```
Tree-Search(x,k){
    if (x=nil) or (k = key(x)){
        return x;
    }
    if (k<key(x)){
        return Tree-Search(left(x),k);
    }else{
        return Tree-Search(right(x),k);
    }
}
```

Outline \qquad

- Binary Trees
- Red Black Trees
\qquad
\qquad Γ Previous In-Class Exercise \qquad
- Q1: What is the loop invariant for Tree-Search?
- Q2: What is Initialization?
- Q3: Maintenance?
- Q4: Termination?
- To show: If key k exists in the tree, Tree-Search returns the elem with key k, otherwise Tree-Search returns nil.
- Loop Invariant: If key k exists in the tree, then it exists in the subtree rooted at node x

Answers

- Initialization: Before the first iteration, x is the root of the entire tree, therefor if key k exists in the tree, then it exists in the subtree rooted at node x

Maintenance

- Maintenance: Assume at the beginning of the procedure, it's true that if key k exists in the tree that it is in the subtree rooted at node x. There are three cases that can occur during the procedure:
- Case 1: $\operatorname{key}(x)$ is k. In this case, the procedure terminates and returns x, so the invariant continues to hold
- Case 2: $\mathrm{k}<\mathrm{key}(\mathrm{x})$. In this case, by the Search Tree Property, all keys in the subtree rooted on the right child of x are greater than k (since $\operatorname{key}(\mathrm{x})>\mathrm{k}$). Thus, if k exists in the subtree rooted at x, it must exist in the subtree rooted at left (x).
- Case 3:k>key (x). In this case, by the Search Tree Property, All keys in the subtree rooted on the right child of x are less than k (since $\operatorname{key}(\mathrm{x})<\mathrm{k}$). Thus, if k exists in the subtree rooted at x, it must exist in the subtree rooted at right (x).
- By the loop invariant, we know that when the procedure terminates, if k is in the tree, then it is in the subtree rooted at x. If k is in fact in the tree, then x will never be nil, and so the procedure will only terminate by returning a node with key k. If k is not in the tree, then the only way the procedure will terminate is when x is nil. Thus, in this case also, the procedure will return the correct answer.
- Tree Minimum (x) : Return the leftmost child in the tree rooted at \times
- Tree Maximum (x) : Return the rightmost child in the tree rooted at \times

```
Tree-Successor(x){
    if (right(x) != null){
        return Tree-Minimum(right(x));
    }
    y = parent(x);
    while (y!=null and x=right(y)){
        x = y;
        y = parent(y);
    }
    return y;
}
```

- Case 1: If right subtree of x is non-empty, $\operatorname{successor}(x)$ is just the leftmost node in the right subtree
- Case 2: If the right subtree of x is empty and x has a successor, then successor (x) is the lowest ancestor of x whose left child is also an ancestor of x. (i.e. the lowest ancestor of x whose key is $\geq \operatorname{key}(\mathrm{x})$)

Case 3: The node, x to be deleted has two children

1. Swap x with Successor (x) (Successor (x) has no more than 1 child (why?))
2. Remove x, using the procedure for case 1 or case 2 .

Insertion

Insert (\top, x)

1. Let r be the root of T.
2. Do Tree-Search $(r, \operatorname{key}(x))$ and let p be the last node processed in that search
3. If p is nil (there is no tree), make x the root of a new tree
4. Else if $\operatorname{key}(\mathrm{X}) \leq \mathrm{p}$, make x the left child of p, else make x the right child of p

Deletion

\qquad

- Code is in book, basically there are three cases, two are easy and one is tricky
- Case 1: The node to delete has no children. Then we just delete the node
- Case 2: The node to delete has one child. Then we delete the node and "splice" together the two resulting trees
- All of these operations take $O(h)$ time where h is the height of the tree
- If n is the number of nodes in the tree, in the worst case, h is $O(n)$
- However, if we can keep the tree balanced, we can ensure that $h=O(\log n)$
- Red-Black trees can maintain a balanced BST

Randomly Built BST

- What if we build a binary search tree by inserting a bunch of elements at random?
- Q: What will be the average depth of a node in such a randomly built tree? We'll show that it's $O(\log n)$
- For a tree T and node x, let $d(x, T)$ be the depth of node x in T
- Define the total path length, $P(T)$, to be the sum over all nodes x in T of $d(x, T)$
\qquad
"Shut up brain or I'll poke you with a Q-Tip" - Homer Simpson
- Note that the average depth of a node in T is

$$
\frac{1}{n} \sum_{x \in T} d(x, T)=\frac{1}{n} P(T)
$$

- Thus we want to show that $P(T)=O(n \log n)$

Analysis

\qquad

- Let T_{l}, T_{r} be the left and right subtrees of T respectively. Let n be the number of nodes in T
- Then $P(T)=P\left(T_{l}\right)+P\left(T_{r}\right)+n-1$. Why?
\qquad
- Let $P(n)$ be the expected total depth of all nodes in a randomly built binary tree with n nodes
- Note that for all $i, 0 \leq i \leq n-1$, the probability that T_{l} has i nodes and T_{r} has $n-i-1$ nodes is $1 / n$.
- Thus $P(n)=\frac{1}{n} \sum_{i=0}^{n-1}(P(i)+P(n-i-1)+n-1)$

$$
\begin{align*}
P(n) & =\frac{1}{n} \sum_{i=0}^{n-1}(P(i)+P(n-i-1)+n-1) \tag{1}\\
& =\frac{1}{n}\left(\sum_{i=0}^{n-1}(P(i)+P(n-i-1))+\frac{1}{n}\left(\sum_{i=0}^{n-1} n-1\right)\right) \tag{2}\\
& =\frac{1}{n}\left(\sum_{i=0}^{n-1}(P(i)+P(n-i-1))+\Theta(n)\right. \tag{3}\\
& =\frac{2}{n}\left(\sum_{k=1}^{n-1} P(k)\right)+\Theta(n) \tag{4}
\end{align*}
$$

- We have $P(n)=\frac{2}{n}\left(\sum_{k=1}^{n-1} P(k)\right)+\Theta(n)$
- This is the same recurrence for randomized Quicksort
- In your hw (problem 7-2), you show that the solution to this recurrence is $P(n)=O(n \log n)$
- $P(n)$ is the expected total depth of all nodes in a randomly built binary tree with n nodes.
- We've shown that $P(n)=O(n \log n)$
- There are n nodes total
- Thus the expected average depth of a node is $O(\log n)$
- The expected average depth of a node in a randomly built binary tree is $O(\log n)$
- This implies that operations like search, insert, delete take expected time $O(\log n)$ for a randomly built binary tree

Warning!

\qquad

- In many cases, data is not inserted randomly into a binary search tree
- I.e. many binary search trees are not "randomly built"
- For example, data might be inserted into the binary search tree in almost sorted order
- Then the BST would not be randomly built, and so the expected average depth of the nodes would not be $O(\log n)$

What to do?

- A Red-Black tree implements the dictionary operations in such a way that the height of the tree is always $O(\log n)$, where n is the number of nodes
- This will guarantee that no matter how the tree is built that all operations will always take $O(\log n)$ time
- Next time we'll see how to create Red-Black Trees

