
CS 361, HW4

Prof. Jared Saia, University of New Mexico

Due: February 17th, 2004

1. Consider the recurrence T (n) = 2T (n/4) + n2

(a) Use the recursion tree method to get a tight upper bound (i.e.
big-O) on the solution to this recurrence

(b) Now use annihilators (and a transformation) to get a tight upper
bound on the solution to this recurrence. Show your work. (Note
that your two bounds should match)

2. Consider the recurrence T (n) = 2T (n/2) + log2 n

(a) Use the Master method to get a general solution to this recur-
rence.

(b) Now use annihilators (and a transformation) to get a tight upper
bound on the solution to this recurrence. Show your work. (Note
that your two bounds should match)

3. Consider the following function:

int f (int n){

if (n==0) return 0;

else if (n==1) return 1;

else{

int val = 6*f (n-1);

val = val - 9*f (n-2);

return val;

}

}

(a) Write a recurrence relation for the value returned by f . Solve the
recurrence exactly. (Don’t forget to check it)

1



(b) Write a recurrence relation for the running time of f . Get a tight
upperbound (i.e. big-O) on the solution to this recurrence.

4. Consider the following function:

int f (int n){

if (n==0) return 0;

else if (n==1) return 1;

else{

int val = 4*f (n-1);

val = val - 4*f (n-2);

return val;

}

}

(a) Write a recurrence relation for the value returned by f . Solve the
recurrence exactly. (Don’t forget to check it)

(b) Write a recurrence relation for the running time of f . Get a tight
upperbound (i.e. big-O) on the solution to this recurrence.

2


