
CS 361, Lecture 26

Jared Saia

University of New Mexico

Outline

• Skip Lists

1

Project

• Any questions on the group project? (hw6)

2

Administrative

• Lab Section evaluation this week

• This week, Kanglin will take attendance at sections, if you’re

there, you’ll get an extra check for participation

• Sections are Thursday 3:30-4:20 and Friday 1:00-1:50

• Good chance to review material for final

3

Project

• Project will be due May 8th in class

• Late projects will not be accepted

• You can get partial credit for an unfinished project turned in

on time but will get no credit for a finished project turned in

late

4

HW

• There will also be a hw due on May 8th in class

• This will be a “final review” hw

5



Final

• Final will be Tuesday May 13th, 7:30-9:30am in our regular

classroom

• Closed book, but two pieces of paper are allowed (for cheat

sheets)

• No calculators

6

High Level Analysis

Comparison of various BSTs

• RB-Trees: + guarantee O(logn) time for each operation,

easy to augment, − high constants

• AVL-Trees: + guarantee O(logn) time for each operation,

− high constants

• B-Trees: + works well for trees that won’t fit in memory,

guarantee O(logn) time for each operation, − inserts and

deletes are more complicated

• Splay Tress: + small constants, − amortized guarantees only

• Skip Lists: + easy to implement, − runtime guarantees are

probabilistic only

7

Which Data Structure to use?

• Splay trees work very well in practice, the “hidden constants”

are small

• Unfortunately, they can not guarantee that every operation

takes O(logn)

• When this guarantee is required, B-Trees are best when the

entire tree will not be stored in memory

• If the entire tree will be stored in memory, RB-Trees, AVL-

Trees, and Skip Lists are good

8

Skip List

• Technically, not a BST, but they implement all of the same

operations

• Very elegant randomized data structure, simple to code but

analysis is subtle

• They guarantee that, with high probability, all the major op-

erations take O(logn) time

9

Skip List

• A skip list is basically a collection of doubly-linked lists,

L1, L2, . . . , Lx, for some integer x

• Each list has a special head and tail node, the keys of these

nodes are assumed to be −MAXNUM and +MAXNUM re-

spectively

• The keys in each list are in sorted order (non-decreasing)

10

Skip List

• Every key is in the list L1.

• For all i > 2, if a key k is in the list Li, it is also in Li−1.

Further there are up and down pointers between the k in Li
and the k in Li−1.

• All the head(tail) nodes from neighboring lists are inter-

connected

11



Example

1 2

2

3 4

4

4

5

5 6head tail

head

head

tail

tail

12

Search

Search(k){

pLeft = L_x.head;

for (i=x;i>=0;i--){

Search from pLeft in L_i to get the rightmost elem, r,

with value <= k;

pLeft = pointer to r in L_(i-1);

}

if (pLeft==k)

return pLeft

else

return nil

}

}

13

Insert

p is a constant between 0 and 1, typically p = 1/2, let rand()

return a random value between 0 and 1

Insert(k){

First call Search(k), let pLeft be the leftmost elem <= k in L_1

Insert k in L_1, to the right of pLeft

i = 2;

while (rand()<= p){

insert k in the appropriate place in L_i;

}

14

Deletion

• Deletion is very simple

• First do a search for the key to be deleted

• Then delete that key from all the lists it appears in from

the bottom up, making sure to “zip up” the lists after the

deletion

15

In-Class Exercise Trick

A trick for computing expectations of discrete positive random

variables:

• Let X be a discrete r.v., that takes on values from 1 to n

E(X) =
n∑

i=1

P (X ≥ i)

16

Why?

n∑

i=1

P (X ≥ i) = P (X = 1) + P (X = 2) + P (X = 3) + . . .

+ P (X = 2) + P (X = 3) + P (X = 4) + . . .

+ P (X = 3) + P (X = 4) + P (X = 5) + . . .

+ . . .

= 1 ∗ P (X = 1) + 2 ∗ P (X = 2) + 3 ∗ P (X = 3) + . . .

= E(X)

17



In-Class Exercise

Q: How much memory do we expect a skip list to use up?

• Let Xi be the number of lists that element i is inserted in.

• Q: What is P (Xi ≥ 1), P (Xi ≥ 2), P (Xi ≥ 3)?

• Q: What is P (Xi ≥ k) for general k?

• Q: What is E(Xi)?

• Q: Let X =
∑n
i=1Xi. What is E(X)?

18

Height of Skip List

• Assume there are n nodes in the list

• Q: What is the probability that a particular key i achieves

height exceeding k logn for some constant k?

• A: If p = 1/2, P (Xi ≥ k logn) = 1
nk

19

Height of Skip List

• Q: What is the probability that any of the nodes achieve

height higher than k logn?

• A: We want

P (X1 ≥ k logn or X2 ≥ k logn or . . . or Xn ≥ k logn)

• By a Union Bound, this probability is no more than

P (X1 ≥ k logn) + P (X2 ≥ k logn) + · · ·+ P (Xn ≥ k logn)

• Which equals n
nk

= n1−k

20

Height of Skip List

• If we choose k to be, say 10, this probability gets very small

as n gets large

• In particular, the probability of having a skip list of size ex-

ceeding k logn is o(1)

• So we say that the height of the skip list is O(logn) with

high probability

21

Search Time

• Note that the expected number of “siblings” of a node, x,

at any level i is 2

• Why? Because for a node to be a sibling of x at level i, it

must have failed to advance to the next level

• The first node that advances to the next level ends the pos-

sibility of further siblings.

• This is the same as asking expected number of times we

need to flip a coin to get a heads.

22

Flipping to get Heads

• How many times in expectation do we need to flip a coin to

get heads, if the coin is heads with probability p?

• Let X be a random variable giving the number of times the

coin is flipped until we get heads, then E(X) is the expected

number of times needed to flip to get heads

• Then E(X) = 1+(1−p)E(X) since we take 1 flip, plus in the

case where the coin is tails (which happens with probability

(1−p)), we then take “the expected number of times needed

to flip to get heads” (i.e. we’re no better off than when we

started)

• Solving for E(X) gives E(X) = 1/p. If p = 1/2, then E(X) =

2

23



Search Time

• The expected number of “siblings” of a node, x, at any level

i is 2

• The number of levels is O(logn) with high probability

• From these two facts, we can prove that the expected search

time is O(logn) (the proof is omitted)

• (Warning: The argument is not as simple as multiplying these

two values. We can’t do this since the two random variables

are not independent.)

24


