
CS 361, Lecture 2

Jared Saia

University of New Mexico

Today’s Outline

• Intro to Asymptotic Analysis

• Why do we care?

• Another interview problem

• Some solutions to the problem

• Todo list

1

Administrative

• Kanglin Xu, Office hours: M 4:30-6:30 and Weds 4:30 to

6:30, both in FEC 301C

• Sections: if you are in the CS dept, you must register for

one of the two sections (Th 3:30-4:20 or F 1:00-1:50)

• Book: “Introduction to Algorithms” by Cormen, Leiserson,

Rivest, and Stein

• Pretest due on Tuesday

2

How to analyze an algorithm?

• There are several resource bounds we could be concerned

about: time, space, communication bandwidth, logic gates,

etc.

• However, we are usually most concerned about time

• Recall that algorithms are independent of programming lan-

guages and machine types

• Q: So how do we measure resource bounds of algorithms

3

Random-access machine model

• We will use RAM model of computation in this class

• All instructions operate in serial

• All basic operations (e.g. add, multiply, compare, read, store,

etc.) take unit time

• All “atomic” data (chars, ints, doubles, pointers, etc.) take

unit space

4

Worst Case Analysis

• We’ll generally be pessimistic when we evaluate resource

bounds

• We’ll evaluate the run time of the algorithm on the worst

possible input sequence

• Amazingly, in most cases, we’ll still be able to get pretty

good bounds

• Justification: The “average case” is often about as bad as

the worst case.

5



Example Analysis

• Consider the problem discussed last tuesday about finding a

redundant element in an array

• Let’s consider the more general problem, where the numbers

are 1 to n instead of 1 to 1,000,000

6

Algorithm 1

• Create a new “count” array of ints of size n, which we’ll use

to count the occurences of each number. Initialize all entries

to 0

• Go through the input array and each time a number is seen,

update its count in the “count” array

• As soon as a number is seen in the input array which has

already been counted once, return this number

7

Algorithm 2

• Iterate through the input array, summing up all the numbers,

let S be this sum

• Let x = S − (n + 1)n/2

• Return x

8

Example Analysis: Time

• Worst case: Algorithm 1 does 5 ∗ n operations (n inits to 0

in “count” array, n reads of input array, n reads of “count”

array (to see if value is 1), n increments, and n stores into

count array)

• Worst case: Algorithm 2 does 2 ∗ n + 4 operations (n reads

of input array, n additions to value S, 4 computations to

determine x given S)

9

Example Analysis: Space

• Worst Case: Algorithm 1 uses n additional units of space to

store the “count” array

• Worst Case: Algorithm 2 uses 2 additional units of space

10

A Simpler Analysis

• Analysis above can be tedious for more complicated algo-

rithms

• In many cases, we don’t care about constants. 5n is about

the same as 2n + 4 which is about the same as an + b for

any constants a and b

• However we do still care about the difference in space: n is

very different from 2

• Asymptotic analysis is the solution to removing the tedium

but ensuring good analysis

11



What is asymptotic analysis?

• A tool for analyzing time and space usage of algorithms

• Assumes input size is a variable, say n, and gives time and

space bounds as a function of n

• Ignores multiplicative and additive constants

• Concerned only with the rate of growth

• E.g. Treats run times of n, 10,000 ∗ n + 2000, and .5n + 2

all the same (We use the term O(n) to refer to all of them)

12

What is Asymptotic Analysis?(II)

• Informally, O notation is the leading (i.e. quickest growing)

term of a formula with the coefficient stripped off

• O is sort of a relaxed version of “≤”

• E.g. n is O(n) and n is also O(n2)

• By convention, we use the smallest possible O value i.e. we

say n is O(n) rather than n is O(n2)

13

More Examples

• E.g. n, 10,000n − 2000, and .5n + 2 are all O(n)

• n + logn, n −
√

n are O(n)

• n2 + n + logn, 10n2 + n −
√

n are O(n2)

• n logn + 10n is O(n logn)

• 10 ∗ log2 n is O(log2 n)

• n
√

n + n logn + 10n is O(n
√

n)

• 10,000, 250 and 4 are O(1)

14

More Examples

• Algorithm 1 and 2 both take time O(n)

• Algorithm 1 uses O(n) extra space

• But, Algorithm 2 uses O(1) extra space

15

Questions

Express the following in O notation

• n3/1000 − 100n2 − 100n + 3

• logn + 100

• 10 ∗ log2 n + 100

•
∑n

i=1 i

16

A digression on logs

It rolls down stairs alone or in pairs,

and over your neighbor’s dog,

it’s great for a snack or to put on your back,

it’s log, log, log!

- “The Log Song” from the Ren and Stimpy Show

• The log function shows up very frequently in algorithm anal-

ysis

• As computer scientists, when we use log, we’ll mean log2

(i.e. if no base is given, assume base 2)

17



Definition

• logx y is by definition the value z such that xz = y

• xlogx y = y by definition

18

Examples

• log 1 = 0

• log 2 = 1

• log 32 = 5

• log 2k = k

Note: logn is way, way smaller than n for large values of n

19

Examples

• log3 9 = 2

• log5 125 = 3

• log4 16 = 2

• log24 24100 = 100

20

Facts about exponents

Recall that:

• (xy)z = xyz

• xyxz = xy+z

From these, we can derive some facts about logs

21

Facts about logs

To prove both equations, raise both sides to the power of 2, and

use facts about exponents

• Fact 1: log(xy) = logx + log y

• Fact 2: log ac = c log a

Memorize these two facts

22

Incredibly useful fact about logs

• Fact 3: logc a = log a/ log c

To prove this, consider the equation a = clogc a, take log2 of both

sides, and use Fact 2. Memorize this fact

23



Log facts to memorize

• Fact 1: log(xy) = logx + log y

• Fact 2: log ac = c log a

• Fact 3: logc a = log a/ log c

These facts are sufficient for all your logarithm needs. (You just

need to figure out how to use them)

24

Questions

Simplify and give O notation for the following:

• log 10 ∗ x2

• log2 x

• log log
√

n

• 2log4 x

25

Logs and O notation

• Note that log8 n = logn/ log 8.

• Note that log600 n200 = 200 ∗ logn/ log 600.

• Note that log100000 30∗n2 = 2∗logn/ log 100000+log 30/ log 100000.

• Thus, log8 n, log600 n600, and log100000 30∗n2 are all O(logn)

• In general, for any constants k1 and k2, logk1
nk2 = k2 logn/ log k1,

which is just O(logn)

26

Take Away

• All log functions of form k1 log k2nk3 for constants k1, k2 and

k3 are O(logn)

• For this reason, we don’t really “care” about the base of the

log function when we do asymptotic notation

• Thus, binary search, ternary search and k-ary search all take

O(logn) time

27

Todo

• Finish pretest, due next Tuesday!

• Sign up for the class mailing list (cs361)

• Read Chapter 3 (Growth of Functions) in textbook

28


