$\qquad$

## CS 361, Lecture 12

Jared Saia
University of New Mexico

## Outline

- Review
- Limitations of current methods
- Domain and Range Transformations
- Recap of Annihilators


## Lookup Table

$$
\left(\mathbf{L}-a_{0}\right)^{b_{1}}\left(\mathbf{L}-a_{1}\right)^{b_{2}} \ldots\left(\mathbf{L}-a_{k}\right)^{b_{k}}
$$

annihilates only sequences of the form:

$$
\left\langle p_{1}(n) a_{0}^{n}+p_{2}(n) a_{1}^{n}+\ldots p_{k}(n) a_{k}^{n}\right\rangle
$$

where $p_{i}(n)$ is a polynomial of degree $b_{i}-1$ (and $a_{i} \neq a_{j}$, when $i \neq j$ )

- Consider a recurrence of the form $T(n)=T(n-1)+T(n-$ 2) $+k$ where $k$ is some constant
- The terms in the equation involving $T$ (i.e. $T(n-1)$ and $T(n-2))$ are called the homogeneous terms
- The other terms (i.e.k) are called the non-homogeneous terms

To find the annihilator for recurrences with non-homogeneous terms, do the following:

- Find the annihilator $a_{1}$ for the homogeneous part
- Find the annihilator $a_{2}$ for the non-homogeneous part
- The annihilator for the whole recurrence is then $a_{1} a_{2}$
- In a height-balanced tree, the height of two subtrees of any node differ by at most one
- Let $T(n)$ be the smallest number of nodes needed to obtain a height balanced binary tree of height $n$
- Q: What is a recurrence for $T(n)$ ?
- A: Divide this into smaller subproblems
- To get a height-balanced tree of height $n$, need one subtree of height $n-1$, and one of height $n-2$, plus a root node
- Thus $T(n)=T(n-1)+T(n-2)+1$
$\qquad$
- Consider recurrence $T(n)=T(n-1)+T(n-2)+1$
- Homogeneous part: $T_{1}(n)=T(n-1)+T(n-2)$
- Non-homogeneous part: $T_{2}(n)=1$
- ( $\left.\mathbf{L}^{2}-\mathbf{L}-1\right)$ annihilates the homogeneous part $\left(T_{1}\right)$
- ( $\mathbf{L}-1)$ annihilates the non-homogeneous part $\left(T_{2}\right)$
- So $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)(\mathbf{L}-1)$ annihilates the sequence
- Consider $T(n)=3 * T(n-1)+3^{n}$
- Q1: What is the homogeneous part, and what annihilates it?
- Q2: What is the non-homogeneous part, and what annihilates it?
- Q3: What is the annihilator of $T(n)$, and what is the general form of the recurrence?
- Factoring gets $(\mathbf{L}-\phi)(\mathbf{L}-\hat{\phi})(\mathbf{L}-1)$, where $\phi=\frac{1+\sqrt{5}}{2}$ and $\hat{\phi}=\frac{1-\sqrt{5}}{2}$
- Look up gives us that: $T(n)=c_{1} \phi^{n}+c_{2} \widehat{\phi}^{n}+c_{3} 1^{n}$

Another Example $\qquad$

- Consider $T(n)=T(n-1)+T(n-2)+2^{n}$.
- Homogeneous part: $T_{1}(n)=T(n-1)+T(n-2)$
- Non-homogeneous part: $T_{2}(n)=2^{n}$
- ( $\left.\mathbf{L}^{2}-\mathbf{L}-1\right)$ annihilates the $T_{1}(n)=T(n-1)+T(n-2)$
- $(L-2)$ annihilates $T_{2}(n)=2^{n}$
- So $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)(L-2)$ is the annihilator of $T(n)$
- Our method does not work on $T(n)=2 T(n / 2)+n, T(n)=$ $T(n / 4)+1$ or $T(n)=T(n-1)+\lg n$
- The problem is that $2 T(n / 2), \frac{1}{n}$ and $\lg n$ do not have annihilators.
- Our tool, as it stands, is limited
- Key idea for strengthening it is transformations


## Limitations

$\qquad$
$\qquad$

- Consider the recurrence giving the run time of mergesort $T(n)=2 T(n / 2)+k n$ (for some constant $k$ ), $T(1)=1$
- How do we solve this?
- We have no technique for annihilating terms like $T(n / 2)$
- However, we can transform the recurrence into one with which we can work
$\qquad$
- Let $n=2^{i}$ and rewrite $T(n)$ :
- $T\left(2^{0}\right)=1$ and $T\left(2^{i}\right)=2 T\left(\frac{2^{i}}{2}\right)+k 2^{i}=2 T\left(2^{i-1}\right)+k 2^{i}$
- Now define a new sequence $t$ as follows: $t(i)=T\left(2^{i}\right)$
- Then $t(0)=1, t(i)=2 t(i-1)+k 2^{i}$

Let's recap what just happened:

- We could not find the annihilator of $T(n)$ so:
- We did a transformation to a recurrence we could solve, $t(i)$ (we let $n=2^{i}$ and $t(i)=T\left(2^{i}\right)$ )
- We found the annihilator for $t(i)$, and solved the recurrence for $t(i)$
- We reverse transformed the solution for $t(i)$ back to a solution for $T(n)$

Now Solve $\qquad$

- We've got a new recurrence: $t(0)=1, t(i)=2 t(i-1)+k 2^{i}$
- We can easily find the annihilator for this recurrence
- ( $\mathbf{L}-2$ ) annihilates the homogeneous part, ( $\mathbf{L}-2$ ) annihilates the non-homogeneous part, So $(\mathbf{L}-2)(\mathbf{L}-2)$ annihilates $t(i)$
- Thus $t(i)=\left(c_{1} i+c_{2}\right) 2^{i}$
$\qquad$
- We've got a solution for $t(i)$ and we want to transform this into a solution for $T(n)$
- Recall that $t(i)=T\left(2^{i}\right)$ and $2^{i}=n$

$$
\begin{align*}
t(i) & =\left(c_{1} i+c_{2}\right) 2^{i}  \tag{1}\\
T\left(2^{i}\right) & =\left(c_{1} i+c_{2}\right) 2^{i}  \tag{2}\\
T(n) & =\left(c_{1} \lg n+c_{2}\right) n  \tag{3}\\
& =c_{1} n \lg n+c_{2} n  \tag{4}\\
& =\Theta(n \lg n) \tag{5}
\end{align*}
$$

- Consider the recurrence $T(n)=9 T\left(\frac{n}{3}\right)+k n$, where $T(1)=1$ and $k$ is some constant
- Let $n=3^{i}$ and rewrite $T(n)$ :
- $T\left(2^{0}\right)=1$ and $T\left(3^{i}\right)=9 T\left(3^{i-1}\right)+k 3^{i}$
- Now define a sequence $t$ as follows $t(i)=T\left(3^{i}\right)$
- Then $t(0)=1, t(i)=9 t(i-1)+k 3^{i}$
- $t(0)=1, t(i)=9 t(i-1)+k 3^{i}$
- This is annihilated by $(\mathbf{L}-9)(\mathbf{L}-3)$
- So $t(i)$ is of the form $t(i)=c_{1} 9^{i}+c_{2} 3^{i}$
$\qquad$
- $t(i)=c_{1} 9^{i}+c_{2} 3^{i}$
- Recall: $t(i)=T\left(3^{i}\right)$ and $3^{i}=n$

$$
\begin{align*}
t(i) & =c_{1} 9^{i}+c_{2} 3^{i} \\
T\left(3^{i}\right) & =c_{1} 9^{i}+c_{2} 3^{i} \\
T(n) & =c_{1}\left(3^{i}\right)^{2}+c_{2} 3^{i}  \tag{6}\\
& =c_{1} n^{2}+c_{2} n  \tag{7}\\
& =\Theta\left(n^{2}\right) \tag{8}
\end{align*}
$$

- This final recurrence is something we know how to solve!
- $t(i)=n \log i$
- The reverse transform gives:

$$
\begin{aligned}
t(i) & =i \log i \\
T\left(2^{i}\right) & =i \log i \\
T(n) & =\log n \log \log n
\end{aligned}
$$

## In Class Exercise

Consider the recurrence $T(n)=2 T(n / 4)+k n$, where $T(1)=1$, and $k$ is some constant

- Q1: What is the transformed recurrence $t(i)$ ? How do we rewrite $n$ and $T(n)$ to get this sequence?
- Q2: What is the annihilator of $t(i)$ ? What is the solution for the recurrence $t(i)$ ?
- Q3: What is the solution for $T(n)$ ? (i.e. do the reverse transformation)

A Final Example $\qquad$

Not always obvious what sort of transformation to do:

- Consider $T(n)=2 T(\sqrt{n})+\log n$
- Let $n=2^{i}$ and rewrite $T(n)$ :
- $T\left(2^{i}\right)=2 T\left(2^{i / 2}\right)+i$
- Define $t(i)=T\left(2^{i}\right)$ :
- $t(i)=2 t(i / 2)+i$

