CS 361, Lecture 8

Jared Saia

University of New Mexico

Outline \qquad

- Recurrence Relations, Induction, and Substitution Method
\qquad
- $T(n)=2 * T(n / 2)+n$ is an example of a recurrence relation
- A Recurrence Relation is any equation for a function T, where T appears on both the left and right sides of the equation.
- We always want to "solve" these recurrence relation by getting an equation for T, where T appears on just the left side of the equation
- Whenever we analyze the run time of a recursive algorithm, we will first get a recurrence relation
- To get the real run time, we need to solve the recurrence relation

Recurrences and Induction are closely related

- To find some solution to $f(n)$, solve a recurrence
- To prove that a solution for $f(n)$ is correct, use induction

For both recurrences and induction, we always solve a big problem by reducing it to smaller problems!

Recurrences and Induction \qquad

- The next several problems can be attacked by induction/recurrences
- For each problem, we'll need to reduce it to smaller problems
- Question: How can we reduce each problem to a smaller subproblem?
- $f(n)$ is the sum of the integers $1, \ldots, n$
\qquad
- $f(n)$ is the maximum number of leaf nodes in a binary tree of height n

Recall:

- In a binary tree, each node has at most two children
- A leaf node is a node with no children
- The height of a tree is the length of the longest path from the root to a leaf node.
\qquad
-

\qquad Binary Search Problem -

- $f(n)$ is the maximum number of queries that need to be made for binary search on a sorted array of size n.
- $f(n)$ is the number of ways to tile a 2 by n rectangle with dominoes (a domino is a 2 by 1 rectangle)
- Sum Problem: What is the sum of all numbers between 1 and $n-1$ (i.e. $f(n-1))$?
- Tree Problem: What is the maximum number of leaf nodes in a binary tree of height $n-1$? (i.e. $f(n-1)$)
- Binary Search Problem: What is the maximum number of queries that need to be made for binary search on a sorted array of size $n / 2$? (i.e. $f(n / 2)$)
- Dominoes problem: What is the number of ways to tile a 2 by $n-1$ rectangle with dominoes? What is the number of ways to tile a 2 by $n-2$ rectangle with dominoes? (i.e. $f(n-1), f(n-2))$
- Sum Problem: $f(n)=f(n-1)+n, f(1)=1$
- Tree Problem: $f(n)=2 * f(n-1), f(0)=1$
- Binary Search Problem: $f(n)=f(n / 2)+1, f(1)=0$
- Dominoes problem: $f(n)=f(n-1)+f(n-2), f(1)=1$, $f(2)=1$
\qquad
- Sum Problem: $f(n)=(n+1) n / 2$
- Tree Problem: $f(n)=2^{n}$
- Binary Search Problem: $f(n)=\log n$
- Dominoes problem: $f(n)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
- Want to show that $f(n)=2^{n}$.
- Prove by induction on n
- Base case: $f(0)=2^{0}=1$
- Inductive hypothesis: for all $j<n, f(j)=2^{j}$
- Inductive step:

$$
\begin{align*}
f(n) & =2 * f(n-1) \tag{4}\\
& =2 *\left(2^{n-1}\right) \tag{5}\\
& =2^{n} \tag{6}
\end{align*}
$$

Inductive Proofs

\qquad
"Trying is the first step to failure" - Homer Simpson

- Now that we've made these guesses, we can try using induction to prove they're correct
- (This is the Substitution Method)
- We'll give inductive proofs that these guesses are correct for the first three problems
- Want to show that $f(n)=\log n$. (assume n is a power of 2)
- Prove by induction on n
- Base case: $f(1)=\log 1=0$
- Inductive hypothesis: for all $j<n, f(j)=\log j$
- Inductive step:

$$
\begin{align*}
f(n) & =f(n / 2)+1 \tag{7}\\
& =\log n / 2+1 \tag{8}\\
& =\log n-\log 2+1 \tag{9}\\
& =\log n \tag{10}
\end{align*}
$$

\qquad In Class Exercise \qquad

- Want to show that $f(n)=(n+1) n / 2$.
- Prove by induction on n
- Base case: $f(1)=2 * 1 / 2=1$
- Inductive hypothesis: for all $j<n, f(j)=(j+1) j / 2$
- Inductive step:

$$
\begin{align*}
f(n) & =f(n-1)+n \tag{1}\\
& =n(n-1) / 2+n \tag{2}\\
& =(n+1) n / 2 \tag{3}
\end{align*}
$$

Consider the following interview question:

- Out of n coins, one weighs less than the others
- You have a scale
- What is the minimum number of weighs on the scale you can do to find the odd coin?
\qquad
- Q: How can we reduce the problem of finding the odd coin among n coins to a smaller problem???

Solving the Big Problem

- A: The simpler problem is: "How many weighings does it take to find an odd coin in a set of size $n / 3$?"
- Idea:
- We divide the coins into 3 piles of size $n / 3$.
- We pick two of these piles at random and put them on opposite sides of the scale
- If one of these two piles weighs less than the other, we know the odd coin is in that pile
- If both piles weigh the same, we know the odd coin is in the third pile
- Thus we now know which pile of size $n / 3$ contains the odd coin, so we recursively find the odd coin in this pile.
- If $n=3$, we can find the odd coin in a single weighing:
- Choose two coins at random and put each on either side of the scale
- If both weigh the same, odd coin is the third one. If one coin weighs less, that coin is the odd one
(Assume n is a power of 3)
- Let $f(n)$ be the number of weighings needed to find the odd coin
- Q: What is the recurrence for $f(n)$?
- Note: We first do a single weighing for the two piles of size $n / 3$, then the problem reduces to the problem on a pile of coins of size $n / 3$

Recurrence

- A: The recurrence is: $f(n)=f(n / 3)+1, f(3)=1$
- "Guess" that the solution to this is $f(n)=\log _{3} n$
\qquad

Goal: Prove by induction that the solution to $f(n)=f(n / 3)+1$, $f(3)=1$ is $f(n)=\log _{3} n$

- Q1: What is the base case? Prove that it holds.
- Q2: What is the inductive hypothesis?
- Q3: Prove the inductive step.
\qquad
- Often easier to prove that a recurrence is no more than some quantity than to prove that it equals something
- Consider: $f(n)=f(n-1)+f(n-2), f(1)=f(2)=1$
- "Guess" that $f(n) \leq 2^{n}$
- Up to this point, I've been supplying you with good "guesses" for recurrence solutions
- Q: How do we get these guesses?

Inequalities (II)

Goal: Prove by induction that for $f(n)=f(n-1)+f(n-2)$, $f(1)=f(2)=1, f(n) \leq 2^{n}$

- Base case: $f(1)=1 \leq 2^{1}, f(2)=1 \leq 2^{2}$
- Inductive hypothesis: for all $j<n, f(j) \leq 2^{j}$
- Inductive step:

$$
\begin{align*}
f(n) & =f(n-1)+f(n-2) \tag{11}\\
& \leq 2^{n-1}+2^{n-2} \tag{12}\\
& <2 * 2^{n-1} \tag{13}\\
& =2^{n} \tag{14}
\end{align*}
$$

Take Away \qquad

- Recurrences and Induction are closely related
- Both techniques require that we solve a big problem by using a solution to a smaller problem
- One technique for solving recurrences is to "guess" the solution and then prove this guess is right by induction

Following are some good guesses for solutions to recurrences.
$\log n$
\sqrt{n}
n
$n \log n$
n^{2}
n^{3}
2^{n}
Good Guesses \qquad
_ Good Guesses -

$$
2^{n}
$$

- Read Chapter 4 in book (skip proof of the Masters Theorem)

