CS 361, Lecture 26

Jared Saia

University of New Mexico

Outline \qquad

- Skip Lists

- Lab Section evaluation this week
- This week, Kanglin will take attendance at sections, if you're there, you'll get an extra check for participation
- Sections are Thursday 3:30-4:20 and Friday 1:00-1:50
- Good chance to review material for final
- Any questions on the group project? (hw6)

Project \qquad

- Project will be due May 8th in class
- Late projects will not be accepted
- You can get partial credit for an unfinished project turned in on time but will get no credit for a finished project turned in late
- There will also be a hw due on May 8th in class
- This will be a "final review" hw
- Final will be Tuesday May 13th, 7:30-9:30am in our regular classroom
- Closed book, but two pieces of paper are allowed (for cheat sheets)
- No calculators
- Technically, not a BST, but they implement all of the same operations
- Very elegant randomized data structure, simple to code but analysis is subtle
- They guarantee that, with high probability, all the major operations take $O(\log n)$ time

High Level Analysis

Comparison of various BSTs

- RB-Trees: + guarantee $O(\log n)$ time for each operation, easy to augment, - high constants
- AVL-Trees: + guarantee $O(\log n)$ time for each operation, - high constants
- B-Trees: + works well for trees that won't fit in memory, guarantee $O(\log n)$ time for each operation, - inserts and deletes are more complicated
- Splay Tress: + small constants, - amortized guarantees only
- Skip Lists: + easy to implement, - runtime guarantees are probabilistic only
\qquad
- Splay trees work very well in practice, the "hidden constants" are small
- Unfortunately, they can not guarantee that every operation takes $O(\log n)$
- When this guarantee is required, B-Trees are best when the entire tree will not be stored in memory
- If the entire tree will be stored in memory, RB-Trees, AVLTrees, and Skip Lists are good
- Every key is in the list L_{1}
- For all $i>2$, if a key k is in the list L_{i}, it is also in L_{i-1}. Further there are up and down pointers between the k in L_{i} and the k in L_{i-1}.
- All the head(tail) nodes from neighboring lists are interconnected


```
Search(k){
    pLeft = L_x.head;
    for (i=x;i>=0;i--){
            Search from pLeft in L_i to get the rightmost elem, r,
                with value <= k;
            pLeft = pointer to r in L_(i-1);
        }
        if (pLeft==k)
            return pLeft
        else
            return nil
        }
    }
```

\qquad
p is a constant between 0 and 1 , typically $p=1 / 2$, let rand() return a random value between 0 and 1

Insert (k) \{
First call Search(k), let pLeft be the leftmost elem <= k in L_1 Insert k in L_1, to the right of pLeft
i $=2$;
while $(\operatorname{rand}()<=p)\{$
insert k in the appropriate place in $L_{-} i$; \}

- Deletion is very simple
- First do a search for the key to be deleted
- Then delete that key from all the lists it appears in from the bottom up, making sure to "zip up" the lists after the deletion

A trick for computing expectations of discrete positive random variables:

- Let X be a discrete r.v., that takes on values from 1 to n

$$
E(X)=\sum_{i=1}^{n} P(X \geq i)
$$

$$
\begin{aligned}
\sum_{i=1}^{n} P(X \geq i) & =P(X=1)+P(X=2)+P(X=3)+\ldots \\
& +P(X=2)+P(X=3)+P(X=4)+\ldots \\
& +P(X=3)+P(X=4)+P(X=5)+\ldots \\
& +\ldots \\
& =1 * P(X=1)+2 * P(X=2)+3 * P(X=3)+\ldots \\
& =E(X)
\end{aligned}
$$

\qquad

Q: How much memory do we expect a skip list to use up?

- Let X_{i} be the number of lists that element i is inserted in.
- Q: What is $P\left(X_{i} \geq 1\right), P\left(X_{i} \geq 2\right), P\left(X_{i} \geq 3\right)$?
- Q: What is $P\left(X_{i} \geq k\right)$ for general k ?
- Q: What is $E\left(X_{i}\right)$?
- Q: Let $X=\sum_{i=1}^{n} X_{i}$. What is $E(X)$?
- If we choose k to be, say 10 , this probability gets very small as n gets large
- In particular, the probability of having a skip list of size exceeding $k \log n$ is $o(1)$
- So we say that the height of the skip list is $O(\log n)$ with high probability

Height of Skip List

- Assume there are n nodes in the list
- Q: What is the probability that a particular key i achieves height exceeding $k \log n$ for some constant k ?
- A: If $p=1 / 2, P\left(X_{i} \geq k \log n\right)=\frac{1}{n^{k}}$
- Note that the expected number of "siblings" of a node, x, at any level i is 2
- Why? Because for a node to be a sibling of x at level i, it must have failed to advance to the next level
- The first node that advances to the next level ends the possibility of further siblings.
\qquad
- This is the same as asking expected number of times we need to flip a coin to get a heads.

Flipping to get Heads

- How many times in expectation do we need to flip a coin to get heads, if the coin is heads with probability p ?
- Let X be a random variable giving the number of times the coin is flipped until we get heads, then $E(X)$ is the expected number of times needed to flip to get heads
- Then $E(X)=1+(1-p) E(X)$ since we take 1 flip, plus in the case where the coin is tails (which happens with probability $(1-p)$), we then take "the expected number of times needed to flip to get heads" (i.e. we're no better off than when we started)
- Solving for $E(X)$ gives $E(X)=1 / p$. If $p=1 / 2$, then $E(X)=$ 2
- The expected number of "siblings" of a node, x, at any level i is 2
- The number of levels is $O(\log n)$ with high probability
- From these two facts, we can prove that the expected search time is $O(\log n)$ (the proof is omitted)
- (Warning: The argument is not as simple as multiplying these two values. We can't do this since the two random variables are not independent.)

