
CS 361, Lecture 9

Jared Saia

University of New Mexico

Outline

• Recurrence Relations

• Recursion Tree Method

• In Class Exercise

• Intro to Annihilators

1

Recurrence Relations

• T (n) = 2 ∗ T (n/2) + n is an example of a recurrence relation

• A Recurrence Relation is any equation for a function T , where

T appears on both the left and right sides of the equation.

• We always want to “solve” these recurrence relation by get-

ting an equation for T , where T appears on just the left side

of the equation

2

A Note

• In most cases, T (n) = O(1), so we will leave out the “base

cases” for recurrences when we want just an asymptotic so-

lution.

3

Review

• Up to this point, I’ve been supplying you with good “guesses”

for recurrence solutions

• Q: How do we get these guesses?

4

Getting Good Guesses (I)

Following are some good guesses for solutions to recurrences.
logn√
n

n
n logn
n2

n3

2n

5



Better Techniques (II)

We will review two new techniques:

• Recursion tree method

• Characteristic polynomials

(note: we will not cover the Master Theorem given in the book

since the method of annihilators is more powerful)

6

Recursion-tree method

• Each node represents the cost of a single subproblem in a

recursive call

• First, we sum the costs of the nodes in each level of the tree

• Then, we sum the costs of all of the levels

7

Recursion-tree method

• Used to get a good guess which is then refined and verified

using substitution method

• Best method (usually) for recurrences where a term like

T (n/c) appears on the right hand side of the equality

8

Example 1

• Consider the recurrence for the running time of Mergesort:

T (n) = 2T (n/2) + n, T (1) = O(1)

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n

n

n

9

Example 1

• We can see that each level of the tree sums to n

• Further the depth of the tree is logn (n/2d = 1 implies that

d = logn])

• So we can guess that T (n) = O(n logn)

10

Now Verify!

• We’ve got a “guess” that T (n) = O(n logn)

• We need to verify that this guess is in fact correct

• We verify using induction

• In particular, want to verify that T (n) ≤ cn logn for all n > 1

11



Induction

• To show: T (n) ≤ cn logn for some constants c, for n > 1

• Base Case: T (2) = O(1) by definition. This means T (2) < k

for some constant k. Thus we can chose c large enough so

that T (2) < k ≤ c ∗ 2 log 2 is true

• Inductive Hypothesis: For all j < n, T (j) ≤ cj log j

• Inductive step

T (n) = 2T (n/2) + n (1)

≤ 2(cn/2 log(n/2)) + n (2)

= cn log(n/2) + n (3)

= cn logn− cn+ n (4)

= cn logn (5)

(6)

Where the last step holds provided that c > 1

12

Example 2

• Let’s solve the recurrence T (n) = 3T (n/4) + n2

(n/16)^2 (n/16)^2

n^2

(n/4)^2 (n/4)^2

(n/16)^2

(n/4)^2

(n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2

n^2

(3/16)n^2

(3/16)^2*n^2

...

13

Example 2

• We can see that the i-th level of the tree sums to (3/16)in2.

• Further the depth of the tree is log4 n

• So we can guess that T (n) =
∑log4 n−1
i=0 (3/16)in2

14

A guess

T (n) =
log4 n−1∑

i=0

(3/16)in2 (7)

< n2
∞∑

i=0

(3/16)i (8)

=
1

1− (3/16)
n2 (9)

= O(n2) (10)

15

Now Verify!

• We’ve got a “guess” that T (n) = O(n2)

• We need to verify that this guess is in fact correct

• We verify using induction

• In particular, want to verify that T (n) ≤ cn2, for some con-

stant c.

16

Induction

• To show: T (n) ≤ cn2, for some constant c

• Base Case: T (1) = O(1) by definition. This means T (1) < k

for some constant k. Thus we can chose c large enough so

that T (1) < k ≤ c12 is true

• Inductive Hypothesis: For all j < n, T (j) ≤ cj2

• Inductive step

T (n) = 3T (n/4) + n2 (11)

≤ 3(c(n/4)2) + n2 (12)

= c(3/16)n2 + n2 (13)

= (c(3/16) + 1)n2 (14)

≤ cn2 (15)

(16)

Where the last step holds provided that c(3/16) + 1 ≤ c, which

is true when c ≥ 16/13

17



In Class Exercise (I)

Use the recursion tree method to guess a solution to the recur-

sion T (n) = 2T (n/2) + n2. Give the guess in terms of big-O

notation:

• Q1: What is the total cost of the 0-th, 1-st and 2-nd level

of the tree?

• Q2: What is the total cost of the i-th level of the tree for

general i?

• Q3: How many levels of the tree are there?

• Q4: What is the summation giving the total cost of the tree?

• Q5: Give a good upperbound on this summation.

18

In Class Exercise (II)

Now prove that this guess works using induction!

• Q1: What is the base case? Prove that it holds.

• Q2: What is the inductive hypothesis?

• Q3: What is the inductive step?

19

Take Away

• Recursion tree method is good for getting “guesses” for re-

currences where a term like T (n/c) appears on the right side

of the equality

• Once we get the guess, then need to verify using the substi-

tution method

• Recursion trees are useful but limited (they can’t help us get

guesses for recurrences like f(n) = f(n− 1) + f(n− 2))

20

Another Tool

• We’ll learn another more powerful method for solving recur-

rences called annihilators

• This will take three to four classes to go over

• Annihilators are similar to “generating functions”

21

Intro to Annihilators

• Suppose we are given a sequence of numbers A = 〈a0, a1, a2, · · · 〉
• This might be a sequence like the Fibonacci numbers

• I.e. A = 〈a0, a1, a2, . . . ) = (T (1), T (2), T (3), · · · 〉

22

Annihilator Operators

We define three basic operations we can perform on this se-

quence:

1. Multiply the sequence by a constant: cA = 〈ca0, ca1, ca2, · · · 〉
2. Shift the sequence to the left: LA = 〈a1, a2, a3, · · · 〉
3. Add two sequences: if A = 〈a0, a1, a2, · · · 〉 and B = 〈b0, b1, b2, · · · 〉,

then A+B = 〈a0 + b0, a1 + b1, a2 + b2, · · · 〉

23



Annihilator Description

• We first express our recurrence as a sequence T

• We use these three operators to “annihilate” T , i.e. make it

all 0’s

• Key rule: can’t multiply by the constant 0

• We can then determine the solution to the recurrence from

the sequence of operations performed to annihilate T

24

Example

• Consider the recurrence T (n) = 2T (n− 1), T (0) = 1

• If we solve for the first few terms of this sequence, we can

see they are 〈20,21,22,23, · · · 〉
• Thus this recurrence becomes the sequence:

T = 〈20,21,22,23, · · · 〉

25

Example (II)

Let’s annihilate T = 〈20,21,22,23, · · · 〉

• Multiplying by a constant c = 2 gets:

2T = 〈2 ∗ 20,2 ∗ 21,2 ∗ 22,2 ∗ 23, · · · 〉 = 〈21,22,23,24, · · · 〉
• Shifting one place to the left gets LT = 〈21,22,23,24, · · · 〉
• Adding the sequence LT and −2T gives:

LT − 2T = 〈21 − 21,22 − 22,23 − 23, · · · 〉 = 〈0,0,0, · · · 〉
• The annihilator of T is thus L− 2

26

Todo

• Start hw2!

27


