pepartment or vomputer sScience

Final Examination

CS 361 Data Structures and Algorithms
Spring, 2004

Name:
Email:

Print your name and email, neatly in the space provided above; print your name at the upper
right corner of every page. Please print legibly.

This is a closed book exam. You are permitted to use only a calculator and two pages of
“cheat sheets” that you have brought to the exam. Nothing else is permitted.

Do all problems in this booklet. Show your work! You will not get partial credit if we cannot
figure out how you arrived at your answer.

Write your answers in the space provided for the corresponding problem. Let us know if you
need more paper.

Don’t spend too much time on any single problem. If you get stuck, move on to something
else and come back later.

If any question is unclear, ask us for clarification.

Good Luck!!!

Question | Points | Score | Grader
1 30
2 20
3 20
4 20
5 20
6 30
Total 140

1. Multiple Choice (30 points)
Multiple Choice:

The following choices will be used in this multiple choice problem.

—~ o~
oo

~— e e ' N

—
o e

D

NN

For each of the questions below, choose one of the above possible answers. Please write the
letter of your chosen answer to the left of the question.

(a)
(b)
()
(d)

(e)

Yo, logi Solution: ©(nlogn)

> 1 i? Solution: ©(n?)

Yoiei 1/i Solution: ©(logn)

Time to print out the n elements in a binary search tree in sorted order Solution: ©(n).
Just do an in-order traversal of the tree

Time to print out the n elements in a heap in sorted order Solution: ©(nlogn). Need
to successively remove the minimum element.

Time to find the maximum element in a red-black tree with n nodes Solution: O(logn)
Time to find the maximum element in a min heap with n nodes Solution: ©(n). The
mazimum element can be any of the ©(n) leaf nodes

Expected number of nodes at the (1/2) xlogn level of a skip list with n nodes Solution:
O(v/n)

Worst Case runtime of randomized quicksort Solution: ©(n?)

Best Case runtime of bucket sort Solution: ©(n)

Amount of extra space required by bucket sort (not counting the space to store the input
array) Solution: ©(n)

Expected lookup time for a hash table with n keys stored in n buckets with collision
resolution by chaining Solution: ©(1)

Worst case lookup time for a hash table with n keys stored in n buckets with collision
resolution by linear probing Solution: ©(n)

Imagine that we augment a skip list so that there is always a pointer to the leftmost
element in the bottom list. What is the worst case time to find the minimum element
in this augmented skip list? Solution: ©(1). The minimum is just the leftmost elem in
the bottom list.

Amount of time to solve the string alignment problem for two strings each of size ©(n)
Solution: ©(n?)

2. Substitution Method (20 points)
Consider the recurrence T'(n) = (T (|n/2]) * T(|n/2])) + (3/4)n where T(1) = 1.

Show that T(n) < m by induction. Include the following in your proof: 1)the base case(s)
2)the inductive hypothesis and 3)the inductive step.

Solution: Base Case: T(1) = 1 which is in fact no more than 1.
Inductive Hypothesis: For all1 < j <mn, T(j) <n
Inductive Step: We must show that T'(n) < n, assuming the inductive hypothesis.

T(n) = %(T(Ln/%)*T(Ln/QJ))+(3/4)n (1)
< %((/2) % (n/2)) + (3/4)n (2)
< (n/4) + (3/4)n 3)
- n (4)

where the inductive hypothesis allows us to make the replacements in the second step.

3. Annihilators (20 points)

Consider the recurrence T'(n) = 2T'(n—1)-T(n—2)+4, T(0) = 0, T'(1) = 0, T'(2) = 4. First,
find the general form of the solution for this recurrence using annihilators. Then solve for the
constants in the general form using the initial conditions in order to get an exact solution.

Solution: Consider the homogeneous part first. Let T, = 2T'(n—1) —T(n—2), and T = (Ty,).
Then

T = (T,) (5)
LT = (Tny1) (6)
’T = (Tnyo) (7)

Since (Tni2) = (2Tp+1 — Ty, we know that L*T — 2LT + T = (0), and thus L? — 2L +1 =
(L—1)(L —1) annihilates T'. Further we know that (L — 1) annihilates the non-homogeneous
part. Thus the annihilator of the whole sequence is (L — 1)3. Thus T(n) is of the form:

T(n) = c1n® + con + c3

We know:
TO0)=0 = c3 (8)
T1) =0 = ¢ +c (9)
T(2) =4 = 4dci1+ 2c¢ (10)
soc1 =2, co=—2,c3 =0 and thus

T(n) =2n? — 2n

Check: T(3) =2x4—-0+4=12and 2x9 — 6 = 12.

4. Sorting (20 points)

Consider the following generalization of mergesort. This algorithm divides [into k equal size
lists, recursively sorts each of these lists and then merges the k sorted lists. Note that & is just
some arbitrary constant like 2 or 5 (If £ = 2, this algorithm is just like regular mergesort.)

k-MergeSort (1){
if (1.size O<=1){

return 1;

else{

Divide 1 into k lists each of size n/k;
Recursively k-Mergesort each of these k lists;
Merge the k sorted lists;

Recall that we can merge k sorted lists (each of size n/k) together in time n log k. What
data structure do we use to do this?

Solution: A heap

Let T'(n) be the run time of k-Mergesort on a list of size n. Write down a recurrence
relation for T'(n).

Solution: T'(n) = kT(n/k) + nlogk

Now solve this recurrence relation. Hint: Use a recursion tree; recall that log, n = }%E—Z.
Based on your solution, which values of k& make the algorithm fastest?

Solution: Ewvery level of the recursion tree has weight nlog k. There are log;, n levels of the
recursion tree, so the total weight of the tree is (nlogk)+log, n = (nlog k)*llgiz =nlogn.

Hence all values of k are equally good.

5. Probability (20 points)
Imagine that you are inserting the numbers 1 through n into a hash table with m buckets.
Assume uniform hashing with chaining. For any i between 1 and n — 1, we call the pair of
numbers i, ¢ + 1 a consecutive pair (e.g. 3,4 is a consecutive pair but 3,5 is not). In this
problem, you will compute the expected number of consecutive pairs that are hashed to the

same bucket.

(a) Let X; be an indicator random variable that is 1 if the consecutive pair 4,i + 1 are hashed
to the same bucket and 0 otherwise. What is P(X; = 1)? What is E(X;)?

Solution: P(X; =1) = E(X;) =1/m

(b) Now let X be a random variable which is the total number of consecutive pairs that
are hashed to the same bucket (i.e. the sum of all the X;). Compute the expected
value of X (hint: use linearity of expectation). Solution: X = Z?:_f X;. So E(X) =
E(CI5 Xi) = $im) B(X:) = $i5) 1/m = (n = 1)/m.

(c) How large must n be before we would expect at least one consecutive pair to be hashed
to the same bucket? Solution: n would have to be m + 1

6. Binary Search Trees (30 points)

Recall the following code for finding the minimum element in a Binary Search Tree(BST)
rooted at the node r.

Find-Min(r){
while (r.left != NULL){
r = r.left;
}

return r;

}

(a) State the loop invariant that you would use to prove that Find-Min does in fact return
the minimum element in the BST.

Solution: The minimum key is in the subtree rooted at r

The following problems deal with merging two binary search trees. Imagine that you are
given two BSTs, one rooted at a node z and another rooted at a node y. Assume that
every key in the first BST is less than every key in the second BST (see the example
below). Your want to merge these two input BSTs into a single BST which contains the
union of the keys in the two input trees. The merged tree must have height no more than
one plus the mazimum of the heights of the two input trees. Example figure:

« (2) v (o)
6\
s

Give an algorithm to merge the two BSTs that runs in time linear in the height of the
trees. Hint: Look again at part a. Solution: Let m be the minimum key in the BST
rooted at y. Delete m from the BST rooted at y. Create a new tree with m as the root
node and x as the left child and y as the right child. Return this tree.

Argue that your algorithm is correct Solution: We will argue that the new tree has the
BST property. Note that it’s easy to see that all nodes underneath x and all nodes un-
derneath y have the BST property. Consider the node m. We know that its key must be
at least as large as all nodes under x by assumption. We further know that its key is no
larger than all nodes under y since it is the minimum node in y.

