
CS 461, Lecture 13

Jared Saia

University of New Mexico

Today’s Outline

• Dynamic Tables

1

Pseudocode

Table-Insert(T,x){

if (T.size == 0){allocate T with 1 slot;T.size=1}

if (T.num == T.size){

allocate newTable with 2*T.size slots;

insert all items in T.table into newTable;

T.table = newTable;

T.size = 2*T.size

}

T.table[T.num] = x;

T.num++

}

2

Potential Method

• Let’s now analyze Table-Insert using the potential method

• Let numi be the num value for the i-th call to Table-Insert

• Let sizei be the size value for the i-th call to Table-Insert

• Then let

Φi = 2 ∗ numi − sizei

3



In Class Exercise

Recall that ai = ci + Φi −Φi−1

• Show that this potential function is 0 initially and always

nonnegative

• Compute ai for the case where Table-Insert does not trigger

an expansion

• Compute ai for the case where Table-Insert does trigger an

expansion (note that numi−1 = numi−1, sizei−1 = numi−1,

sizei = 2 ∗ (numi − 1))

4

Table Delete

• We’ve shown that a Table-Insert has O(1) amortized cost

• To implement Table-Delete, it is enough to remove (or zero

out) the specified item from the table

• However it is also desirable to contract the table when the

load factor gets too small

• Storage for old table can then be freed to the heap

5

Desirable Properties

We want to preserve two properties:

• the load factor of the dynamic table is lower bounded by

some constant

• the amortized cost of a table operation is bounded above by

a constant

6

Naive Strategy

• A natural strategy for expansion and contraction is to double

table size when an item is inserted into a full table and halve

the size when a deletion would cause the table to become

less than half full

• This strategy guarantees that load factor of table never drops

below 1/2

7



D’Oh

• Unfortunately this strategy can cause amortized cost of an

operation to be large

• Assume we perform n operations where n is a power of 2

• The first n/2 operations are insertions

• At the end of this, T.num = T.size = n/2

• Now the remaining n/2 operations are as follows:

I,D,D, I, I,D,D, I, I, . . .

where I represents an insertion and D represents a deletion

8

Analysis

• Note that the first insertion causes an expansion

• The two following deletions cause a contraction

• The next two insertions cause an expansion again, etc., etc.

• The cost of each expansion and deletion is Θ(n) and there

are Θ(n) of them

• Thus the total cost of n operations is Θ(n2) and so the

amortized cost per operation is Θ(n)

9

The Solution

• The Problem: After an expansion, we don’t perform enough

deletions to pay for the contraction (and vice versa)

• The Solution: We allow the load factor to drop below 1/2

• In particular, halve the table size when a deletion causes the

table to be less than 1/4 full

• We can now create a potential function to show that Inser-

tion and Deletion are fast in an amortized sense

10

Recall: Load Factor

• For a nonempty table T , we define the “load factor” of T ,

α(T ), to be the number of items stored in the table divided

by the size (number of slots) of the table

• We assign an empty table (one with no items) size 0 and

load factor of 1

• Note that the load factor of any table is always between 0

and 1

• Further if we can say that the load factor of a table is always

at least some constant c, then the unused space in the table

is never more than 1− c

11



The Potential

Φ(t) =

{
2 ∗ T.num− T.size if α(T ) ≥ 1/2
T.size/2− T.num if α(T ) < 1/2

}

• Note that this potential is legal since Φ(0) = 0 and (you can

prove that) Φ(i) ≥ 0 for all i

12

Intuition

• Note that when α = 1/2, the potential is 0

• When the load factor is 1 (T.size = T.num), Φ(T ) = T.num,

so the potential can pay for an expansion

• When the load factor is 1/4, T.size = 4∗T.num, which means

Φ(T ) = T.num, so the potential can pay for a contraction if

an item is deleted

13

Analysis

• Let’s now role up our sleeves and show that the amortized

costs of insertions and deletions are small

• We’ll do this by case analysis

• Let numi be the number of items in the table after the i-th

operation, sizei be the size of the table after the i-th opera-

tion, and αi denote the load factor after the i-th operation

14

Table Insert

• If αi−1 ≥ 1/2, analysis is identical to the analysis done in the

In-Class Exercise - amortized cost per operation is 3

• If αi−1 < 1/2, the table will not expand as a result of the

operation

• There are two subcases when αi−1 < 1/2: 1) αi < 1/2 2)

αi ≥ 1/2

15



αi < 1/2

• In this case, we have

ai = ci + Φi −Φi−1 (1)

= 1 + (sizei/2− numi)− (sizei−1/2− numi−1) (2)

= 1 + (sizei/2− numi)− (sizei/2− (numi − 1)) (3)

= 0 (4)

16

αi ≥ 1/2

ai = ci + Φi −Φi−1 (5)

= 1 + (2 ∗ numi − sizei)− (sizei−1/2− numi−1) (6)

= 1 + (2 ∗ (numi−1 + 1)− sizei−1)− (sizei−1/2− numi−1)(7)

= 3 ∗ numi−1 −
3

2
sizei−1 + 3 (8)

= 3 ∗ αi−1 ∗ sizei−1 −
3

2
sizei−1 + 3 (9)

<
3

2
∗ sizei−1 −

3

2
sizei−1 + 3 (10)

= 3 (11)

17

Take Away

• So we’ve just show that in all cases, the amortized cost of

an insertion is 3

• We did this by case analysis

• What remains to be shown is that the amortized cost of

deletion is small

• We’ll also do this by case analysis

18

Deletions

• For deletions, numi = numi−1 − 1

• We will look at two main cases: 1) αi−1 < 1/2 and 2) αi−1 ≥
1/2

• For the case where αi−1 < 1/2, there are two subcases: 1a)

the i-th operation does not cause a contraction and 1b) the

i-th operation does cause a contraction

19



Case 1a

• If αi−1 < 1/2 and the i-th operation does not cause a con-

traction, we know sizei = sizei−1 and we have:

ai = ci + Φi −Φi−1 (12)

= 1 + (sizei/2− numi)− (sizei−1/2− numi−1) (13)

= 1 + (sizei/2− numi)− (sizei/2− (numi + 1))(14)

= 2 (15)

20

Case 1b

• In this case, αi−1 < 1/2 and the i-th operation causes a

contraction.

• We know that: ci = numi + 1

• and sizei/2 = sizei−1/4 = numi−1 = numi + 1. Thus:

ai = ci + Φi −Φi−1 (16)

= (numi + 1) + (sizei/2− numi)− (sizei−1/2− numi−1) (17)

= (numi + 1) + ((numi + 1)− numi)− ((2numi + 2)− (numi + 1))(18)

= 1 (19)

21

Case 2

• In this case, αi−1 ≥ 1/2

• Proving that the amortized cost is constant for this case is

left as an exercise to the diligent student

• Hint1: Q: In this case is it possible for the i-th operation to

be a contraction? If so, when can this occur? Hint2: Try a

case analysis on αi.

22

Take Away

• Since we’ve shown that the amortized cost of every operation

is at most a constant, we’ve shown that any sequence of n

operations on a Dynamic table take O(n) time

• Note that in our scheme, the load factor never drops below

1/4

• This means that we also never have more than 3/4 of the

table that is just empty space

23



Disjoint Sets

• A disjoint set data structure maintains a collection {S1, S2, . . . Sk}
of disjoint dynamic sets

• Each set is identified by a representative which is a member

of that set

• Let’s call the members of the sets objects.

24

Operations

We want to support the following operations:

• Make-Set(x): creates a new set whose only member (and

representative) is x

• Union(x,y): unites the sets that contain x and y (call them

Sx and Sy) into a new set that is Sx ∪ Sy. The new set is

added to the data structure while Sx and Sy are deleted. The

representative of the new set is any member of the set.

• Find-Set(x): Returns a pointer to the representative of the

(unique) set containing x

25

Analysis

• We will analyze this data structure in terms of two parame-

ters:

1. n, the number of Make-Set operations

2. m, the total number of Make-Set, Union, and Find-Set

operations

• Since the sets are always disjoint, each Union operation re-

duces the number of sets by 1

• So after n− 1 Union operations, only one set remains

• Thus the number of Union operations is at most n− 1

26

Analysis

• Note also that since the Make-Set operations are included in

the total number of operations, we know that m ≥ n
• We will in general assume that the Make-Set operations are

the first n performed

27



Application

• Consider a simplified version of Friendster

• Every person is an object and every set represents a social

clique

• Whenever a person in the set S1 forges a link to a person in

the set S2, then we want to create a new larger social clique

S1 ∪ S2 (and delete S1 and S2)

• We might also want to find a representative of each set, to

make it easy to search through the set

• For obvious reasons, we want these operation of Union,

Make-Set and Find-Set to be as fast as possible

28


