CS 361, HW4

Prof. Jared Saia, University of New Mexico

Due: February 17th, 2004

1. Consider the recurrence $T(n)=2 T(n / 4)+n^{2}$
(a) Use the recursion tree method to get a tight upper bound (i.e. big-O) on the solution to this recurrence
(b) Now use annihilators (and a transformation) to get a tight upper bound on the solution to this recurrence. Show your work. (Note that your two bounds should match)
2. Consider the recurrence $T(n)=2 T(n / 2)+\log ^{2} n$
(a) Use the Master method to get a general solution to this recurrence.
(b) Now use annihilators (and a transformation) to get a tight upper bound on the solution to this recurrence. Show your work. (Note that your two bounds should match)
3. Consider the following function:
```
int f (int n){
    if (n==0) return 0;
    else if (n==1) return 1;
    else{
        int val = 6*f (n-1);
        val = val - 9*f (n-2);
        return val;
    }
}
```

(a) Write a recurrence relation for the value returned by f. Solve the recurrence exactly. (Don't forget to check it)
(b) Write a recurrence relation for the running time of f. Get a tight upperbound (i.e. big-O) on the solution to this recurrence.
4. Consider the following function:

```
int f (int n){
    if (n==0) return 0;
    else if (n==1) return 1;
    else{
        int val = 4*f (n-1);
        val = val - 4*f (n-2);
        return val;
    }
}
```

(a) Write a recurrence relation for the value returned by f. Solve the recurrence exactly. (Don't forget to check it)
(b) Write a recurrence relation for the running time of f. Get a tight upperbound (i.e. big-O) on the solution to this recurrence.

