CS 361, Lecture 24

Jared Saia

University of New Mexico

Outline

- RB-Tree Review
- AVL Trees
- B-Trees
- Skip Lists
\qquad

1. Set left(z) and right(z) to be NIL
2. Let y be the last node processed during a search for z in T
3. Insert z as the appropriate child of y (left child if $\operatorname{key}(z) \leq y$, right child otherwise)
4. Color z red
5. Call the procedure RB-Insert-Fixup

Case 1
\qquad

A BST is a red-black tree if it satisfies the RB-Properties

1. Every node is either red or black
2. The root is black
3. Every leaf (NIL) is black
4. If a node is red, then both its children are black
5. For each node, all paths from the node to descendant leaves contain the same number of black nodes
\qquad

-

1. Every node is either red or black
RB-Insert-Fixup(T,z) ____
```
```

```
RB-Insert-Fixup(T,z){
```

```
RB-Insert-Fixup(T,z){
```

```
RB-Insert-Fixup(T,z){
    while (color(p(z)) is red){
    while (color(p(z)) is red){
    while (color(p(z)) is red){
            case 1: z's uncle is red{
            case 1: z's uncle is red{
            case 1: z's uncle is red{
                    do case 1
                    do case 1
                    do case 1
            }
            }
            }
            case 2: z's uncle is black and z is a right child{
            case 2: z's uncle is black and z is a right child{
            case 2: z's uncle is black and z is a right child{
                    do case 2
                    do case 2
                    do case 2
            }
            }
            }
            case 3: z's uncle is black and z is a left child{
            case 3: z's uncle is black and z is a left child{
            case 3: z's uncle is black and z is a left child{
            do case 3
            do case 3
            do case 3
            }
            }
            }
        }
        }
        }
        color(root(T)) = black;
        color(root(T)) = black;
        color(root(T)) = black;
}
```

}

```
}
```

\qquad

- We'll now briefly discuss some other balanced BSTs
- They all implement Insert, Delete, Lookup, Successor, Predecessor, Maximum and Minimum efficiently

Loop Invariant

At the start of each iteration of the loop:

- Node z is red
- If parent(z) is the root, then parent(z) is black
- If there is a violation of the red-black properties, there is at most one violation, and it is either property 2 or 4 . If there is a violation of property 2 , it occurs because z is the root and is red. If there is a violation of property 4 , it occurs because both z and parent(z) are red.

Pseudocode

\qquad

- Detailed Pseudocode for RB-Insert and RB-Insert-Fixup is in the book, Chapter 13.3
- There's also a detailed proof of correctness for RB-InsertFixup in the the same section
- An AVL tree is height-balanced: For each node x, the heights of the left and right subtrees of x differ by at most 1
- Each node has an additional height field $h(x)$
- Claim: An AVL tree with n nodes has height $O(\log n)$
- Claim: An AVL tree with n nodes has height $O(\log n)$
- Q: For an AVL tree of height h, how many nodes must it have in it?
- A: We can write a recurrence relation. Let $T(h)$ be the minimum number of nodes in a tree of height h
- Then $T(h)=T(h-1)+T(h-2)+1, T(2)=T(1) \geq 1$
- This is similar to the recurrence relation for Fibonnaci numbers! Solution:

$$
T(h)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{h}-2
$$

\qquad

- So we have the equation $n>T(h)$. Let $\phi=\frac{1+\sqrt{5}}{2}$. Then:

$$
\begin{align*}
n & \geq \frac{1}{\sqrt{5}}\left(\phi^{h}\right)-2 \tag{1}\\
\log n & \geq \log \left(\frac{1}{\sqrt{5}}\right)+h \log \phi-1 \tag{2}\\
\log n-\log \left(\frac{1}{\sqrt{5}}\right)+1 & \geq h \log \phi \tag{3}\\
C+\log n & \geq h \tag{4}
\end{align*}
$$

- Where the final inequality holds for appropriate constant C, and for n large enough. The final inequality implies that $h=O(\log n)$
- Consider any search tree
- The number of disk accesses per search will dominate the run time
- Unless the entire tree is in memory, there will usually be a disk access every time an arbitrary node is examined
- The number of disk accesses for most operations on a B-tree is proportional to the height of the B-tree
- I.e. The info on each node of a B-tree can be stored in main memory

AVL Tree Insertion

- After insert into an AVL tree, the tree may no longer be height-balanced
- Need to "fix-up" the subtrees so that they become heightbalanced again
- Can do this using rotations (similar to case for RB-Trees)
- Similar story for deletions

The following is true for every node x

- x stores keys, $\operatorname{key}_{1}(x), \ldots \operatorname{key}_{l}(x)$ in sorted order (nondecreasing)
- x contains pointers, $c_{1}(x), \ldots, c_{l+1}(x)$ to its children
- Let k_{i} be any key stored in the subtree rooted at the i-th child of x, then $k_{1} \leq \operatorname{key}_{1}(x) \leq k_{2} \leq \operatorname{key}_{2}(x) \cdots \leq k e y_{l}(x) \leq k_{l+1}$

B-Trees

\qquad

- B-Trees are balanced search trees designed to work well on disks
- B-Trees are not binary trees: each node can have many children
- Each node of a B-Tree contains several keys, not just one
- When doing searches, we decide which child link to follow by finding the correct interval of our search key in the key set of the current node.
\qquad
\qquad
- The above properties imply that the height of a B-tree is no more than $\log _{t} \frac{n+1}{2}$, for $t \geq 2$, where n is the number of keys.
- If we make t, larger, we can save a larger (constant) fraction over RB-trees in the number of nodes examined
- A (2-3-4)-tree is just a B-tree with $t=2$
- Technically, not a BST, but they implement all of the same operations
- Very elegant randomized data structure, simple to code but analysis is subtle
- They guarantee that, with high probability, all the major operations take $O(\log n)$ time
- We'll discuss them more next class

In-Class Exercise

\qquad

We will now show that for any B-Tree with height h and n keys, $h \leq \log _{t} \frac{n+1}{2}$, where $t \geq 2$.

Consider a B-Tree of height $h>1$

- Q1: What is the minimum number of nodes at depth 1,2 , and 3
- Q2: What is the minimum number of nodes at depth i ?
- Q3: Now give a lowerbound for the total number of keys (e.g. $n \geq$???)
- Q4: Show how to solve for h in this inequality to get an upperbound on h
\qquad
- A Splay Tree is a kind of BST where the standard operations run in $O(\log n)$ amortized time
- This means that over l operations (e.g. Insert, Lookup, Delete, etc), where l is sufficiently large, the total cost is $O(l * \log n)$
- In other words, the average cost per operation is $O(\log n)$
- However a single operation could still take $O(n)$ time
- In practice, they are very fast

Comparison of various BSTs

- RB-Trees: + guarantee $O(\log n)$ time for each operation, easy to augment, - high constants
- AVL-Trees: + guarantee $O(\log n)$ time for each operation, - high constants
- B-Trees: + works well for trees that won't fit in memory, inserts and deletes are more complicated
- Splay Tress: + small constants, - amortized guarantees only
- Skip Lists: + easy to implement, - runtime guarantees are probabilistic only

High Level Analysis

- Splay trees work very well in practice, the "hidden constants" are small
- Unfortunately, they can not guarantee that every operation takes $O(\log n)$
- When this guarantee is required, B-Trees are best when the entire tree will not be stored in memory
- If the entire tree will be stored in memory, RB-Trees, AVLTrees, and Skip Lists are good

