Example	
---------	--

CS 461, Lecture 1

Jared Saia University of New Mexico

- Let's show that f(n) = 10n + 100 is O(g(n)) where g(n) = n
- \bullet We need to give constants c and n_0 such that $f(n) \leq c g(n)$ for all $n \geq n_0$
- • In other words, we need constants c and n_0 such that $10n + 100 \leq cn$ for all $n \geq n_0$

3

_ Today's Outline ____

___ Example ____

- Administrative Info
- Asymptotic Analysis Review
- Recurrence Relation Review

• We can solve for appropriate constants:

$$10n + 100 \leq cn \tag{1}$$

$$10 + 100/n \leq c \tag{2}$$

- ullet So if n>1, then c should be greater than 110.
- ullet In other words, for all n>1, $10n+100\leq 110n$
- So 10n + 100 is O(n)

1

4

Formal Defn of Big-O _____

Relatives of big-O

• Recall the formal definition of Big-O notation:

• A function f(n) is O(g(n)) if there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n \ge n_0$

Recall the following relatives of big-O:

Relatives	of	bia-O	

Problems _____

When would you use each of these? Examples:

This algorithm is $O(n^2)$ (i.e. worst case is $\Theta(n^2)$) This algorithm is $\Theta(n)$ (best and worst case are $\Theta(n)$) Θ ">" Any comparison-based algorithm for sorting is $\Omega(n \log n)$ Ω "<" Can you write an algorithm for sorting that is $o(n^2)$? ">" This algorithm is not linear, it can take time $\omega(n)$

True or False? (Justify your answer)

- $n^3 + 4$ is $\omega(n^2)$
- $n \log n^3$ is $\Theta(n \log n)$
- $\log^3 5n^2$ is $\Theta(\log n)$
- $10^{-10}n^2 + n$ is $\Theta(n)$
- $n \log n$ is $\Omega(n)$

• $n^3 + 4$ is $o(n^4)$

Rule of Thumb _____

- Let f(n), g(n) be two functions of n
- Let $f_1(n)$, be the fastest growing term of f(n), stripped of
- Let $q_1(n)$, be the fastest growing term of q(n), stripped of its coefficient.

Then we can say:

- If $f_1(n) \leq g_1(n)$ then f(n) = O(g(n))
- If $f_1(n) \ge g_1(n)$ then $f(n) = \Omega(g(n))$
- If $f_1(n) = g_1(n)$ then $f(n) = \Theta(g(n))$
- If $f_1(n) < g_1(n)$ then f(n) = o(g(n))
- If $f_1(n) > g_1(n)$ then $f(n) = \omega(g(n))$

Formal Defns

- $O(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$
- $\Theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \}$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$
- $\Omega(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$

10

More Examples _____

__ Formal Defns (II) ____

The following are all true statements:

- $\sum_{i=1}^{n} i^2$ is $O(n^3)$, $\Omega(n^3)$ and $\Theta(n^3)$
- $\log n$ is $o(\sqrt{n})$
- $\log n$ is $o(\log^2 n)$
- $10,000n^2 + 25n$ is $\Theta(n^2)$

- $o(g(n)) = \{f(n) : \text{ for any positive constant } c > 0 \text{ there exists } \}$ $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$
- $\omega(g(n)) = \{f(n) : \text{for any positive constant } c > 0 \text{ there exists} \}$ $n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$

- Recurrence Relations _____
- Let $f(n) = 10 \log^2 n + \log n$, $g(n) = \log^2 n$. Let's show that $f(n) = \Theta(g(n))$.
- We want positive constants c_1, c_2 and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

$$0 \le c_1 \log^2 n \le 10 \log^2 n + \log n \le c_2 \log^2 n$$

Dividing by $\log^2 n$, we get:

$$0 \le c_1 \le 10 + 1/\log n \le c_2$$

- \bullet If we choose $c_1=$ 1, $c_2=$ 11 and $n_0=$ 1, then the above inequality will hold for all $n\geq n_0$
- Whenever we analyze the run time of a recursive algorithm, we will first get a recurrence relation
- To get the actual run time, we need to solve the recurrence relation

12

15

___ In-Class Exercise ____

Show that for f(n)=n+100 and $g(n)=(1/2)n^2$, that $f(n)\neq \Theta(g(n))$

- What statement would be true if $f(n) = \Theta(g(n))$?
- Show that this statement can not be true.

____ Substitution Method ____

- One way to solve recurrences is the substitution method aka "quess and check"
- ullet What we do is make a good guess for the solution to T(n), and then try to prove this is the solution by induction

13

16

Recurrence Relation Review _____

"Oh how should I not lust after eternity and after the nuptial ring of rings, the ring of recurrence" - Friedrich Nietzsche, Thus Spoke Zarathustra

- T(n) = 2 * T(n/2) + n is an example of a recurrence relation
- A Recurrence Relation is any equation for a function T, where
 T appears on both the left and right sides of the equation.
- We always want to "solve" these recurrence relation by getting an equation for T, where T appears on just the left side of the equation

____ Example ____

- • Let's guess that the solution to T(n) = 2*T(n/2) + n is $T(n) = O(n\log n)$
- In other words, $T(n) \le cn \log n$ for all $n \ge n_0$, for some positive constants c, n_0
- We can prove that $T(n) \leq cn \log n$ is true by plugging back into the recurrence

• We prove this by induction, By I.H.: $T(n/2) \le cn/2\log(n/2)$

$$T(n) = 2T(n/2) + n$$
 (3)

$$\leq 2(cn/2\log(n/2)) + n$$
 (4)

$$= cn\log(n/2) + n$$
 (5)

$$= cn(\log n - \log 2) + n$$
 (6)

$$= cn\log n - cn + n$$
 (7)

$$\leq cn\log n$$
 (8)

last step holds for all n>0 if $c\geq 1$

18

____ Todo ____

- Read Syllabus
- Visit the class web page: www.cs.unm.edu/~saia/461/
- Sign up for the class mailing list (cs461)
- Read Chapter 3 and 4 in the text