CS 361, Lecture 19

Jared Saia
University of New Mexico
\qquad
Outine

- Deletion in BSTs
- Probability Review
- Randomly built BSTs

Outline

- The successor of a node x is the node that comes after x in the sorted order determined by an in-order tree walk.
- If all keys are distinct, the successor of a node x is the node with the smallest key greater than x
- We can compute the successor of a node in $O(\log n)$ time

Tree-Successor \qquad

```
Tree-Successor(x){
    if (right(x) != null){
        return Tree-Minimum(right(x));
    }
    y = parent(x);
    while (y!=null and x=right(y)){
        x = y;
        y = parent(y);
    }
    return y;
}
```

\qquad

- Case 1: If right subtree of x is non-empty, successor(x) is just the leftmost node in the right subtree
- Case 2: If the right subtree of x is empty and x has a successor, then successor (x) is the lowest ancestor of x whose left child is also an ancestor of x. (i.e. the lowest ancestor of x whose key is $\geq \operatorname{key}(\mathrm{x})$)

Insertion

\qquad

Insert(\top, x)

1. Let r be the root of T.
2. Do Tree-Search $(r, \operatorname{key}(x))$ and let p be the last node processed in that search
3. If p is nil (there is no tree), make x the root of a new tree
4. Else if $\operatorname{key}(\mathrm{x}) \leq \mathrm{p}$, make x the left child of p, else make x the right child of p

- Code is in book, basically there are three cases, two are easy and one is tricky
- Case 1: The node to delete has no children. Then we just delete the node
- Case 2: The node to delete has one child. Then we delete the node and "splice" together the two resulting trees

Case 3 \qquad

Case 3: The node, x to be deleted has two children

1. Swap x with Successor (X) (Successor (X) has no more than 1 child (why?))
2. Remove x, using the procedure for case 1 or case 2 .
\qquad
\qquad

- What if we build a binary search tree by inserting a bunch of elements at random?
- Q: What will be the average depth of a node in such a randomly built tree? We'll show that it's $O(\log n)$

Analysis
 \qquad

- All of these operations take $O(h)$ time where h is the height of the tree
- If n is the number of nodes in the tree, in the worst case, h is $O(n)$
- However, if we can keep the tree balanced, we can ensure that $h=O(\log n)$
- Red-Black trees can maintain a balanced BST

Probability Review \qquad

- We want to answer the question: "What will be the average depth of a node in a randomly built tree?"
- We can define a random variable which gives the depth of a node chosen uniformly at random in the tree.
- We want to compute the expectation of this random variable.
- (Note: Appendix C in the book gives a good review of probability theory. If you are confused, make sure you read this appendix)
\qquad
- Recall that a random variable is a function from a sample space to the real numbers
- It associates a real number with each possible outcome of an experiment.
- For a random variable X and a real number $x, P(X=x)$ is the probability that the random variable X takes on the value x.

Example

\qquad

- Consider the experiment of rolling two 6 -sided die.
- There are 36 possible outcomes of this experiment $(6 * 6)$
- Define the random variable X to be the maximum of the two values showing on the dice
- Then we can say that $P(X=3)=5 / 36$ since X assigns the value of 3 to 5 of the 36 possible outcomes $((1,3),(2,3),(3,3),(3,2),(3,1))$
- A simple and useful summary of the distribution of a random variable is the "average" of the values it takes on
- The expectation (or expected value) of a random variable X is:

$$
E(X)=\sum_{x} x * P(X=x)
$$

\qquad
\qquad

- We want to answer the question: "What will be the average depth of a node in a randomly built tree?"
- Define the random variable X to be the depth of a node chosen uniformly at random in the tree
- X takes on n possible values, it takes on each value with probability $1 / n$

Our Problem

\qquad ,

- For a tree T and node x, let $d(x, T)$ be the depth of node x in T
- Define the total path length, $P(T)$, to be the sum over all nodes x in T of $d(x, T)$
- Then

$$
\begin{aligned}
E(X) & =\frac{1}{n} \sum_{x \in T} d(x, T) \\
& =\frac{1}{n} P(T)
\end{aligned}
$$

- Thus we want to show that $P(T)=O(n \log n)$
"Shut up brain or I'll poke you with a Q-Tip" - Homer Simpson
- Let T_{l}, T_{r} be the left and right subtrees of T respectively. Let n be the number of nodes in T
- Then $P(T)=P\left(T_{l}\right)+P\left(T_{r}\right)+n-1$. Why?
\qquad

$$
\begin{align*}
P(n) & =\frac{1}{n} \sum_{i=0}^{n-1}(P(i)+P(n-i-1)+n-1) \tag{1}\\
& =\frac{1}{n}\left(\sum_{i=0}^{n-1}(P(i)+P(n-i-1))+\frac{1}{n}\left(\sum_{i=0}^{n-1} n-1\right)\right) \tag{2}\\
& =\frac{1}{n}\left(\sum_{i=0}^{n-1}(P(i)+P(n-i-1))+\Theta(n)\right. \tag{3}\\
& =\frac{2}{n}\left(\sum_{k=1}^{n-1} P(k)\right)+\Theta(n) \tag{4}
\end{align*}
$$

- $P(n)$ is the expected total depth of all nodes in a randomly built binary tree with n nodes.
- We've shown that $P(n)=O(n \log n)$
- There are n nodes total
- Thus the expected average depth of a node is $O(\log n)$

Analysis \qquad

- We have $P(n)=\frac{2}{n}\left(\sum_{k=1}^{n-1} P(k)\right)+\Theta(n)$
- This is the same as the recurrence for randomized Quicksort
- Recall from hw problem 7-2, that the solution to this recurrence is $P(n)=O(n \log n)$
- The expected average depth of a node in a randomly built binary tree is $O(\log n)$
- This implies that operations like search, insert, delete take expected time $O(\log n)$ for a randomly built binary tree
- In many cases, data is not inserted randomly into a binary search tree
- I.e. many binary search trees are not "randomly built"
- For example, data might be inserted into the binary search tree in almost sorted order
- Then the BST would not be randomly built, and so the expected average depth of the nodes would not be $O(\log n)$

What to do?

\qquad

- A Red-Black tree implements the dictionary operations in such a way that the height of the tree is always $O(\log n)$, where n is the number of nodes
- This will guarantee that no matter how the tree is built that all operations will always take $O(\log n)$ time
- Next time we'll see how to create Red-Black Trees

