CS 361, Lecture 14

Jared Saia
University of New Mexico

- Bucket sort assumes that the input is drawn from a uniform distribution over the range $[0,1)$
- Basic idea is to divide the interval $[0,1)$ into n equal size regions, or buckets
- We expect that a small number of elements in A will fall into each bucket
- To get the output, we can sort the numbers in each bucket and just output the sorted buckets in order
\qquad
- Bucket Sort
- Midterm Review

Bucket Sort

\qquad
//PRE: A is the array to be sorted, all elements in A[i] are between \$0\$ and \$1\$ inclusive.
//POST: returns a list which is the elements of A in sorted order BucketSort(A)\{
B = new List []
$\mathrm{n}=$ length (A$)$
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$) $\{$
insert $A[i]$ at end of list $B[f l o o r(n * A[i])]$;
\}
for ($\mathrm{i}=0 ; \mathrm{i}<=\mathrm{n}-1 ; \mathrm{i}++$) $\{$
sort list $B[i]$ with insertion sort;
\}
return the concatenated list $B[0], B[1], \ldots, B[n-1]$; \}
\qquad
\qquad

- Claim: If the input numbers are distributed uniformly over the range $[0,1)$, then Bucket sort takes expected time $O(n)$
- Let $T(n)$ be the run time of bucket sort on a list of size n
- Let n_{i} be the random variable givingthe number of elements in bucket $B[i]$
- Then $T(n)=\Theta(n)+\sum_{i=0}^{n-1} O\left(n_{i}^{2}\right)$
- We claim that $E\left(n_{i}^{2}\right)=2-1 / n$
- To prove this, we define indicator random variables: $X_{i j}=1$ if $A[j]$ falls in bucket i and 0 otherwise (defined for all i, $0 \leq i \leq n-1$ and $j, 1 \leq j \leq n)$
- Thus, $n_{i}=\sum_{j=1}^{n} X_{i j}$
- We can now compute $E\left(n_{i}^{2}\right)$ by expanding the square and regrouping terms

Analysis

\qquad

- We know $T(n)=\Theta(n)+\sum_{i=0}^{n-1} O\left(n_{i}^{2}\right)$
- Taking expectation of both sides, we have

$$
\begin{aligned}
E(T(n)) & =E\left(\Theta(n)+\sum_{i=0}^{n-1} O\left(n_{i}^{2}\right)\right) \\
& =\Theta(n)+\sum_{i=0}^{n-1} E\left(O\left(n_{i}^{2}\right)\right) \\
& =\Theta(n)+\sum_{i=0}^{n-1}\left(O\left(E\left(n_{i}^{2}\right)\right)\right)
\end{aligned}
$$

- The second step follows by linearity of expectation
- The last step holds since for any constant a and random variable $X, E(a X)=a E(X)$ (see Equation C. 21 in the text)

$$
\begin{aligned}
E\left(n_{i^{2}}\right) & =E\left(\left(\sum_{j=1}^{n} X_{i j}\right)^{2}\right) \\
& =E\left(\sum_{j=1}^{n} \sum_{k=1}^{n} X_{i j} X_{i k}\right) \\
& =E\left(\sum_{j=1}^{n} X_{i j}^{2}+\sum_{1 \leq j \leq n} \sum_{1 \leq k \leq n, k \neq j} X_{i j} X_{i k}\right) \\
& \left.=\sum_{j=1}^{n} E\left(X_{i j}^{2}\right)+\sum_{1 \leq j \leq n} \sum_{1 \leq k \leq n, k \neq j} E\left(X_{i j} X_{i k}\right)\right)
\end{aligned}
$$

\qquad
\qquad

- We can evaluate the two summations separately. $X_{i j}$ is 1 with probability $1 / n$ and 0 otherwise
- Thus $E\left(X_{i j}^{2}\right)=1 *(1 / n)+0 *(1-1 / n)=1 / n$
- Where $k \neq j$, the random variables $X_{i j}$ and $X_{i k}$ are independent
- For any two independent random variables X and $Y, E(X Y)=$ $E(X) E(Y)$ (see C. 3 in the book for a proof of this)
- Thus we have that

$$
\begin{aligned}
E\left(X_{i j} X_{i k}\right) & =E\left(X_{i j}\right) E\left(X_{i k}\right) \\
& =(1 / n)(1 / n) \\
& =\left(1 / n^{2}\right)
\end{aligned}
$$

- Recall that $E(T(n))=\Theta(n)+\sum_{i=0}^{n-1}\left(O\left(E\left(n_{i}^{2}\right)\right)\right)$
- We can now plug in the equation $E\left(n_{i}^{2}\right)=2-(1 / n)$ to get

$$
\begin{aligned}
E(T(n)) & =\Theta(n)+\sum_{i=0}^{n-1} 2-(1 / n) \\
& =\Theta(n)+\Theta(n) \\
& =\Theta(n)
\end{aligned}
$$

- Thus the entire bucket sort algorithm runs in expected linear time

Analysis

\qquad

- Analysis
- Substituting these two expected values back into our main equation, we get:

$$
\begin{aligned}
E\left(n_{i}^{2}\right) & \left.=\sum_{j=1}^{n} E\left(X_{i j}^{2}\right)+\sum_{1 \leq j \leq n} \sum_{1 \leq k \leq n, k \neq j} E\left(X_{i j} X_{i k}\right)\right) \\
& =\sum_{j=1}^{n}(1 / n)+\sum_{1 \leq j \leq n} \sum_{1 \leq k \leq n, k \neq j}\left(1 / n^{2}\right) \\
& =n(1 / n)+(n)(n-1)\left(1 / n^{2}\right) \\
& =1+(n-1) / n \\
& =2-(1 / n)
\end{aligned}
$$

- Midterm: Tuesday, March 23rd in class (the Tuesday after spring break)
- You can bring 2 pages of "cheat sheets" to use during the exam. Otherwise the exam is closed book and closed note
- Note that the web page contains links to prior classes and their midterms. Many of the questions on my midterm will be similar in flavor to these past midterms (and to exercises in the book)!

Collection of true/false questions and short answer on:

- Asymptotic notation: e.g. I give you a bunch of functions and ask you to give me the simplest possible theta notation for each
- Recurrences: e.g. I ask you to solve a recurrence
- Heaps: e.g. I ask you questions about properties of heaps and priority queues
- Sorting Algorithms: heapsort, quicksort, bucketsort, mergesort, (know resource bounds for these algorithms)
- Probability: Random variables, expectation, linearity of expectation, birthday paradox, analysis of expected runtime of quicksort and bucketsort

Midterm

\qquad

- 5 questions, about 20 points each
- Hard but fair
- There will be some time pressure, so make sure you can egg. solve recurrences both quickly and correctly.
- I expect a class mean of between 60 :(and 70 :) points

Question 2

Solving recurrence relations:

- Like problems on nw 4 and Problem 7-3 (Stooge Sort)
- You'll need to know annihilators, change of variables, handing homogeneous and non-homogeneous parts of recurrences, recursion trees, and the Master Method
- You'll need to know the formulas for sums of convergent and divergent geometric series
\qquad
\qquad

Asymptotic notation:

- Similar to book problems: 3.1-2, 3.1-5, 3.1-7

Loop Invariant:

- Will give you an algorithm and ask you to give the loop invariant you would use to show it is correct
- You may also need to give initialization, maintenance and termination for your loop invariant
- Similar to the hw problems and in-class exercises on loop invariants
\qquad
\qquad
- Prove that $2^{n+1}=O\left(2^{n}\right)$
- Goal: Show there exist positive constants c and n_{0} such that $2^{n+1} \leq c * 2^{n}$ for all $n \geq n_{0}$

$$
\begin{align*}
2^{n+1} & \leq c * 2^{n} \tag{1}\\
2 * 2^{n} & \leq c * 2^{n} \tag{2}\\
2 & \leq c \tag{3}
\end{align*}
$$

- Hence for $c=2$ and $n_{0}=1,2^{n+1} \leq c * 2^{n}$ for all $n \geq n_{0}$
- Prove that $2^{2 n}=O\left(5^{n}\right)$
- Goal: Show there exist positive constants c and n_{0} such that $2^{2 n} \leq c * 5^{n}$ for all $n \geq n_{0}$

$$
\begin{align*}
2^{2 n} & \leq c * 5^{n} \tag{7}\\
4^{n} & \leq c * 5^{n} \tag{8}\\
(4 / 5)^{n} & \leq c \tag{9}
\end{align*}
$$

\qquad

- Prove that $n+\sqrt{n}=O(n)$
- Goal: Show there exist positive constants c and n_{0} such that $n+\sqrt{n} \leq c * n$ for all $n \geq n_{0}$

$$
\begin{align*}
& n+\sqrt{n} \leq c * n \tag{4}\\
& 1+\frac{1}{\sqrt{n}} \leq c \tag{5}
\end{align*}
$$

- Hence if we choose $n_{0}=4$, and $c=1.5$, then it's true that $n+\sqrt{n} \leq c * n$ for all $n \geq n_{0}$
- Hence for $c=1$ and $n_{0}=1,2^{2 n} \leq c * 5^{n}$ for all $n \geq n_{0}$

1. Write down what this means mathematically
2. Write down the inequality $f(n) \leq c * g(n)$
3. Simplify this inequality so that c is isolated on the right hand side
4. Now find a n_{0} and a c such that for all $n \geq n_{0}$, this simplified inequality is true
\qquad
\qquad

Show that $n 2^{n}$ is $O\left(4^{n}\right)$

- Q1: What is the exact mathematical statement of what you need to prove?
- Q2: What is the first inequality in the chain of inequalities?
- Q3: What is the simplified inequality where c is isolated?
- Q4: What is a n_{0} and c such that the inequality of the last question is always true?
\qquad
- Consider the following recurrence:

$$
T(n)=2^{2-n} * T(n-1) * T(n-1)
$$

where $T(1)=2$.

- Show that $T(n)=2^{n}$ by induction. Include the following in your proof: 1)the base case(s) 2)the inductive hypothesis and 3)the inductive step.
- Base Case: $T(1)=2$ which is in fact 2^{1}.
- Inductive Hypothesis: For all $j<n, T(j)=2^{j}$
- Inductive Step: We must show that $T(n)=2^{n}$, assuming the inductive hypothesis.

$$
\begin{aligned}
& T(n)=2^{2-n} * T(n-1) * T(n-1) \\
& T(n)=2^{2-n} * 2^{n-1} * 2^{n-1} \\
& T(n)=2^{n}
\end{aligned}
$$

where the inductive hypothesis allows us to make the replacements in the second step.

