_ Hash Tables _____

CS 361, Lecture 17

Jared Saia University of New Mexico Hash Tables implement the Dictionary ADT, namely:

- Insert(x) O(1) expected time, $\Theta(n)$ worst case
- Lookup(x) O(1) expected time, $\Theta(n)$ worst case
- Delete(x) O(1) expected time, $\Theta(n)$ worst case

Outline _____ Red-Black Trees _____

- Binary Search Trees
- Red-Black Trees
- Class Evaluation

Red-Black trees (a kind of binary tree) also implement the Dictionary ADT, namely:

- Insert(x) $O(\log n)$ time
- Lookup(x) $O(\log n)$ time
- Delete(x) $O(\log n)$ time

1

Why BST?

What is a BST? _____

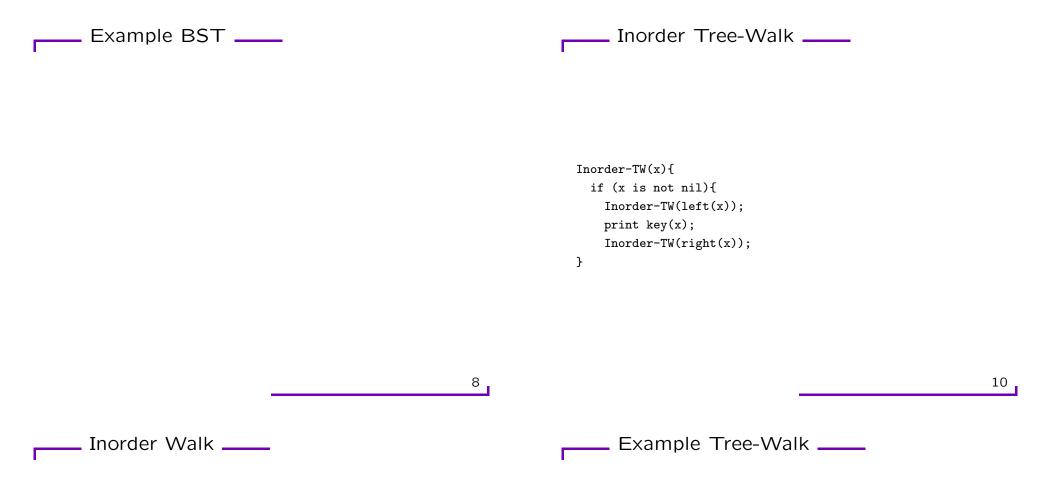
- Q: When would you use a Search Tree?
- A1: When need a hard guarantee on the worst case run times (e.g. "mission critical" code)
- A2: When want something more dynamic than a hash table (e.g. don't want to have to enlarge a hash table when the load factor gets too large)
- A3: Search trees can implement some other important operations...

- It's a binary tree
- Each node holds a key and record field, and a pointer to left and right children
- Binary Search Tree Property is maintained

	4			6
Search Tree Operations	г	Binary Search	Tree Property	

- Insert
- Lookup
- Delete
- Minimum/Maximum
- Predecessor/Successor

• Let x be a node in a binary search tree. If y is a node in the left subtree of x, then $key(y) \le key(x)$. If y is a node in the right subtree of x then $key(x) \le key(y)$



• BSTs are arranged in such a way that we can print out the elements in sorted order in Θ(n) time

• Inorder Tree-Walk does this

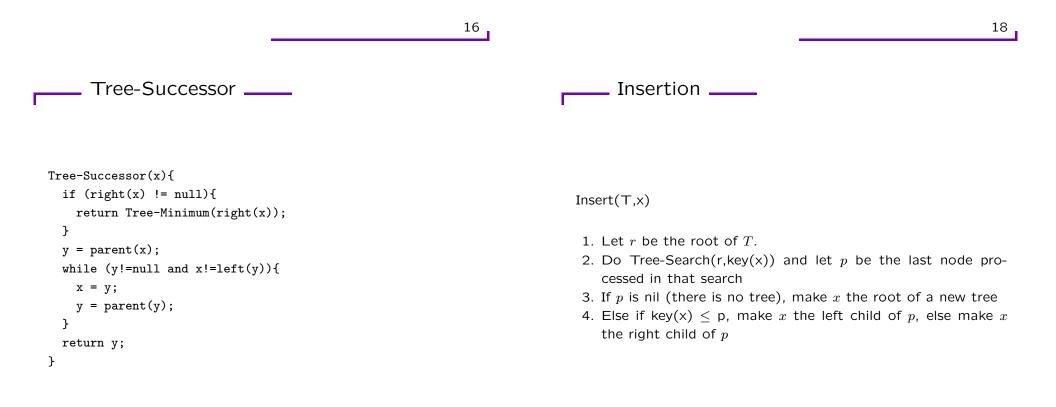
Analysis	Analysis
Correctness?Run time?	 Let h be the height of the tree The run time is O(h) Correctness???
12 Search in BT	14 In-Class Exercise
<pre>Tree-Search(x,k){ if (x=nil) or (k = key(x)){ return x; } if (k<key(x)){ pre="" return="" tree-search(left(x),k);="" tree-search(right(x),k);="" }="" }<="" }else{=""></key(x)){></pre>	 Q1: What is the loop invariant for Tree-Search? Q2: What is Initialization? Q3: Maintenance? Q4: Termination?

Tree Min/Max _____

Successor Intuition _____

- Tree Minimum(x): Return the leftmost child in the tree rooted at x
- Tree Maximum(x): Return the rightmost child in the tree rooted at x

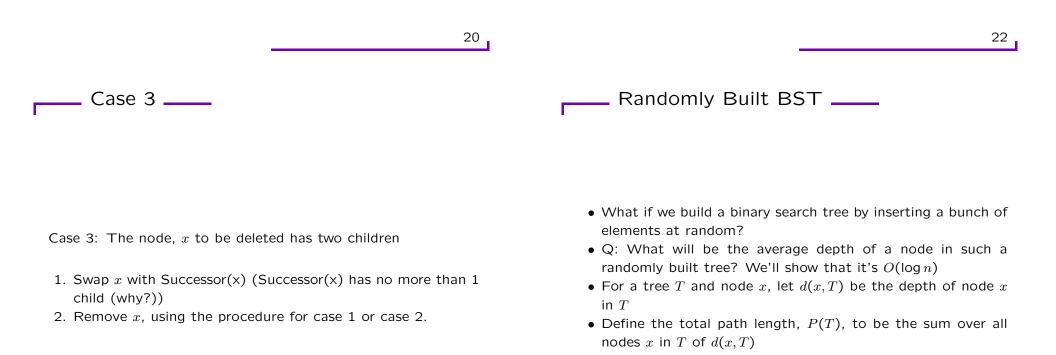
- Case 1: If right subtree of x is non-empty, successor(x) is just the leftmost node in the right subtree
- Case 2: If the right subtree of x is empty and x has a successor, then successor(x) is the lowest ancestor of x whose left child is also an ancestor of x.



____ Analysis _____

- Code is in book, basically there are three cases, two are easy and one is tricky
- Case 1: The node to delete has no children. Then we just delete the node
- Case 2: The node to delete has one child. Then we delete the node and "splice" together the two resulting trees

- All of these operations take O(h) time where h is the height of the tree
- If *n* is the number of nodes in the tree, in the worst case, *h* is *O*(*n*)
- However, if we can keep the tree *balanced*, we can ensure that $h = O(\log n)$
- Red-Black trees can maintain a balanced BST



____ Analysis _____

"Shut up brain or I'll poke you with a Q-Tip" - Homer Simpson

• Note that the average depth of a node in T is

$$\frac{1}{n}\sum_{x\in T}d(x,T) = \frac{1}{n}P(T)$$

• Thus we want to show that $P(T) = O(n \log n)$

- Let P(n) be the expected total depth of all nodes in a randomly built binary tree with n nodes
- Note that for all i, $0 \le i \le n 1$, the probability that T_l has i nodes and T_r has n i 1 nodes is 1/n.
- *i* nodes and T_r has n i 1 nodes is 1/n. • Thus $P(n) = \frac{1}{n} \sum_{i=0}^{n-1} (P(i) + P(n - i - 1) + n - 1)$

• Let
$$T_l$$
, T_r be the left and right subtrees of T respectively.
Let n be the number of nodes in T

• Then $P(T) = P(T_l) + P(T_r) + n - 1$. Why?

$$P(n) = \frac{1}{n} \sum_{i=0}^{n-1} (P(i) + P(n-i-1) + n-1)$$
(1)

$$= \frac{1}{n} \left(\sum_{i=0}^{n-1} (P(i) + P(n-i-1)) + \frac{1}{n} \left(\sum_{i=0}^{n-1} n - 1 \right) \right) \quad (2)$$

$$= \frac{1}{n} \left(\sum_{i=0}^{n-1} (P(i) + P(n-i-1)) + \Theta(n) \right)$$
(3)

$$= \frac{2}{n} \left(\sum_{k=1}^{n-1} P(k) \right) + \Theta(n)$$
(4)

(5)

27

- We have $P(n) = \frac{2}{n} (\sum_{k=1}^{n-1} P(k)) + \Theta(n)$
- This is the same recurrence for randomized Quicksort
- In your hw (problem 7-2), you showed that the solution to this recurrence is $P(n) = O(n \log n)$

- The expected average depth of a node in a randomly built binary tree is $O(\log n)$
- This implies that operations like search, insert, delete take expected time $O(\log n)$ for a randomly built binary tree

- *P*(*n*) is the expected total depth of all nodes in a randomly built binary tree with *n* nodes.
- We've shown that $P(n) = O(n \log n)$
- There are n nodes total
- Thus the expected average depth of a node is $O(\log n)$

- In many cases, data is not inserted randomly into a binary search tree
- I.e. many binary search trees are not "randomly built"
- For example, data might be inserted into the binary search tree in almost sorted order
- Then the BST would not be randomly built, and so the expected average depth of the nodes would not be $O(\log n)$