CS 461, Lecture 13
Jared Saia
University of New Mexico

Today's Outline \qquad
Γ
\qquad

Dynamic Tables

```
Table-Insert(T,x){
    if (T.size == 0){allocate T with 1 slot;T.size=1}
    if (T.num == T.size){
        allocate newTable with 2*T.size slots;
        insert all items in T.table into newTable;
        T.table = newTable;
        T.size = 2*T.size
        }
    T.table[T.num] = x;
    T.num++
}
```

\qquad
\qquad

Recall that $a_{i}=c_{i}+\Phi_{i}-\Phi_{i-1}$

- Show that this potential function is 0 initially and always nonnegative
- Compute a_{i} for the case where Table-Insert does not trigger an expansion
- Compute a_{i} for the case where Table-Insert does trigger an expansion (note that num $_{i-1}=$ num $_{i}-1$, size ${ }_{i-1}=n u m_{i}-1$, size $_{i}=2 *\left(\right.$ num $\left.\left._{i}-1\right)\right)$

Table Delete \qquad
\qquad
,

- Unfortunately this strategy can cause amortized cost of an operation to be large
- Assume we perform n operations where n is a power of 2
- The first $n / 2$ operations are insertions
- At the end of this, T.num $=$ T.size $=n / 2$
- Now the remaining $n / 2$ operations are as follows:

$$
I, D, D, I, I, D, D, I, I, \ldots
$$

where I represents an insertion and D represents a deletion

Analysis

\qquad

- Note that the first insertion causes an expansion
- The two following deletions cause a contraction
- The next two insertions cause an expansion again, etc., etc.
- The cost of each expansion and deletion is $\Theta(n)$ and there are $\Theta(n)$ of them
- Thus the total cost of n operations is $\Theta\left(n^{2}\right)$ and so the amortized cost per operation is $\Theta(n)$
- The Problem: After an expansion, we don't perform enough deletions to pay for the contraction (and vice versa)
- The Solution: We allow the load factor to drop below $1 / 2$
- In particular, halve the table size when a deletion causes the table to be less than $1 / 4$ full
- We can now create a potential function to show that Insertion and Deletion are fast in an amortized sense
- For a nonempty table T, we define the "load factor" of T, $\alpha(T)$, to be the number of items stored in the table divided by the size (number of slots) of the table
- We assign an empty table (one with no items) size 0 and load factor of 1
- Note that the load factor of any table is always between 0 and 1
- Further if we can say that the load factor of a table is always at least some constant c, then the unused space in the table is never more than $1-c$
\qquad
\qquad

$$
\Phi(t)=\left\{\begin{array}{ll}
2 * \text { T.num }- \text { T.size } & \text { if } \alpha(T) \geq 1 / 2 \\
\text { T.size } / 2-\text { T.num } & \text { if } \alpha(T)<1 / 2
\end{array}\right\}
$$

- Note that this potential is legal since $\Phi(0)=0$ and (you can prove that) $\Phi(i) \geq 0$ for all i
- Note that when $\alpha=1 / 2$, the potential is 0
- When the load factor is 1 (T.size $=$ T.num), $\Phi(T)=$ T.num, so the potential can pay for an expansion
- When the load factor is $1 / 4$, T.size $=4 *$ T.num, which means $\Phi(T)=T . n u m$, so the potential can pay for a contraction if an item is deleted
- Let's now role up our sleeves and show that the amortized costs of insertions and deletions are small
- We'll do this by case analysis
- Let $n^{\prime} m_{i}$ be the number of items in the table after the i-th operation, size_{i} be the size of the table after the i-th operation, and α_{i} denote the load factor after the i-th operation

Table Insert \qquad

- If $\alpha_{i-1} \geq 1 / 2$, analysis is identical to the analysis done in the In-Class Exercise - amortized cost per operation is 3
- If $\alpha_{i-1}<1 / 2$, the table will not expand as a result of the operation
- There are two subcases when $\alpha_{i-1}<1 / 2:$ 1) $\alpha_{i}<1 / 2$ 2) $\alpha_{i} \geq 1 / 2$
- In this case, we have

$$
\begin{align*}
a_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \tag{1}\\
& =1+\left(\text { size }_{i} / 2-\text { num }_{i}\right)-\left(\text { size }_{i-1} / 2-\text { num }_{i-1}\right) \tag{2}\\
& =1+\left(\text { size }_{i} / 2-\text { num }_{i}\right)-\left(\text { size }_{i} / 2-\left(\text { num }_{i}-1\right)\right) \\
& =0 \tag{4}
\end{align*}
$$

- So we've just show that in all cases, the amortized cost of an insertion is 3
- We did this by case analysis
- What remains to be shown is that the amortized cost of deletion is small
- We'll also do this by case analysis
$\begin{aligned} a_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \\ & =1+\left(2 * \text { num }_{i}-\text { size }_{i}\right)-\left(\text { size }_{i-1} / 2-\text { num }_{i-1}\right) \\ & =1+\left(2 *\left(\text { num }_{i-1}+1\right)-\text { size }_{i-1}\right)-\left(\text { size }_{i-1} / 2-\text { num }_{i-}\right. \\ & =3 * \text { num }_{i-1}-\frac{3}{2} \text { size }_{i-1}+3 \\ & =3 * \alpha_{i-1} * \text { size }_{i-1}-\frac{3}{2} \text { size }_{i-1}+3 \\ & <\frac{3}{2} * \text { size }_{i-1}-\frac{3}{2} \text { size }_{i-1}+3 \\ & =3\end{aligned}$

- For deletions, num $_{i}=$ num $_{i-1}-1$
- We will look at two main cases: 1) $\alpha_{i-1}<1 / 2$ and 2) $\alpha_{i-1} \geq$ $1 / 2$
- For the case where $\alpha_{i-1}<1 / 2$, there are two subcases: 1a) the i-th operation does not cause a contraction and 1b) the i-th operation does cause a contraction
\qquad
- If $\alpha_{i-1}<1 / 2$ and the i-th operation does not cause a contraction, we know size ${ }_{i}=\operatorname{size}_{i-1}$ and we have:

$$
\begin{align*}
a_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \tag{12}\\
& =1+\left(\text { size }_{i} / 2-\text { num }_{i}\right)-\left(\text { size }_{i-1} / 2-\text { num }_{i-1}\right) \tag{13}\\
& =1+\left(\text { size }_{i} / 2-\text { num }_{i}\right)-\left(\text { size }_{i} / 2-\left(\text { num }_{i}+1\right)\right)(12 \\
& =2 \tag{15}
\end{align*}
$$

- In this case, $\alpha_{i-1} \geq 1 / 2$
- Proving that the amortized cost is constant for this case is left as an exercise to the diligent student
- Hint1: Q: In this case is it possible for the i-th operation to be a contraction? If so, when can this occur? Hint2: Try a case analysis on α_{i}.

Case 1b

\qquad contraction.

- We know that: $c_{i}=n u m_{i}+1$
- and size $_{i} / 2=$ size $_{i-1} / 4=$ num $_{i-1}=$ num $_{i}+1$. Thus:

$$
\begin{aligned}
a_{i} & =c_{i}+\Phi_{i}-\Phi_{i-1} \\
& =\left(\text { num }_{i}+1\right)+\left(\text { size }_{i} / 2-\text { num }_{i}\right)-\left(\text { size }_{i-1} / 2-\text { num }_{i-1}\right) \\
& =\left(\text { num }_{i}+1\right)+\left(\left(\text { num }_{i}+1\right)-\text { num }_{i}\right)-\left(\left(2 \text { num }_{i}+2\right)-\left(\text { num }_{i}+\right.\right. \\
& =1
\end{aligned}
$$

\qquad
\qquad

- A disjoint set data structure maintains a collection $\left\{S_{1}, S_{2}, \ldots S_{k}\right\}$ of disjoint dynamic sets
- Each set is identified by a representative which is a member of that set
- Let's call the members of the sets objects.
- We will analyze this data structure in terms of two parameters:

1. n, the number of Make-Set operations
2. m, the total number of Make-Set, Union, and Find-Set operations

- Since the sets are always disjoint, each Union operation reduces the number of sets by 1
- So after $n-1$ Union operations, only one set remains
- Thus the number of Union operations is at most $n-1$

We want to support the following operations:

- Make-Set (x) : creates a new set whose only member (and representative) is x
- Union (x, y) : unites the sets that contain x and y (call them S_{x} and S_{y}) into a new set that is $S_{x} \cup S_{y}$. The new set is added to the data structure while S_{x} and S_{y} are deleted. The representative of the new set is any member of the set.
- Find-Set (x) : Returns a pointer to the representative of the (unique) set containing x

Application

- Consider a simplified version of Friendster
- Every person is an object and every set represents a social clique
- Whenever a person in the set S_{1} forges a link to a person in the set S_{2}, then we want to create a new larger social clique $S_{1} \cup S_{2}$ (and delete S_{1} and S_{2})
- We might also want to find a representative of each set, to make it easy to search through the set
- For obvious reasons, we want these operation of Union, Make-Set and Find-Set to be as fast as possible

