CS 361, Lecture 17

Jared Saia
University of New Mexico

Outline

- Quicksort Wrapup
- Randomized Quicksort
- Intro to Probability
- Birthday Paradox
\qquad
■_ Outline _ـ_ - Birthay Paradox

```
Partition
    //PRE: A[p..r] is the array to be partitioned, p>=1 and r <= size
    // of A, A[r] is the pivot element
    //POST: Let A' be the array A after the function is run. Then
    // A'[p..r] contains the same elements as A[p..r]. Further,
    // all elements in A'[p..res-1] are <= A[r], A'[res] = A[r],
    // and all elements in A'[res+1..r] are > A[r]
    Partition (A,p,r){
        x = A[r];
        i = p-1;
        for (j=p;j<=r-1;j++){
            if (A[j]<=x){
                i++;
                exchange A[i] and A[j];
        }
        exchange A[i+1] and A[r];
        return i+1;
    }
```


Basic idea: The array is partitioned into four regions, x is the pivot

- Region 1: Region that is less than or equal to x (between p and i)
- Region 2: Region that is greater than x (between $i+1$ and $j-1$)
- Region 3: Unprocessed region
(between j and $r-1$)
- Region 4: Region that contains x only (r)

Region 1 and 2 are growing and Region 3 is shrinking
\qquad
//PRE: A is the array to be sorted, $p>=1$, and r is <= the size of A
//POST: A[p..r] is in sorted order
Quicksort (A,p,r)\{
if ($p<r$) \{
$\mathrm{q}=$ Partition (A,p,r);
Quicksort (A,p,q-1);
Quicksort (A, $q+1, r$);
\}

At the beginning of each iteration of the for loop, for any index k :

1. If $p \leq k \leq i$ then $A[k] \leq x$
2. If $i+1 \leq k \leq j-1$ then $A[k]>x$
3. If $k=r$ then $A[k]=x$
\qquad

- Show Initialization for this loop invariant
- Show Termination for this loop invariant
- Show Maintenance for this loop invariant
- Show Maintenance when $A[j]>x$
- Show Maintenance when $A[j] \leq x$
- In the worst case, the partition always splits the original list into a singleton element and the remaining list
- Then we have the recurrence $T(n)=T(n-1)+T(1)+\Theta(n)$, which is the same as $T(n)=T(n-1)+\Theta(n)$
- The solution to this recurrence is $T(n)=O\left(n^{2}\right)$. Why?

Analysis

\qquad

- The function Partition takes $O(n)$ time, where $n=p-r$. Why?
- Q: What is the runtime of Quicksort?
- A: It depends on the size of the two lists in the recursive calls
\qquad
- In the best case, the partition always splits the original list into two lists of half the size
- Then we have the recurrence $T(n)=2 T(n / 2)+\Theta(n)$
- This is the same recurrence as for mergesort and its solution is $T(n)=O(n \log n)$
- Even if the recurrence tree is somewhat unbalanced, Quicksort does well
- Imagine we always have a 9-to-1 split
- Then we get the recurrence $T(n) \leq T(9 n / 10)+T(n / 10)+c n$
- Solving this recurrence (with recursion tree and induction) gives $T(n)=\Theta(n \log n)$

Take away: Both the worst case, best case, and average case analysis of algorithms can be important.

- You will have a hw problem on the "average case intuition" for deterministic quicksort
- (Note: A solution to the in-class exercise is on page 147 of the text)
\qquad
\qquad
- We'd like to ensure that we get reasonably good splits reasonably quickly
- We'd like an algorithm which is expected to perform well no matter what sort of input it gets.
- Q: How do we ensure that we "usually" get good splits? How can we ensure this even for worst case inputs?
- A: We use randomization.
- R-Quicksort is a randomized algorithm
- The run time is a random variable
- We'd like to analyze the expected run time of R-Quicksort
- To do this, we first need to learn some basic probability theory.

R-Partition

```
//PRE: A[p..r] is the array to be partitioned, p>=1 and r <= size
// of A
//POST: Let A' be the array A after the function is run. Then
// A'[p..r] contains the same elements as A[p..r]. Further,
// all elements in A'[p..res-1] are <= A[i], A'[res] = A[i],
// and all elements in A'[res+1..r] are > A[i], where i is
// a random number between $p$ and $r$.
R-Partition (A,p,r){
        i = Random(p,r);
        exchange A[r] and A[i];
        return Partition(A,p,r);
}
```


Randomized Quicksort

\qquad
//PRE: A is the array to be sorted, $p>=1$, and r is <= the size of A
//POST: A[p..r] is in sorted order
R-Quicksort (A, p, r)\{
if ($\mathrm{p}<\mathrm{r}$) \{
$\mathrm{q}=\mathrm{R}$-Partition (A, p, r);
R-Quicksort (A,p,q-1);
R-Quicksort (A, $q+1, r$);
\}

- Two events A and B are mutually exclusive if $A \cap B$ is the empty set (Example: A is the event that the outcome of a die is 1 and B is the event that the outcome of a die is 2)
- Two random variables X and Y are independent if for all x and $y, P(X=x$ and $Y=y)=P(X=x) P(Y=y)$ (Example: let X be the outcome of the first role of a die, and Y be the outcome of the second role of the die. Then X and Y are independent.)
\qquad
- An Indicator Random Variable associated with event A is defined as:
$-I(A)=1$ if A occurs
$-I(A)=0$ if A does not occur
- Example: Let A be the event that the role of a die comes up 2. Then $I(A)$ is 1 if the die comes up 2 and 0 otherwise.
- Indicator Random Variables and Linearity of Expectation used together are a very powerful tool
- The "Birthday Paradox" illustrates this point
- To analyze the run time of quicksort, we will also use indicator r.v.'s and linearity of expectation (analysis will be similar to "birthday paradox" problem)

Linearity of Expectation

\qquad

- Let X and Y be two random variables
- Then $E(X+Y)=E(X)+E(Y)$
- (Holds even if X and Y are not independent.)
- More generally, let $X_{1}, X_{2}, \ldots, X_{n}$ be n random variables
- Then

$$
E\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} E\left(X_{i}\right)
$$

\qquad

- For $1 \leq i \leq n$, let X_{i} be the outcome of the i-th role of three-sided die
- Then

$$
\begin{equation*}
E\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} E\left(X_{i}\right)=2 n \tag{3}
\end{equation*}
$$

- Assume there are k people in a room, and n days in a year
- Assume that each of these k people is born on a day chosen uniformly at random from the n days
- Q: What is the expected number of pairs of individuals that have the same birthday?
- We can use indicator random variables and linearity of expectation to compute this
- For all $1 \leq i<j \leq k$, let $X_{i, j}$ be an indicator random variable defined such that:
$-X_{i, j}=1$ if person i and person j have the same birthday $-X_{i, j}=0$ otherwise
- Note that for all i, j,

$$
\begin{align*}
E\left(X_{i, j}\right) & =P(\text { person } \mathrm{i} \text { and } \mathrm{j} \text { have same birthday }) \\
& =1 / n \tag{4}
\end{align*}
$$

- Let X be a random variable giving the number of pairs of people with the same birthday
- We want $E(X)$
- The $X=\sum_{i=1}^{k} \sum_{j=i+1}^{k} X_{i, j}$
- So $E(X)=E\left(\sum_{i=1}^{k} \sum_{j=i+1}^{k} X_{i, j}\right)$
\qquad

Analysis \qquad

$$
\begin{align*}
E(X) & =E\left(\sum_{i=1}^{k} \sum_{j=i+1}^{k} X_{i, j}\right) \tag{5}\\
& =\sum_{i=1}^{k} \sum_{j=i+1}^{k} E\left(X_{i, j}\right) \tag{6}\\
& =\sum_{i=1}^{k} \sum_{j=i+1}^{k} 1 / n \tag{7}\\
& =\binom{k}{2}(1 / n) \tag{8}\\
& =\frac{k(k-1)}{2 n} \tag{9}
\end{align*}
$$

The second step follows by Linearity of Expectation
\qquad

- Thus, if $k(k-1) \geq 2 n$, expected number of pairs of people with same birthday is at least 1
- Thus if have at least $\sqrt{2 n}+1$ people in the room, can expect to have at least two with same birthday
- For $n=365$, if $k=28$, expected number of pairs with same birthday is 1.04

