CS 361, Lecture 2
Jared Saia
University of New Mexico

Today's Outline

- Intro to Asymptotic Analysis
- Why do we care?
- Another interview problem
- Some solutions to the problem
- Todo list
\qquad
- Kanglin Xu, Office hours: M 4:30-6:30 and Weds 4:30 to 6:30, both in FEC 301C
- Sections: if you are in the CS dept, you must register for one of the two sections (Th 3:30-4:20 or F 1:00-1:50)
- Book: "Introduction to Algorithms" by Cormen, Leiserson, Rivest, and Stein
- Pretest due on Tuesday
- There are several resource bounds we could be concerned about: time, space, communication bandwidth, logic gates, etc.
- However, we are usually most concerned about time
- Recall that algorithms are independent of programming languages and machine types
- Q: So how do we measure resource bounds of algorithms
\qquad
- We will use RAM model of computation in this class
- All instructions operate in serial
- All basic operations (e.g. add, multiply, compare, read, store, etc.) take unit time
- All "atomic" data (chars, ints, doubles, pointers, etc.) take unit space
\qquad
- We'll generally be pessimistic when we evaluate resource bounds
- We'll evaluate the run time of the algorithm on the worst possible input sequence
- Amazingly, in most cases, we'll still be able to get pretty good bounds
- Justification: The "average case" is often about as bad as the worst case.

Example Analysis

\qquad

- Consider the problem discussed last tuesday about finding a redundant element in an array
- Let's consider the more general problem, where the numbers are 1 to n instead of 1 to $1,000,000$

Algorithm 1

- Create a new "count" array of ints of size n, which we'll use to count the occurences of each number. Initialize all entries to 0
- Go through the input array and each time a number is seen, update its count in the "count" array
- As soon as a number is seen in the input array which has already been counted once, return this number
\qquad
- Iterate through the input array, summing up all the numbers, let S be this sum
- Let $x=S-(n+1) n / 2$
- Return x
- Worst case: Algorithm 1 does $5 * n$ operations (n inits to 0 in "count" array, n reads of input array, n reads of "count" array (to see if value is 1), n increments, and n stores into count array)
- Worst case: Algorithm 2 does $2 * n+4$ operations (n reads of input array, n additions to value $S, 4$ computations to determine x given S)
- Worst Case: Algorithm 1 uses n additional units of space to store the "count" array
- Worst Case: Algorithm 2 uses 2 additional units of space
- Analysis above can be tedious for more complicated algorithms
- In many cases, we don't care about constants. $5 n$ is about the same as $2 n+4$ which is about the same as $a n+b$ for any constants a and b
- However we do still care about the difference in space: n is very different from 2
- Asymptotic analysis is the solution to removing the tedium but ensuring good analysis
\qquad
- A tool for analyzing time and space usage of algorithms
- Assumes input size is a variable, say n, and gives time and space bounds as a function of n
- Ignores multiplicative and additive constants
- Concerned only with the rate of growth
- E.g. Treats run times of $n, 10,000 * n+2000$, and $.5 n+2$ all the same (We use the term $O(n)$ to refer to all of them)

What is Asymptotic Analysis?(II)

- Informally, O notation is the leading (i.e. quickest growing) term of a formula with the coefficient stripped off
- O is sort of a relaxed version of " \leq "
- E.g. n is $O(n)$ and n is also $O\left(n^{2}\right)$
- By convention, we use the smallest possible O value i.e. we say n is $O(n)$ rather than n is $O\left(n^{2}\right)$

More Examples

\qquad

- E.g. $n, 10,000 n-2000$, and $.5 n+2$ are all $O(n)$
- $n+\log n, n-\sqrt{n}$ are $O(n)$
- $n^{2}+n+\log n, 10 n^{2}+n-\sqrt{n}$ are $O\left(n^{2}\right)$
- $n \log n+10 n$ is $O(n \log n)$
- $10 * \log ^{2} n$ is $O\left(\log ^{2} n\right)$
- $n \sqrt{n}+n \log n+10 n$ is $O(n \sqrt{n})$
- 10, 000, 2^{50} and 4 are $O(1)$
- Algorithm 1 and 2 both take time $O(n)$
- Algorithm 1 uses $O(n)$ extra space
- But, Algorithm 2 uses $O(1)$ extra space
\qquad

Express the following in O notation

- $n^{3} / 1000-100 n^{2}-100 n+3$
- $\log n+100$
- $10 * \log ^{2} n+100$
- $\sum_{i=1}^{n} i$

It rolls down stairs alone or in pairs,
and over your neighbor's dog,
it's great for a snack or to put on your back,
it's log, log, log!

- "The Log Song" from the Ren and Stimpy Show
- The log function shows up very frequently in algorithm analysis
- As computer scientists, when we use log, we'll mean $\log _{2}$ (i.e. if no base is given, assume base 2)
\qquad
\qquad

Recall that:

- $\log _{x} y$ is by definition the value z such that $x^{z}=y$
- $x^{\log _{x} y}=y$ by definition
\qquad

Examples \qquad

- $\log 1=0$
- $\log 2=1$
- $\log 32=5$
- $\log 2^{k}=k$

Note: $\log n$ is way, way smaller than n for large values of n

Examples

\qquad

- $\log _{3} 9=2$
- $\log _{5} 125=3$
- $\log _{4} 16=2$
- $\log _{24} 24^{100}=100$
- $\left(x^{y}\right)^{z}=x^{y z}$
- $x^{y} x^{z}=x^{y+z}$

From these, we can derive some facts about logs

To prove both equations, raise both sides to the power of 2 , and use facts about exponents

- Fact 1: $\log (x y)=\log x+\log y$
- Fact 2: $\log a^{c}=c \log a$

Memorize these two facts

22

Incredibly useful fact about logs \qquad

- Fact 3: $\log _{c} a=\log a / \log c$

To prove this, consider the equation $a=c^{\log _{c} a}$, take $\log _{2}$ of both sides, and use Fact 2. Memorize this fact

Log facts to memorize

\qquad

- Fact 1: $\log (x y)=\log x+\log y$
- Fact 2: $\log a^{c}=c \log a$
- Fact 3: $\log _{c} a=\log a / \log c$

These facts are sufficient for all your logarithm needs. (You just need to figure out how to use them)

24

Questions

Simplify and give O notation for the following:

- $\log 10 * x^{2}$
- $\log ^{2} x$
- $\log \log \sqrt{n}$
- $2^{\log _{4} x}$
- Finish pretest, due next Tuesday!
- Sign up for the class mailing list (cs361)
- Read Chapter 3 (Growth of Functions) in textbook
- All log functions of form $k_{1} \log k_{2} n^{k_{3}}$ for constants k_{1}, k_{2} and k_{3} are $O(\log n)$
- For this reason, we don't really "care" about the base of the log function when we do asymptotic notation
- Thus, binary search, ternary search and k-ary search all take $O(\log n)$ time
\qquad

Take Away
 \qquad

Logs and O notation

- Note that $\log _{8} n=\log n / \log 8$.
- Note that $\log _{600} n^{200}=200 * \log n / \log 600$
- Note that $\log _{100000} 30 * n^{2}=2 * \log n / \log 100000+\log 30 / \log 100000$.
- Thus, $\log _{8} n, \log _{600} n^{600}$, and $\log _{100000} 30 * n^{2}$ are all $O(\log n)$
- In general, for any constants k_{1} and $k_{2}, \log _{k_{1}} n^{k_{2}}=k_{2} \log n / \log k_{1}$, which is just $O(\log n)$

