CS 361, Lecture 27

Jared Saia

University of New Mexico

Outline

- Skip List Wrapup
- Master Theorem
\qquad
- Assume there are n nodes in the list
- Q: What is the probability that a particular key exceeds height $k \log n$ for some constant k ?
- A: If $p=1 / 2, P\left(X_{i} \geq k \log n\right)=(1 / 2)^{k \log n}=\frac{1}{n^{k}}$

$$
\text { - A: If } p=1 / 2, P\left(X_{i} \geq k \log n\right)=(1 / 2)^{k \log n}=\frac{1}{n^{k}}
$$

- Q: What is the probability that any of the nodes exceed height $k \log n$?
- A: We want

$$
P\left(X_{1} \geq k \log n \text { or } X_{2} \geq k \log n \text { or } \ldots \text { or } X_{n} \geq k \log n\right)
$$

- By a Union Bound, this probability is no more than
$P\left(X_{1} \geq k \log n\right)+P\left(X_{2} \geq k \log n\right)+\cdots+P\left(X_{n} \geq k \log n\right)$
- Which equals $\frac{n}{n^{k}}=n^{1-k}$
- If we choose k to be, say 10 , this probability gets very small as n gets large
- In particular, the probability of having a skip list of size exceeding $k \log n$ is $o(1)$
- So we say that the height of the skip list is $O(\log n)$ with high probability
- Note that the expected number of "siblings" of a node, x, at any level i is 2
- Why? Because for a node to be a sibling of x at level i, it must have failed to advance to the next level
- The first node that advances to the next level ends the possibility of further siblings.
- This is the same as asking expected number of times we need to flip a coin to get a heads.
- How many times in expectation do we need to flip a coin to get heads, if the coin is heads with probability p ?
- Let X be a r.v. giving the number of times needed to flip to get heads, then $E(X)$ is the expected number of times
needed to flip to get heads
- Then $E(X)=1+(1-p) E(X)$ since we take 1 flip, plus in the case where the coin is tails (which happens with probability $(1-p)$), we then take "the expected number of times needed to flip to get heads" (i.e. we're no better off than when we started)
- Solving for $E(X)$ gives $E(X)=1 / p$
- If $p=1 / 2$, then $E(X)=2$
- Unfortunately, the Master Theorem doesn't work for all functions $f(n)$
- Further many useful recurrences don't look like $T(n)$
- However, the theorem allows for fast solution of recurrences when it applies
\qquad
- The expected number of "siblings" of a node, x, at any level i is 2
- The number of levels is $O(\log n)$ with high probability
- From these two facts, we can argue that the expected search time is $O(\log n)$
- (Warning: The argument is not as simple as multiplying these two values. We can't do this since the two random variables are not independent.)

Master Theorem

\qquad

- Divide and conquer algorithms often give us running-time recurrences of the form

$$
\begin{equation*}
T(n)=a T(n / b)+f(n) \tag{1}
\end{equation*}
$$

- Where a and b are constants and $f(n)$ is some other function.
- The so-called 'Master Theorem' gives us a general method for solving such recurrences $f(n)$ is a simple polynomial.
- Master Theorem is just a special case of the use of recursion trees
- Consider equation $T(n)=a T(n / b)+f(n)$
- We start by drawing a recursion tree

Recursion Tree Review

- The root is a box containing the value $f(n)$
- It has a children, each of which is the root of a recursion tree for $T(n / b)$
- Each of these nodes has a children, etc., etc.
- Equivalently, a recursion tree is a complete a-ary tree where each node at depth i contains the value $f\left(n / b^{i}\right)$.
- The tree stops when we get to the base case for the recurrence
- We'll assume $T(1)=f(1)$ is the base case
- Then there are $\log _{b} n$ levels to the recursion tree
- We can now state the Master Theorem
- We will state it in a way slightly different from the book
- Note: The Master Method is just a "short cut" for the recursion tree method. It is less powerful than recursion trees.

Recursion Tree

\qquad

- For this tree, $T(n)$ is just the sum of all values stored in all levels of the tree

$$
T(n)=f(n)+a f(n / b)+a^{2} f\left(n / b^{2}\right)+\cdots+a^{i} f\left(n / b^{i}\right)+\cdots+a^{L} f\left(n / b^{L}\right)
$$

- Where $L=\log _{b} n$ is the depth of the tree
- Since $f(1)=\Theta(1)$, the last term of this summation is $\Theta\left(a^{L}\right)=$ $\Theta\left(a^{\log _{b} n}\right)=\Theta\left(n^{\log _{b} a}\right)$

Master Method

The recurrence $T(n)=a T(n / b)+f(n)$ can be solved as follows:

- If $a f(n / b) \leq f(n) / K$ for some constant $K>1$, then $T(n)=$ $\Theta(f(n))$.
- If $a f(n / b) \geq K f(n)$ for some constant $K>1$, then $T(n)=$ $\Theta\left(n^{\log _{b} a}\right)$.
- If $a f(n / b)=f(n)$, then $T(n)=\Theta\left(f(n) \log _{b} n\right)$.

A "Log Fact" Aside

\qquad

- $T(n)=T(3 n / 4)+n$
- If we write this as $T(n)=a T(n / b)+f(n)$, then $a=1, b=$ $4 / 3, f(n)=n$
- Here $a f(n / b)=3 n / 4$ is smaller than $f(n)=n$ by a factor of $4 / 3$, so $T(n)=\Theta(n)$
- $T(n)=T(n / 2)+n \log n$
- If we write this as $T(n)=a T(n / b)+f(n)$, then $a=1, b=$ $2, f(n)=n \log n$
- Here $a f(n / b)=n / 2 \log n / 2$ is smaller than $f(n)=n \log n$ by a constant factor, so $T(n)=\Theta(n \log n)$

Example

\qquad

- Karatsuba's multiplication algorithm: $T(n)=3 T(n / 2)+$ n
- If we write this as $T(n)=a T(n / b)+f(n)$, then $a=3, b=$ $2, f(n)=n$
- Here a $f(n / b)=3 n / 2$ is bigger than $f(n)=n$ by a factor of $3 / 2$, so $T(n)=\Theta\left(n^{\log _{2}(3 / 2)}\right)$

Example

\qquad

- Mergesort: $T(n)=2 T(n / 2)+n$
- If we write this as $T(n)=a T(n / b)+f(n)$, then $a=2, b=$ $2, f(n)=n$
- Here $a f(n / b)=f(n)$, so $T(n)=\Theta(n \log n)$
- Consider the recurrence: $\boldsymbol{T}(n)=4 T(n / 2)+n \lg n$
- Q: What is $f(n)$ and $a f(n / b)$?
- Q: Which of the three cases does the recurrence fall under (when n is large)?
- Q: What is the solution to this recurrence?

Consider the recurrence: $\boldsymbol{T}(n)=2 \boldsymbol{T}(n / 4)+n \lg n$

- Q: What is $f(n)$ and $a f(n / b)$?
- Q: Which of the three cases does the recurrence fall under (when n is large)?
- Q: What is the solution to this recurrence?

