CS 461, Lecture 10

Jared Saia

University of New Mexico

- Assume the objects are sorted in order of cost per pound. Let v_{i} be the value for item i and let w_{i} be its weight.
- Let x_{i} be the fraction of object i selected by greedy and let V be the total value obtained by greedy
- Consider some arbitrary solution, B, and let x_{i}^{\prime} be the fraction of object i taken in B and let V^{\prime} be the total profit obtained by B
- We want to show that $V^{\prime} \leq V$ or that $V-V^{\prime} \geq 0$
\qquad
- Let k be the smallest index with $x_{k}<1$
- Note that for $i \leq k, x_{i}=1$ and for $i>k, x_{i}=0$
- You will show that for all i,

$$
\left(x_{i}-x_{i}^{\prime}\right) \frac{v_{i}}{w_{i}} \geq\left(x_{i}-x_{i}^{\prime}\right) \frac{v_{k}}{w_{k}}
$$

$$
\begin{align*}
V-V^{\prime} & =\sum_{i=1}^{n} x_{i} v_{i}-\sum_{i=1}^{n} x_{i}^{\prime} v_{i} \tag{1}\\
& =\sum_{i=1}^{n}\left(x_{i}-x_{i}^{\prime}\right) * v_{i} \tag{2}\\
& =\sum_{i=1}^{n}\left(x_{i}-x_{i}^{\prime}\right) * w_{i}\left(\frac{v_{i}}{w_{i}}\right) \tag{3}\\
& \geq \sum_{i=1}^{n}\left(x_{i}-x_{i}^{\prime}\right) * w_{i}\left(\frac{v_{k}}{w_{k}}\right) \tag{4}\\
& \geq\left(\frac{v_{k}}{w_{k}}\right) * \sum_{i=1}^{n}\left(x_{i}-x_{i}^{\prime}\right) * w_{i} \tag{5}\\
& \geq 0 \tag{6}
\end{align*}
$$

Consider the inequality:

$$
\left(x_{i}-x_{i}^{\prime}\right) \frac{v_{i}}{w_{i}} \geq\left(x_{i}-x_{i}^{\prime}\right) \frac{v_{k}}{w_{k}}
$$

- Q1: Show this inequality is true for $i<k$
- Q2: Show it's true for $i=k$
- Q3: Show it's true for $i>k$

Proof \qquad

- Note that the last step follows because $\frac{v_{k}}{w_{k}}$ is positive and because:

$$
\begin{align*}
\sum_{i=1}^{n}\left(x_{i}-x_{i}^{\prime}\right) * w_{i} & =\sum_{i=1}^{n} x_{i} w_{i}-\sum_{i=1}^{n} x_{i}^{\prime} * w_{i} \tag{7}\\
& =W-W^{\prime} \tag{8}\\
& \geq 0 \tag{9}
\end{align*}
$$

- Where W is the total weight taken by greedy and W^{\prime} is the total weight for the strategy B
- We know that $W \geq W^{\prime}$

Q1 \qquad

$$
\left(x_{i}-x_{i}^{\prime}\right) \frac{v_{i}}{w_{i}} \geq\left(x_{i}-x_{i}^{\prime}\right) \frac{v_{k}}{w_{k}}
$$

- Q1: Show that the inequality is true for $i<k$
- For $i<k,\left(x_{i}-x_{i}^{\prime}\right) \geq 0$
- If $\left(x_{i}-x_{i}^{\prime}\right)=0$, trivially true. Otherwise, can divide both sides of the inequality by $x_{i}-x_{i}^{\prime}$ to get

$$
\frac{v_{i}}{w_{i}} \geq \frac{v_{k}}{w_{k}}
$$

- This is true since the items are sorted by profit per weight
\qquad

$$
\left(x_{i}-x_{i}^{\prime}\right) \frac{v_{i}}{w_{i}} \geq\left(x_{i}-x_{i}^{\prime}\right) \frac{v_{k}}{w_{k}}
$$

- Q2: Show that the inequality is true for $i=k$
- When $i=k$, we have

$$
\left(x_{k}-x_{k}^{\prime}\right) \frac{v_{k}}{w_{k}} \geq\left(x_{k}-x_{k}^{\prime}\right) \frac{v_{k}}{w_{k}}
$$

- Which is true since the left side equals the right side

Q3 \qquad

$$
\left(x_{i}-x_{i}^{\prime}\right) \frac{v_{i}}{w_{i}} \geq\left(x_{i}-x_{i}^{\prime}\right) \frac{v_{k}}{w_{k}}
$$

- Q3: Show that the inequality is true for $i>k$
- For $i<k$, $\left(x_{i}-x_{i}^{\prime}\right) \leq 0$
- If $\left(x_{i}-x_{i}^{\prime}\right)=0$, trivially true. Otherwise can divide both sides of the inequality by $x_{i}-x_{i}^{\prime}$ to get

$$
\frac{v_{i}}{w_{i}} \leq \frac{v_{k}}{w_{k}}
$$

- This is obviously true since the items are sorted by profit per weight
- Note that the direction of the inequality changed when we divided by $\left(x_{i}-x_{i}^{\prime}\right)$, since it is negative
- Midterm will be Tuesday, Sept. 30th at regular class time and place
- You can bring 2 pages of "cheat sheets" to use during the exam. You can also bring a calculator. Otherwise the exam is closed book and closed note.
- Note that the web page contains links to prior classes and their midterms. Many of the questions on my midterm will be similar in flavor to these past midterms!
\qquad
- I will have a review session Monday, Sept 29th at 5:30pm in FEC 141 (the conference room on the first floor of FEC)
- Maxwell will also have a review session
- Please come with questions
- 5 questions, about 20 points each
- Hard but fair
- There will be some time pressure, so make sure you can e.g. solve recurrences both quickly and correctly.
- I expect a class mean of between 60 :(and 70 :) points
- A question on recurrence relations
- like problems 1,2,3 of hw 2
- You'll need to know annihilators, change of variables, handling homogeneous and non-homogeneous parts of recurrences, recursion trees, and the Master Method
- You'll need to know the formulas for sums of convergent and divergent geometric series
\qquad

Collection of true/false questions and short answer on:

- Asymptotic notation: e.g. I give you a bunch of functions and ask you to give me the simplest possible theta notation for each
- Recurrences: e.g. I ask you to solve a recurrence
- Dynamic Programming: general concepts, string alignment, matrix multiplication shortest common subsequence (know resource bounds for these algorithms)
- Greedy Algorithms: general concepts, activity selection, fractional knapsack (know resource bounds for these algorithms)
- Asymptotic notation
- Similar to hw problem 3.1-2, 3.1-5, 3.1-7
\qquad
\qquad
- Let's now review asymptotic notation
- I'll review for O notation, make sure you understand the other four types
- $f(n)=O(g(n))$ if there exists positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$
- This means to show that $f(n)=O(g(n))$, you need to give positive constants c and n_{0} for which the above statement is true!
- Recurrence proof using induction (i.e. the susbstitution method)
- You'll need to give base case, inductive hypothesis and then show the inductive step
- Similar to Exercise 15.2-3, Exercise 4.2-1 and Exercise 4.2-3

Questions 5

\qquad

- Question on Dynamic Programming
- Will ask you to solve some problem using Dynamic Programming
- Will likely be some variant on one of the following problems: string alignment, matrix multiplication, longest common subsequence or the monotonically increasing subsequence problem of Exercise 15.4-5 from hw2

Example 1

- Prove that $2^{n+1}=O\left(2^{n}\right)$
- Goal: Show there exist positive constants c and n_{0} such that $2^{n+1} \leq c * 2^{n}$ for all $n \geq n_{0}$

$$
\begin{align*}
2^{n+1} & \leq c * 2^{n} \tag{10}\\
2 * 2^{n} & \leq c * 2^{n} \tag{11}\\
2 & \leq c \tag{12}
\end{align*}
$$

- Hence for $c=2$ and $n_{0}=1,2^{n+1} \leq c * 2^{n}$ for all $n \geq n_{0}$
\qquad
- Prove that $n+\sqrt{ } n=O(n)$
\qquad
- Goal: Show there exist positive constants c and n_{0} such that $n+\sqrt{n} \leq c * n$ for all $n \geq n_{0}$

$$
\begin{align*}
& n+\sqrt{n} \leq c * n \tag{13}\\
& 1+\frac{1}{\sqrt{n}} \leq c \tag{14}
\end{align*}
$$

- Hence if we choose $n_{0}=4$, and $c=1.5$, then it's true that $n+\sqrt{n} \leq c * n$ for all $n \geq n_{0}$

Goal: prove that $f(n)=O(g(n))$

1. Write down what this means mathematically
2. Write down the inequality $f(n) \leq c * g(n)$
3. Simplify this inequality so that c is isolated on the right hand side
4. Now find a n_{0} and a c such that for all $n \geq n_{0}$, this simplified inequality is true

Example 3

\qquad

- Prove that $2^{2 n}=O\left(5^{n}\right)$
- Goal: Show there exist positive constants c and n_{0} such that $2^{2 n} \leq c * 5^{n}$ for all $n \geq n_{0}$

$$
\begin{align*}
2^{2 n} & \leq c * 5^{n} \tag{16}\\
4^{n} & \leq c * 5^{n} \tag{17}\\
(4 / 5)^{n} & \leq c \tag{18}
\end{align*}
$$

- Hence for $c=1$ and $n_{0}=1,2^{2 n} \leq c * 5^{n}$ for all $n \geq n_{0}$

