, T_{4}, T_{5}, \cdots\right\rangle \tag{3}
\end{align*}
$$

- Thus $\mathbf{L}^{2} T-\mathbf{L} T-T=\langle 0,0,0, \cdots\rangle$
- In other words, $\mathbf{L}^{2}-\mathbf{L}-1$ is an annihilator for T
- In general, the annihilator $(\mathbf{L}-a)(\mathbf{L}-b)$ (where $a \neq b$) will anihilate only all sequences of the form $\left\langle c_{1} a^{n}+c_{2} b^{n}\right\rangle$
- We will often multiply out $(\mathbf{L}-a)(\mathbf{L}-b)$ to $\mathbf{L}^{2}-(a+b) \mathbf{L}+a b$
- Left as an exercise to show that $(\mathbf{L}-a)(\mathbf{L}-b) T$ is the same as $\left(\mathbf{L}^{2}-(a+b) \mathbf{L}+a b\right) T$

Lookup Table

\qquad
nihilator $\mathbf{L}-a$ annihilates sequences of the form $\left\langle c_{1} a^{n}\right\rangle$

- The annihilator $(\mathbf{L}-a)(\mathbf{L}-b)($ where $a \neq b)$ anihilates sequences of the form $\left\langle c_{1} a^{n}+c_{2} b^{n}\right\rangle$
- $\mathbf{L}^{2}-\mathbf{L}-1$ is an annihilator that is not in our lookup table
- However, we can factor this annihilator (using the quadratic formula) to get something similar to what's in the lookup table
- $\mathbf{L}^{2}-\mathbf{L}-1=(\mathbf{L}-\phi)(\mathbf{L}-\hat{\phi})$, where $\phi=\frac{1+\sqrt{5}}{2}$ and $\hat{\phi}=\frac{1-\sqrt{5}}{2}$.

Factoring \qquad

,
"Me fail English? That's Unpossible!" - Ralph, the Simpsons

High School Algebra Review:

- To factor something of the form $a x^{2}+b x+c$, we use the Quadratic Formula:
- $a x^{2}+b x+c$ factors into $(x-\phi)(x-\widehat{\phi})$, where:

$$
\begin{align*}
& \phi=\frac{b+\sqrt{b^{2}-4 a c}}{2 a} \tag{4}\\
& \hat{\phi}=\frac{b-\sqrt{b^{2}-4 a c}}{2 a} \tag{5}
\end{align*}
$$

\qquad

- To factor: $\mathbf{L}^{2}-\mathbf{L}-1$
- Rewrite: $1 * \mathbf{L}^{2}-1 * \mathbf{L}-1, a=1, b=-1, c=-1$
- From Quadratic Formula: $\phi=\frac{1+\sqrt{5}}{2}$ and $\hat{\phi}=\frac{1-\sqrt{5}}{2}$
-So $\mathbf{L}^{2}-\mathbf{L}-1$ factors to $(\mathbf{L}-\phi)(\mathbf{L}-\widehat{\phi})$

Back to Fibonnaci

\qquad

- Recall the Fibonnaci recurrence is $T(0)=0, T(1)=1$, and $T(n)=T(n-1)+T(n-2)$
- We've shown the annihilator for T is $(\mathbf{L}-\phi)(\mathbf{L}-\hat{\phi})$, where $\phi=\frac{1+\sqrt{5}}{2}$ and $\hat{\phi}=\frac{1-\sqrt{5}}{2}$
- If we look this up in the "Lookup Table", we see that the sequence T must be of the form $\left\langle c_{1} \phi^{n}+c_{2} \hat{\phi}^{n}\right\rangle$
- All we have left to do is solve for the constants c_{1} and c_{2}
- Can use the base cases to solve for these
- Finish hw2!
-Finish

Todo
 \qquad

Finding the Constants

\qquad

- We know $T=\left\langle c_{1} \phi^{n}+c_{2} \hat{\phi}^{n}\right\rangle$, where $\phi=\frac{1+\sqrt{5}}{2}$ and $\hat{\phi}=\frac{1-\sqrt{5}}{2}$
- We know

$$
\begin{align*}
& T(0)=c_{1}+c_{2}=0 \tag{6}\\
& T(1)=c_{1} \phi+c_{2} \widehat{\phi}=1 \tag{7}
\end{align*}
$$

- We've got two equations and two unknowns
- Can solve to get $c_{1}=\frac{1}{\sqrt{5}}$ and $c_{2}=-\frac{1}{\sqrt{5}}$,
- Recall Fibonnaci recurrence: $T(0)=0, T(1)=1$, and $T(n)=$ $T(n-1)+T(n-2)$
- The final explicit formula for $T(n)$ is thus:

$$
T(n)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

(Amazingly, $T(n)$ is always an integer, in spite of all of the square roots in its formula.)

