CS 361, Lecture 18

Jared Saia
University of New Mexico

Outline

- Birthday Paradox
- In-Class Exercise
- Analysis of Randomized Quicksort

Probability Definitions

(from Appendix C.3)

- A random variable is a variable that takes on one of several values, each with some probability. (Example: if X is the outcome of the role of a die, X is a random variable)
- The expected value of a random variable, X is defined as:

$$
E(X)=\sum_{x} x * P(X=x)
$$

(Example if X is the outcome of the role of a three sided die,

$$
\begin{align*}
E(X) & =1 *(1 / 3)+2 *(1 / 3)+3 *(1 / 3) \tag{1}\\
& =2 \tag{2}
\end{align*}
$$

- Two events A and B are mutually exclusive if $A \cap B$ is the empty set (Example: A is the event that the outcome of a die is 1 and B is the event that the outcome of a die is 2)
- Two random variables X and Y are independent if for all x and $y, P(X=x$ and $Y=y)=P(X=x) P(Y=y)$ (Example: let X be the outcome of the first role of a die, and Y be the outcome of the second role of the die. Then X and Y are independent.)
- An Indicator Random Variable associated with event A is defined as:
$-I(A)=1$ if A occurs
$-I(A)=0$ if A does not occur
- Example: Let A be the event that the role of a die comes up 2. Then $I(A)$ is 1 if the die comes up 2 and 0 otherwise.
- Important fact: For any indicator random variable $X_{i}, E\left(X_{i}\right)=$ $P\left(X_{i}=1\right)$
- Let X and Y be two random variables
- Then $E(X+Y)=E(X)+E(Y)$
- (Holds even if X and Y are not independent.)
- More generally, let $X_{1}, X_{2}, \ldots, X_{n}$ be n random variables
- Then

$$
E\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} E\left(X_{i}\right)
$$

\qquad

- Assume there are k people in a room, and n days in a year
- Assume that each of these k people is born on a day chosen uniformly at random from the n days
- Q: What is the expected number of pairs of individuals that have the same birthday?
- We can use indicator random variables and linearity of expectation to compute this

$$
\begin{align*}
E(X) & =E\left(\sum_{i=1}^{k} \sum_{j=i+1}^{k} X_{i, j}\right) \tag{5}\\
& =\sum_{i=1}^{k} \sum_{j=i+1}^{k} E\left(X_{i, j}\right) \tag{6}\\
& =\sum_{i=1}^{k} \sum_{j=i+1}^{k} 1 / n \tag{7}\\
& =\binom{k}{2}(1 / n) \tag{8}\\
& =\frac{k(k-1)}{2 n} \tag{9}
\end{align*}
$$

The second step follows by Linearity of Expectation

Analysis

- For all $1 \leq i<j \leq k$, let $X_{i, j}$ be an indicator random variable defined such that:
$-X_{i, j}=1$ if person i and person j have the same birthday
$-X_{i, j}=0$ otherwise
- Note that for all i, j,

$$
\begin{align*}
E\left(X_{i, j}\right) & =P(\text { person } \mathrm{i} \text { and } \mathrm{j} \text { have same birthday }) \tag{3}\\
& =1 / n \tag{4}
\end{align*}
$$

\qquad

- Let X be a random variable giving the number of pairs of people with the same birthday
- We want $E(X)$
- The $X=\sum_{i=1}^{k} \sum_{j=i+1}^{k} X_{i, j}$
- So $E(X)=E\left(\sum_{i=1}^{k} \sum_{j=i+1}^{k} X_{i, j}\right)$
- Thus, if $k(k-1) \geq 2 n$, expected number of pairs of people with same birthday is at least 1
- Thus if have at least $\sqrt{2 n}+1$ people in the room, can expect to have at least two with same birthday
- For $n=365$, if $k=28$, expected number of pairs with same birthday is 1.04
- Assume there are k people in a room, and n days in a year
- Assume that each of these k people is born on a day chosen uniformly at random from the n days
- Let X be the number of groups of three people who all have the same birthday. What is $E(X)$?
- Let $X_{i, j, k}$ be an indicator r.v. which is 1 if people i, j, and k have the same birthday and 0 otherwise
\qquad
- Q1: Write the expected value of X as a function of the $X_{i, j, k}$ (use linearity of expectation)
- Q2: What is $E\left(X_{i, j, k}\right)$?
- Q3: What is the total number of groups of three people out of k ?
- Q4: What is $E(X)$?

```
//PRE: A is the array to be sorted, p>=1, and r is <= the size of A
//POST: A[p..r] is in sorted order
R-Quicksort (A,p,r){
    if (p<r){
        q = R-Partition (A,p,r);
        R-Quicksort (A,p,q-1);
        R-Quicksort (A,q+1,r);
    }
```


Scratch Space

\qquad

R-Partition
 \qquad

Analysis \qquad

- R-Quicksort is a randomized algorithm
- The run time is a random variable
- We'd like to analyze the expected run time of R-Quicksort
- To do this, we first need to learn some basic probability theory.

Plan of Attack
 \qquad

"If you get hold of the head of a snake, the rest of it is mere rope" - Akan Proverb

- We will analyze the total number of comparisons made by quicksort
- We will let X be the total number of comparisons made by R-Quicksort
- We will write X as the sum of a bunch of indicator random variables
- We will use linearity of expectation to compute the expected value of X
\qquad
- Let A be the array to be sorted
- Let z_{i} be the i-th smallest element in the array A
- Let $Z_{i, j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$
- Q : What is
P (either z_{i} or z_{j} are first elems in $Z_{i, j}$ chosen as pivots)
- A: $P\left(z_{i}\right.$ chosen as first elem in $\left.Z_{i, j}\right)+$ $P\left(z_{j}\right.$ chosen as first elem in $\left.Z_{i, j}\right)$
- Further note that number of elems in $Z_{i, j}$ is $j-i+1$, so

$$
P\left(z_{i} \text { chosen as first elem in } Z_{i, j}\right)=\frac{1}{j-i+1}
$$

and

$$
P\left(z_{j} \text { chosen as first elem in } Z_{i, j}\right)=\frac{1}{j-i+1}
$$

- Hence
$P\left(z_{i}\right.$ or z_{j} are first elems in $Z_{i, j}$ chosen as pivots $)=\frac{2}{j-i+1}$

Indicator Random Variables

- Let $X_{i, j}$ be 1 if z_{i} is compared with z_{j} and 0 otherwise
- Note that $X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i, j}$
- Further note that

$$
\begin{equation*}
E(X)=E\left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i, j}\right)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left(X_{i, j}\right) \tag{11}
\end{equation*}
$$

$$
\begin{align*}
E\left(X_{i, j}\right) & =P\left(z_{i} \text { is compared to } z_{j}\right) \tag{10}\\
& =\frac{2}{j-i+1}
\end{align*}
$$

Conclusion ___

Questions

\qquad

- Q1: So what is $E\left(X_{i, j}\right)$?
- A1: It is $P\left(z_{i}\right.$ is compared to $\left.z_{j}\right)$
- Q2: What is $P\left(z_{i}\right.$ is compared to $\left.z_{j}\right)$?
- A2: It is:
P (either z_{i} or z_{j} are first elems in $Z_{i, j}$ chosen as pivots)
- Why?
- If no element in $Z_{i, j}$ has been chosen yet, no two elements in $Z_{i, j}$ have yet been compared, and all of $Z_{i, j}$ is in same list
- If some element in $Z_{i, j}$ other than z_{i} or z_{j} is chosen first, z_{i} and z_{j} will be split into separate lists (and hence will never be compared)

Putting it together___

$$
\begin{align*}
E(X) & =E\left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i, j}\right) \tag{12}\\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left(X_{i, j}\right) \tag{13}\\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \tag{14}\\
& =\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \tag{15}\\
& <\sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \tag{16}\\
& =\sum_{i=1}^{n-1} O(\log n) \tag{17}\\
& =O(n \log n) \tag{18}
\end{align*}
$$

- Q: Why is $\sum_{k=1}^{n} \frac{2}{k}=O(\log n)$?
- A:

$$
\begin{align*}
\sum_{k=1}^{n} \frac{2}{k} & =2 \sum_{k=1}^{n} 1 / k \tag{19}\\
& \leq 2(\ln n+1) \tag{20}
\end{align*}
$$

- Where the last step follows by an integral bound on the sum (p. 1067)
- The expected number of comparisons for r-quicksort is $O(n \log n)$
- Competitive with mergesort and heapsort
- Randomized version is "better" than deterministic version
- Finish Chapter 7
- Finish HW4

