\qquad

CS 361, Lecture 24

Jared Saia

University of New Mexico

- Any questions on the homework?

Outline \qquad
\square Administrative \qquad

- This week and next, you can get one extra participation check by going to section and informing Nate that you're there and want a check.
- Sections are Thursday 5:30-6:20 DSH 134 and Friday 1:001:50 TAPY 218
- Good chance to get info on hw, projects and to review material for final
\qquad
\qquad
- Project will be due May 6th in class
- Late projects will not be accepted
- You can get partial credit for an unfinished project turned in on time but will get no credit for a finished project turned in late
- Technically, not a BST, but they implement all of the same operations
- Very elegant randomized data structure, simple to code but analysis is subtle
- They guarantee that, with high probability, all the major operations take $O(\log n)$ time
\qquad
\qquad ,
\qquad
- A skip list is basically a collection of doubly-linked lists, $L_{1}, L_{2}, \ldots, L_{x}$, for some integer x
- Each list has a special head and tail node, the keys of these nodes are assumed to be -MAXNUM and +MAXNUM respectively
- The keys in each list are in sorted order (non-decreasing)
\qquad
- Every node is stored in the bottom list
- For each node in the bottom list, we flip a coin over and over until we get tails. For each heads, we make a duplicate of the node.
- The duplicates are stacked up in levels and the nodes on each level are strung together in sorted linked lists
- Each node v stores a search key $(\operatorname{key}(v))$, a pointer to its next lower copy $(\operatorname{down}(v))$, and a pointer to the next node in its level (right (v)).

Example

\qquad

- To do a search for a key, x, we start at the leftmost node L in the highest level
- We then scan through each level as far as we can without passing the target value x and then proceed down to the next level
- The search ends either when we find the key x or fail to find x on the lowest level

```
SkipListFind(x, L){
    v = L;
    while (v != NULL) and (Key(v) != x){
        if (Key(Right(v)) > x)
            v = Down(v);
        else
            v = Right(v);
    }
return v;
}
```

\qquad
\qquad

- Deletion is very simple
- First do a search for the key to be deleted
- Then delete that key from all the lists it appears in from the bottom up, making sure to "zip up" the lists after the deletion
\qquad
p is a constant between 0 and 1 , typically $p=1 / 2$, let rand() return a random value between 0 and 1

```
Insert(k){
First call Search(k), let pLeft be the leftmost elem <= k in L_1
Insert k in L_1, to the right of pLeft
i = 2;
while (rand()<= p){
    insert k in the appropriate place in L_i;
}
```


- Intuitively, each level of the skip list has about half the number of nodes of the previous level, so we expect the total number of levels to be about $O(\log n)$
- Similarly, each time we add another level, we cut the search time in half except for a constant overhead
- So after $O(\log n)$ levels, we would expect a search time of $O(\log n)$
- We will now formalize these two intuitive observations
\qquad
\qquad
- For some key, i, let X_{i} be the maximum height of i in the skip list.
- Q: What is the probability that $X_{i} \geq 2 \log n$?
- A: If $p=1 / 2$, we have:

$$
\begin{aligned}
P\left(X_{i} \geq 2 \log n\right) & =\left(\frac{1}{2}\right)^{2 \log n} \\
& =\frac{1}{\left(2^{\log n}\right)^{2}} \\
& =\frac{1}{n^{2}}
\end{aligned}
$$

- Thus the probability that a particular key i achieves height $2 \log n$ is $\frac{1}{n^{2}}$
- This probability gets small as n gets large
- In particular, the probability of having a skip list of size exceeding $2 \log n$ is $o(1)$
- If an event occurs with probability $1-o(1)$, we say that it occurs with high probability
- Key Point: The height of a skip list is $O(\log n)$ with high probability.

Height of Skip List
 \qquad

- Q: What is the probability that any key achieves height $2 \log n$?
- A: We want

$$
P\left(X_{1} \geq 2 \log n \text { or } X_{2} \geq 2 \log n \text { or } \ldots \text { or } X_{n} \geq 2 \log n\right)
$$

- By a Union Bound, this probability is no more than

$$
P\left(X_{1} \geq k \log n\right)+P\left(X_{2} \geq k \log n\right)+\cdots+P\left(X_{n} \geq k \log n\right)
$$

- Which equals:

$$
\sum_{i=1}^{n} \frac{1}{n^{2}}=\frac{n}{n^{2}}=1 / n
$$

A trick for computing expectations of discrete positive random variables:

- Let X be a discrete r.v., that takes on values from 1 to n

$$
E(X)=\sum_{i=1}^{n} P(X \geq i)
$$

\qquad
\qquad

$$
\begin{aligned}
\sum_{i=1}^{n} P(X \geq i) & =P(X=1)+P(X=2)+P(X=3)+\ldots \\
& +P(X=2)+P(X=3)+P(X=4)+\ldots \\
& +P(X=3)+P(X=4)+P(X=5)+\ldots \\
& +\ldots \\
& =1 * P(X=1)+2 * P(X=2)+3 * P(X=3)+\ldots \\
& =E(X)
\end{aligned}
$$

In-Class Exercise
 \qquad

Γ

Q: How much memory do we expect a skip list to use up?

- Let X_{i} be the number of lists that element i is inserted in.
- Q: What is $P\left(X_{i} \geq 1\right), P\left(X_{i} \geq 2\right), P\left(X_{i} \geq 3\right)$?
- Q: What is $P\left(X_{i} \geq k\right)$ for general k ?
- Q: What is $E\left(X_{i}\right)$?
- Q: Let $X=\sum_{i=1}^{n} X_{i}$. What is $E(X)$?
- Its easier to analyze the search time if we imagine running the search backwards
- Imagine that we start at the found node v in the bottommost list and we trace the path backwards to the top leftmost senitel, L
- This will give us the length of the search path from L to v which is the time required to do the search
\qquad

```
SLFback(v){
    while (v != L){
        if (Up(v)!=NIL)
            v = Up(v);
        else
            v = Left(v);
}}
```


Backward Search

- For every node v in the skip list Up(v) exists with probability $1 / 2$. So for purposes of analysis, SLFBack is the same as the following algorithm:

FlipWalk(v)\{
while (v != L) $\{$
if (COINFLIP == HEADS)
$\mathrm{v}=\mathrm{Up}(\mathrm{v})$;
else
$\mathrm{v}=\mathrm{Left}(\mathrm{v})$;
\}\}

Analysis \qquad

- For this algorithm, the expected number of heads is exactly the same as the expected number of tails
- Thus the expected run time of the algorithm is twice the expected number of upward jumps
- Since we already know that the number of upward jumps is $O(\log n)$ with high probability, we can conclude that the expected search time is $O(\log n)$

