\qquad

CS 361, Lecture 17

Jared Saia
University of New Mexico

Outline \qquad

- Binary Search Trees
- Red-Black Trees
- Class Evaluation

Hash Tables implement the Dictionary ADT, namely:

- Insert $(\mathrm{x})-O(1)$ expected time, $\Theta(n)$ worst case
- Lookup (x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Delete $(\mathrm{x})-O(1)$ expected time, $\Theta(n)$ worst case
\qquad
\square Red-Black Trees \qquad

Red-Black trees (a kind of binary tree) also implement the Dictionary ADT, namely:

- Insert $(\mathrm{x})-O(\log n)$ time
- Lookup $(\mathrm{x})-O(\log n)$ time
- Delete $(\mathrm{x})-O(\log n)$ time
\qquad
\qquad
- Q: When would you use a Search Tree?
- A1: When need a hard guarantee on the worst case run times (e.g. "mission critical" code)
- A2: When want something more dynamic than a hash table (e.g. don't want to have to enlarge a hash table when the load factor gets too large)
- A3: Search trees can implement some other important operations...
- It's a binary tree
- Each node holds a key and record field, and a pointer to left and right children
- Binary Search Tree Property is maintained
\qquad
\qquad
- Insert
- Lookup
- Delete
- Minimum/Maximum
- Predecessor/Successor
\qquad
\qquad

```
Inorder-TW(x){
    if (x is not nil){
        Inorder-TW(left(x));
        print key(x);
        Inorder-TW(right(x));
}
```

\qquad Example Tree-Walk \qquad

- BSTs are arranged in such a way that we can print out the elements in sorted order in $\Theta(n)$ time
- Inorder Tree-Walk does this
\qquad
\qquad
- Correctness?
- Run time?
- Let h be the height of the tree
- The run time is $O(h)$
- Correctness???
\qquad

Search in BT \qquad
Γ

```
Tree-Search(x,k){
    if (x=nil) or (k = key(x)){
        return x;
    }
    if (k<key(x)){
        return Tree-Search(left(x),k);
    }else{
        return Tree-Search(right(x),k);
    }
}
```

In-Class Exercise \qquad

- Q1: What is the loop invariant for Tree-Search?
- Q2: What is Initialization?
- Q3: Maintenance?
- Q4: Termination?
\qquad
\qquad
- Tree Minimum(x): Return the leftmost child in the tree rooted at \times
- Tree Maximum (x) : Return the rightmost child in the tree rooted at x
- Case 1: If right subtree of x is non-empty, $\operatorname{successor}(\mathrm{x})$ is just the leftmost node in the right subtree
- Case 2: If the right subtree of x is empty and x has a successor, then successor (X) is the lowest ancestor of x whose left child is also an ancestor of x.

Tree-Successor \qquad Insertion \qquad

```
Tree-Successor(x){
    if (right(x) != null){
        return Tree-Minimum(right(x));
    }
    y = parent(x);
    while (y!=null and x!=left(y)){
        x = y;
        y = parent(y);
    }
    return y;
}
```

Insert(T, x)

1. Let r be the root of T.
2. Do Tree-Search $(r, \operatorname{key}(x))$ and let p be the last node processed in that search
3. If p is nil (there is no tree), make x the root of a new tree
4. Else if $\operatorname{key}(\mathrm{x}) \leq \mathrm{p}$, make x the left child of p, else make x the right child of p
\qquad
\qquad

- Code is in book, basically there are three cases, two are easy and one is tricky
- Case 1: The node to delete has no children. Then we just delete the node
- Case 2: The node to delete has one child. Then we delete the node and "splice" together the two resulting trees
- All of these operations take $O(h)$ time where h is the height of the tree
- If n is the number of nodes in the tree, in the worst case, h is $O(n)$
- However, if we can keep the tree balanced, we can ensure that $h=O(\log n)$
- Red-Black trees can maintain a balanced BST

Case 3 \qquad

Case 3: The node, x to be deleted has two children

1. Swap x with Successor (X) (Successor (x) has no more than 1 child (why?))
2. Remove x, using the procedure for case 1 or case 2.

Randomly Built BST \qquad

- What if we build a binary search tree by inserting a bunch of elements at random?
- Q: What will be the average depth of a node in such a randomly built tree? We'll show that it's $O(\log n)$
- For a tree T and node x, let $d(x, T)$ be the depth of node x in T
- Define the total path length, $P(T)$, to be the sum over all nodes x in T of $d(x, T)$
\qquad
\qquad
"Shut up brain or I'll poke you with a Q-Tip" - Homer Simpson
- Note that the average depth of a node in T is

$$
\frac{1}{n} \sum_{x \in T} d(x, T)=\frac{1}{n} P(T)
$$

- Thus we want to show that $P(T)=O(n \log n)$
- Let $P(n)$ be the expected total depth of all nodes in a randomly built binary tree with n nodes
- Note that for all $i, 0 \leq i \leq n-1$, the probability that T_{l} has i nodes and T_{r} has $n-i-1$ nodes is $1 / n$.
- Thus $P(n)=\frac{1}{n} \sum_{i=0}^{n-1}(P(i)+P(n-i-1)+n-1)$

Analysis \qquad

- Let T_{l}, T_{r} be the left and right subtrees of T respectively.

Let n be the number of nodes in T

- Then $P(T)=P\left(T_{l}\right)+P\left(T_{r}\right)+n-1$. Why?

Analysis

\qquad

$$
\begin{align*}
P(n) & =\frac{1}{n} \sum_{i=0}^{n-1}(P(i)+P(n-i-1)+n-1) \tag{1}\\
& =\frac{1}{n}\left(\sum_{i=0}^{n-1}(P(i)+P(n-i-1))+\frac{1}{n}\left(\sum_{i=0}^{n-1} n-1\right)\right) \tag{2}\\
& =\frac{1}{n}\left(\sum_{i=0}^{n-1}(P(i)+P(n-i-1))+\Theta(n)\right. \tag{3}\\
& =\frac{2}{n}\left(\sum_{k=1}^{n-1} P(k)\right)+\Theta(n) \tag{4}
\end{align*}
$$

\qquad

- We have $P(n)=\frac{2}{n}\left(\sum_{k=1}^{n-1} P(k)\right)+\Theta(n)$
- This is the same recurrence for randomized Quicksort
- In your hw (problem 7-2), you showed that the solution to this recurrence is $P(n)=O(n \log n)$
- The expected average depth of a node in a randomly built binary tree is $O(\log n)$
- This implies that operations like search, insert, delete take expected time $O(\log n)$ for a randomly built binary tree
\qquad
$P(n)$ is the expected total depth of all nodes in a randomly built binary tree with n nodes.
- We've shown that $P(n)=O(n \log n)$
- There are n nodes total
- Thus the expected average depth of a node is $O(\log n)$

Warning!

- In many cases, data is not inserted randomly into a binary search tree
- I.e. many binary search trees are not "randomly built"
- For example, data might be inserted into the binary search tree in almost sorted order
- Then the BST would not be randomly built, and so the expected average depth of the nodes would not be $O(\log n)$

