CS 361, Lecture 9

Jared Saia

University of New Mexico

- In most cases, $T(n)=O(1)$, so we will leave out the "base cases" for recurrences when we want just an asymptotic solution.

Outline

\qquad

- Recurrence Relations
- Recursion Tree Method
- In Class Exercise
- Intro to Annihilators
\qquad
- $T(n)=2 * T(n / 2)+n$ is an example of a recurrence relation
- A Recurrence Relation is any equation for a function T, where T appears on both the left and right sides of the equation.
- We always want to "solve" these recurrence relation by getting an equation for T, where T appears on just the left side of the equation
- Up to this point, I've been supplying you with good "guesses" for recurrence solutions
- Q: How do we get these guesses?

Following are some good guesses for solutions to recurrences.
$\log n$
\sqrt{n}
n
$n \log n$
n^{2}
n^{3}
2^{n}
\qquad

We will review two new techniques:

- Recursion tree method
- Characteristic polynomials
(note: we will not cover the Master Theorem given in the book since the method of annihilators is more powerful)
\qquad
- Each node represents the cost of a single subproblem in a recursive call
- First, we sum the costs of the nodes in each level of the tree
- Then, we sum the costs of all of the levels
\qquad
- Used to get a good guess which is then refined and verified using substitution method
- Best method (usually) for recurrences where a term like $T(n / c)$ appears on the right hand side of the equality
- Consider the recurrence for the running time of Mergesort: $T(n)=2 T(n / 2)+n, T(1)=O(1)$

- We can see that each level of the tree sums to n
- Further the depth of the tree is $\log n\left(n / 2^{d}=1\right.$ implies that $d=\log n]$)
- So we can guess that $T(n)=O(n \log n)$
\qquad
- We've got a "guess" that $T(n)=O(n \log n)$
- We need to verify that this guess is in fact correct
- We verify using induction
- In particular, want to verify that $T(n) \leq c n \log n$ for all $n>1$

Induction

- To show: $T(n) \leq c n \log n$ for some constants c, for $n>1$
- Base Case: $T(2)=O(1)$ by definition. This means $T(2)<k$ for some constant k. Thus we can chose c large enough so that $T(2)<k \leq c * 2 \log 2$ is true
- Inductive Hypothesis: For all $j<n, T(j) \leq c j \log j$
- Inductive step

$$
\begin{align*}
T(n) & =2 T(n / 2)+n \tag{1}\\
& \leq 2(c n / 2 \log (n / 2))+n \tag{2}\\
& =c n \log (n / 2)+n \tag{3}\\
& =c n \log n-c n+n \tag{4}\\
& =c n \log n \tag{5}
\end{align*}
$$

Where the last step holds provided that $c>1$

$$
\begin{align*}
T(n) & =\sum_{i=0}^{\log _{4} n-1}(3 / 16)^{i} n^{2} \tag{7}\\
& <n^{2} \sum_{i=0}^{\infty}(3 / 16)^{i} \tag{8}\\
& =\frac{1}{1-(3 / 16)} n^{2} \tag{9}\\
& =O\left(n^{2}\right) \tag{10}
\end{align*}
$$

Example 2

\qquad

- Let's solve the recurrence $T(n)=3 T(n / 4)+n^{2}$

Example 2

\qquad

- We can see that the i-th level of the tree sums to $(3 / 16)^{i} n^{2}$.
- Further the depth of the tree is $\log _{4} n$
- So we can guess that $T(n)=\sum_{i=0}^{\log _{4} n-1}(3 / 16)^{i} n^{2}$
- We've got a "guess" that $T(n)=O\left(n^{2}\right)$
- We need to verify that this guess is in fact correct
- We verify using induction
- In particular, want to verify that $T(n) \leq c n^{2}$, for some constant c.

Induction

- To show: $T(n) \leq c n^{2}$, for some constant c
- Base Case: $T(1)=O(1)$ by definition. This means $T(1)<k$ for some constant k. Thus we can chose c large enough so that $T(1)<k \leq c 1^{2}$ is true
- Inductive Hypothesis: For all $j<n, T(j) \leq c j^{2}$
- Inductive step

$$
\begin{align*}
T(n) & =3 T(n / 4)+n^{2} \tag{11}\\
& \leq 3\left(c(n / 4)^{2}\right)+n^{2} \tag{12}\\
& =c(3 / 16) n^{2}+n^{2} \tag{13}\\
& =(c(3 / 16)+1) n^{2} \tag{14}\\
& \leq c n^{2} \tag{15}
\end{align*}
$$

Where the last step holds provided that $c(3 / 16)+1 \leq c$, which is true when $c \geq 16 / 13$

■ In Class Exercise (I)

Use the recursion tree method to guess a solution to the recursion $T(n)=2 T(n / 2)+n^{2}$. Give the guess in terms of big-O notation:

- Q1: What is the total cost of the $0-$ th, 1 -st and 2 -nd level of the tree?
- Q2: What is the total cost of the i-th level of the tree for general i ?
- Q3: How many levels of the tree are there?
- Q4: What is the summation giving the total cost of the tree?
- Q5: Give a good upperbound on this summation.
- We'll learn another more powerful method for solving recurrences called annihilators
- This will take three to four classes to go over
- Annihilators are similar to "generating functions"

In Class Exercise (II)

Now prove that this guess works using induction!

- Q1: What is the base case? Prove that it holds.
- Q2: What is the inductive hypothesis?
- Q3: What is the inductive step?

Take Away

- Recursion tree method is good for getting "guesses" for recurrences where a term like $T(n / c)$ appears on the right side of the equality
- Once we get the guess, then need to verify using the substitution method
- Recursion trees are useful but limited (they can't help us get guesses for recurrences like $f(n)=f(n-1)+f(n-2))$
\qquad
- Suppose we are given a sequence of numbers $A=\left\langle a_{0}, a_{1}, a_{2}, \cdots\right\rangle$
- This might be a sequence like the Fibonacci numbers
- I.e. $A=\left\langle a_{0}, a_{1}, a_{2}, \ldots\right)=(T(1), T(2), T(3), \cdots\rangle$
\qquad

We define three basic operations we can perform on this sequence:

1. Multiply the sequence by a constant: $c A=\left\langle c a_{0}, c a_{1}, c a_{2}, \cdots\right\rangle$
2. Shift the sequence to the left: $\mathbf{L} A=\left\langle a_{1}, a_{2}, a_{3}, \cdots\right\rangle$
3. Add two sequences: if $A=\left\langle a_{0}, a_{1}, a_{2}, \cdots\right\rangle$ and $B=\left\langle b_{0}, b_{1}, b_{2}, \cdots\right\rangle$, then $A+B=\left\langle a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \cdots\right\rangle$
\qquad

- We first express our recurrence as a sequence T
- We use these three operators to "annihilate" T, i.e. make it all 0 's
- Key rule: can't multiply by the constant 0
- Start hw2!
- We can then determine the solution to the recurrence from the sequence of operations performed to annihilate T
- Consider the recurrence $T(n)=2 T(n-1), T(0)=1$
- If we solve for the first few terms of this sequence, we can see they are $\left\langle 2^{0}, 2^{1}, 2^{2}, 2^{3}, \cdots\right\rangle$
- Thus this recurrence becomes the sequence:

$$
T=\left\langle 2^{0}, 2^{1}, 2^{2}, 2^{3}, \cdots\right\rangle
$$

\qquad

Let's annihilate $T=\left\langle 2^{0}, 2^{1}, 2^{2}, 2^{3}, \cdots\right\rangle$

- Multiplying by a constant $c=2$ gets:

$$
2 T=\left\langle 2 * 2^{0}, 2 * 2^{1}, 2 * 2^{2}, 2 * 2^{3}, \cdots\right\rangle=\left\langle 2^{1}, 2^{2}, 2^{3}, 2^{4}, \cdots\right\rangle
$$

- Shifting one place to the left gets $\mathbf{L} T=\left\langle 2^{1}, 2^{2}, 2^{3}, 2^{4}, \cdots\right\rangle$
- Adding the sequence $\mathbf{L} T$ and $-2 T$ gives:

$$
\mathbf{L} T-2 T=\left\langle 2^{1}-2^{1}, 2^{2}-2^{2}, 2^{3}-2^{3}, \cdots\right\rangle=\langle 0,0,0, \cdots\rangle
$$

- The annihilator of T is thus $\mathbf{L}-2$

