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Outline

• Binary Search Trees

• Red-Black Trees

• Class Evaluation
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Hash Tables

Hash Tables implement the Dictionary ADT, namely:

• Insert(x) - O(1) expected time, Θ(n) worst case

• Lookup(x) - O(1) expected time, Θ(n) worst case

• Delete(x) - O(1) expected time, Θ(n) worst case
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Red-Black Trees

Red-Black trees (a kind of binary tree) also implement the Dic-

tionary ADT, namely:

• Insert(x) - O(logn) time

• Lookup(x) - O(logn) time

• Delete(x) - O(logn) time
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Why BST?

• Q: When would you use a Search Tree?

• A1: When need a hard guarantee on the worst case run times

(e.g. “mission critical” code)

• A2: When want something more dynamic than a hash table

(e.g. don’t want to have to enlarge a hash table when the

load factor gets too large)

• A3: Search trees can implement some other important op-

erations...
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Search Tree Operations

• Insert

• Lookup

• Delete

• Minimum/Maximum

• Predecessor/Successor
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What is a BST?

• It’s a binary tree

• Each node holds a key and record field, and a pointer to left

and right children

• Binary Search Tree Property is maintained
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Binary Search Tree Property

• Let x be a node in a binary search tree. If y is a node in the

left subtree of x, then key(y)≤key(x). If y is a node in the

right subtree of x then key(x)≤key(y)

7



Example BST
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Inorder Walk

• BSTs are arranged in such a way that we can print out the

elements in sorted order in Θ(n) time

• Inorder Tree-Walk does this
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Inorder Tree-Walk

Inorder-TW(x){

if (x is not nil){

Inorder-TW(left(x));

print key(x);

Inorder-TW(right(x));

}
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Example Tree-Walk
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Analysis

• Correctness?

• Run time?
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Search in BT

Tree-Search(x,k){

if (x=nil) or (k = key(x)){

return x;

}

if (k<key(x)){

return Tree-Search(left(x),k);

}else{

return Tree-Search(right(x),k);

}

}
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Analysis

• Let h be the height of the tree

• The run time is O(h)

• Correctness???
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In-Class Exercise

• Q1: What is the loop invariant for Tree-Search?

• Q2: What is Initialization?

• Q3: Maintenance?

• Q4: Termination?

15



Tree Min/Max

• Tree Minimum(x): Return the leftmost child in the tree

rooted at x

• Tree Maximum(x): Return the rightmost child in the tree

rooted at x
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Tree-Successor

Tree-Successor(x){

if (right(x) != null){

return Tree-Minimum(right(x));

}

y = parent(x);

while (y!=null and x!=left(y)){

x = y;

y = parent(y);

}

return y;

}
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Successor Intuition

• Case 1: If right subtree of x is non-empty, successor(x) is

just the leftmost node in the right subtree

• Case 2: If the right subtree of x is empty and x has a suc-

cessor, then successor(x) is the lowest ancestor of x whose

left child is also an ancestor of x.
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Insertion

Insert(T,x)

1. Let r be the root of T .

2. Do Tree-Search(r,key(x)) and let p be the last node pro-

cessed in that search

3. If p is nil (there is no tree), make x the root of a new tree

4. Else if key(x) ≤ p, make x the left child of p, else make x

the right child of p
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Deletion

• Code is in book, basically there are three cases, two are easy

and one is tricky

• Case 1: The node to delete has no children. Then we just

delete the node

• Case 2: The node to delete has one child. Then we delete

the node and “splice” together the two resulting trees

20

Case 3

Case 3: The node, x to be deleted has two children

1. Swap x with Successor(x) (Successor(x) has no more than 1

child (why?))

2. Remove x, using the procedure for case 1 or case 2.
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Analysis

• All of these operations take O(h) time where h is the height

of the tree

• If n is the number of nodes in the tree, in the worst case, h

is O(n)

• However, if we can keep the tree balanced, we can ensure

that h = O(logn)

• Red-Black trees can maintain a balanced BST
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Randomly Built BST

• What if we build a binary search tree by inserting a bunch of

elements at random?

• Q: What will be the average depth of a node in such a

randomly built tree? We’ll show that it’s O(logn)

• For a tree T and node x, let d(x, T ) be the depth of node x

in T

• Define the total path length, P (T ), to be the sum over all

nodes x in T of d(x, T )
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Analysis

“Shut up brain or I’ll poke you with a Q-Tip” - Homer Simpson

• Note that the average depth of a node in T is

1

n

∑

x∈T
d(x, T ) =

1

n
P (T )

• Thus we want to show that P (T ) = O(n logn)
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Analysis

• Let Tl, Tr be the left and right subtrees of T respectively.

Let n be the number of nodes in T

• Then P (T ) = P (Tl) + P (Tr) + n− 1. Why?
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Analysis

• Let P (n) be the expected total depth of all nodes in a ran-

domly built binary tree with n nodes

• Note that for all i, 0 ≤ i ≤ n − 1, the probability that Tl has

i nodes and Tr has n− i− 1 nodes is 1/n.

• Thus P (n) = 1
n

∑n−1
i=0 (P (i) + P (n− i− 1) + n− 1)
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Analysis

P (n) =
1

n

n−1∑

i=0

(P (i) + P (n− i− 1) + n− 1) (1)

=
1

n
(
n−1∑

i=0

(P (i) + P (n− i− 1)) +
1

n
(
n−1∑

i=0

n− 1)) (2)

=
1

n
(
n−1∑

i=0

(P (i) + P (n− i− 1)) + Θ(n) (3)

=
2

n
(
n−1∑

k=1

P (k)) + Θ(n) (4)

(5)
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Analysis

• We have P (n) = 2
n(
∑n−1
k=1 P (k)) + Θ(n)

• This is the same recurrence for randomized Quicksort

• In your hw (problem 7-2), you showed that the solution to

this recurrence is P (n) = O(n logn)
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Take Away

• P (n) is the expected total depth of all nodes in a randomly

built binary tree with n nodes.

• We’ve shown that P (n) = O(n logn)

• There are n nodes total

• Thus the expected average depth of a node is O(logn)
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Take Away

• The expected average depth of a node in a randomly built

binary tree is O(logn)

• This implies that operations like search, insert, delete take

expected time O(logn) for a randomly built binary tree
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Warning!

• In many cases, data is not inserted randomly into a binary

search tree

• I.e. many binary search trees are not “randomly built”

• For example, data might be inserted into the binary search

tree in almost sorted order

• Then the BST would not be randomly built, and so the

expected average depth of the nodes would not be O(logn)
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