CS 461, Lecture 15

Jared Saia

University of New Mexico

- A disjoint set data structure maintains a collection $\left\{S_{1}, S_{2}, \ldots S_{k}\right\}$ of disjoint dynamic sets
- Each set is identified by a representative which is a member of that set
- Let's call the members of the sets objects.
\qquad
- Data Structures for Disjoint Sets
Operations \qquad

We want to support the following operations:

- Make-Set (x) : creates a new set whose only member (and representative) is x
- Union (x, y) : unites the sets that contain x and y (call them S_{x} and S_{y}) into a new set that is $S_{x} \cup S_{y}$. The new set is added to the data structure while S_{x} and S_{y} are deleted. The representative of the new set is any member of the set.
- Find-Set (x) : Returns a pointer to the representative of the (unique) set containing x
\qquad
\qquad

```
Make-Set(x){
    parent(x) = x;
    size(x) = 1;
}
Simple-Union(x,y){
    xRep = Find-Set(x);
    yRep = Find-Set(y);
    if (size(xRep)) > size(yRep)){
        parent(yRep) = xRep;
    }else{
        parent(xRep) = yRep;
    }
    size(yRep) = size(yRep) + size(xRep);
}
```

- One good idea is to just have every object keep a pointer to the leader of it's set
- In other words, each set is represented by a tree of depth 1
- Then Make-Set and Find-Set are completely trivial, and they both take $O(1)$ time
- Q: What about the Union operation?
\qquad
- We showed in last class that the heights of all trees are no more than logarithmic in the number of nodes in the tree
- Thus all of these operations take $O(\log n)$ time
- Q: Can we do better?
- A: Yes we can do much better in an amortized sense.
- To do a union, we need to set all the leader pointers of one set to point to the leader of the other set
- To do this, we need a way to visit all the nodes in one of the sets
- We can do this easily by "threading" a linked list through each set starting with the sets leaders
- The threads of two sets can be merged by the Union algorithm in constant time
\qquad
\qquad

```
Make-Set(x){
    leader(x) = x;
    next(x) = NULL;
}
Find-Set(x){
    return leader(x);
}
```


Merging two sets stored as threaded trees.
Bold arrows point to leaders; lighter arrows form the threads. Shaded nodes have a new leader.

```
Union(x,y){
    xRep = Find-Set(x);
    yRep = Find-Set(y);
    leader(y) = xRep;
    while(next(y)!=NULL){
        y = next(y);
        leader(y) = xRep;
    }
    next(y) = next(xRep);
    next(xRep) = yRep;
}
```

- Worst case time of Union is a constant times the size of the larger set
- So if we merge a one-element set with a n element set, the run time can be $\Theta(n)$
- In the worst case, it's easy to see that n operations can take $\Theta\left(n^{2}\right)$ time for this alg
\qquad
\qquad
- The main problem here is that in the worst case, we always get unlucky and choose to update the leader pointers of the larger set
- Instead let's purposefully choose to update the leader pointers of the smaller set
- To do this, we will need to keep track of the sizes of all the sets

```
Weighted-Union(x,y){
    xRep = Find-Set(x);
    yRep = Find-Set(y)
    if(size(xRep)>size(yRep){
        Union(xRep,yRep);
        size(xRep) = size(xRep) + size(yRep);
    }else{
        Union(yRep,xRep);
        size(yRep) = size(xRep) + size(yRep);
    }
}
```

\qquad

```
Make-Weighted-Set(x){
    leader(x) = x;
    next(x) = NULL;
    size(x) = 1;
}
```

- The Weighted-Union algorithm still takes $\Theta(n)$ time to merge two n element sets
- However in an amortized sense, it is more efficient
- Intuitively, in order to merge two large sets, we need to perform a large number of cheap Weighted-Unions
- We will show that a sequence of n Make-Weighted-Set operations and m Weighted-Union operations takes $O(m+n \log n)$ time in the worst case.
\qquad
\qquad
- Whenever the leader of an object x is changed by a call to Weighted-Union, the size of the set containing x increases by a factor of at least 2
- Thus if the leader of x has changed k times, the set containing x has at least 2^{k} members
- After the sequence of operations ends, the largest set has at most n members
- Thus the leader of any object x has changed at most $\lfloor\log n\rfloor$ times
- We've just shown that for n calls to Make-Weighted-Set and m calls to Weighted-Union, that total cost for updating leader pointers is $O(n \log n)$
- We know that other than the work needed to update these leader pointers, each call to one of our functions does only constant work
- Thus total amount of work is $O(n \log n+m)$
- Thus each Weighted-Union call has amortized cost of $O(\log n)$

Side Note: We've just used the aggregate method of amortized analysis

Proof
 \qquad

- Let n be the number of calls to Make-Weighted-Set and m be the number of calls to Weighted-Union
- Since each call to Weighted-Union reduces the number of sets by one, there are $n-m$ sets at the end of the sequence
- Further at most m objects are not in singleton sets
- We've shown that each of the objects that are not in singleton sets had at most $O(\log n)$ leader changes
- Thus, the total amount of work done in updating the leader pointers is $O(n \log n)$
- Using Simple-Union, Find takes logarithmic worst case time and everything else is constant
- Using Weighted-Union, Union takes logarithmic amortized time and everything else is constant
- A third method allows us to get both of these operations in almost constant amortized time
\qquad
\qquad
- We start with the unthreaded tree representation (from SimpleUnion)
- Key Observation is that in any Find operation, once we get the leader of an object x, we can speed up future Find's by redirecting x 's parent pointer directly to that leader
- We can also change the parent pointers of all ancestors of x all the way up to the root (We'll do this using recursion)
- This modification to Find is called path compression

```
PC-Find(x){
    if(x!=Parent(x)){
        Parent(x) = PC-Find(Parent(x));
    }
    return Parent(x);
}
```

\qquad

Path compression during Find (c). Shaded nodes have a new parent.

- For ease of analysis, instead of keeping track of the size of each of the trees, we will keep track of the rank
- Each node will have an associated rank
- This rank will give an estimate of the log of the number of elements in the set
\qquad

```
PC-MakeSet(x){
    parent(x) = x;
    rank(x) = 0;
}
PC-Union(x,y){
    xRep = PC-Find(x);
    yRep = PC-Find(y);
    if(rank(xRep) > rank(yRep))
        parent(yRep) = xRep;
    else{
        parent(xRep) = yRep;
        if (rank (xRep)==rank (yRep))
            rank(yRep)++;
        }
}
```

Can also say that there are at most $n / 2^{r}$ objects with rank r.

- When the rank of a set leader x changes from $r-1$ to r, mark all nodes in that set. At least 2^{r} nodes are marked and each of these marked nodes will always have rank less than r
- There are n nodes total and any object with rank r marks 2^{r} of them
- Thus there can be at most $n / 2^{r}$ objects of rank r
\qquad
- If an object x is not the set leader, then the rank of x is strictly less than the rank of its parent
- For a set $X, \operatorname{size}(X) \geq 2^{\operatorname{rank}(l e a d e r(X))}$ (can show using induction)
- Since there are n objects, the highest possible rank is $O(\log n)$
- Only set leaders can change their rank
- We will also partition the objects into several numbered blocks
- x is assigned to block number log* $\operatorname{rank}(x))$
- Intuitively, $\log ^{*} n$ is the number of times you need to hit the log button on your calculator, after entering n, before you get 1
- In other words x is in block b if

$$
2 \uparrow \uparrow(b-1)<\operatorname{rank}(x) \leq 2 \uparrow \uparrow b
$$

where $\uparrow \uparrow$ is defined as in the next slide
\qquad
\qquad

- $2 \uparrow \uparrow b$ is the tower function

$$
\left.2 \uparrow \uparrow b=2^{2^{2 \cdot \cdot^{2}}}\right\}^{b}= \begin{cases}1 & \text { if } b=0 \\ 2^{2 \uparrow \uparrow(b-1)} & \text { if } b>0\end{cases}
$$

- Since there are at most $n / 2^{r}$ objects with any rank r, the total number of objects in block b is at most

$$
\sum_{r=2 \uparrow \uparrow(b-1)+1}^{2 \uparrow \uparrow b} \frac{n}{2^{r}}<\sum_{r=2 \uparrow \uparrow(b-1)+1}^{\infty} \frac{n}{2^{r}}=\frac{n}{2^{2 \uparrow \uparrow(b-1)}}=\frac{n}{2 \uparrow \uparrow b}
$$

\qquad
\qquad

- Theorem: If we use both PC-Find and PC-Union (i.e. Path Compression and Weighted Union), the worst-case running time of a sequence of m operations, n of which are MakeSet operations, is $O\left(m \log ^{*} n\right)$
- Each PC-MakeSet aand PC-Union operation takes constant time, so we need only show that any sequence of m PC-Find operations require $O\left(m \log ^{*} n\right)$ time in the worst case
- We will use a kind of accounting method to show this
\qquad
- The cost of PC-Find $\left(x_{0}\right)$ is proportional to the number of nodes on the path from x_{0} up to its leader
- Each object $x_{0}, x_{1}, x_{2}, \ldots, x_{l}$ on the path from x_{0} to its leader will pay a 1 tax into one of several bank accounts
- After all the Find operations are done, the total amount of money in these accounts will give us the total running time
\qquad
- The leader x_{l} pays into the leader account.
- The child of the leader x_{l-1} pays into the child account.
- Any other object x_{i} in a different block from its parent x_{i+1} pays into the block account.
- Any other object x_{i} in the same block as its parent x_{i+1} pays into the path account.

Example

Different nodes on the find path pay into different accounts: $\mathrm{B}=$ block,
$P=$ path, $C=$ child, $L=$ leader.
Horizontal lines are boundaries between blocks. Only the nodes on the find path are shown.
\qquad

- During any Find operation, one dollar is paid into the leader account
- At most one dollar is paid into the child account
- At most one dollar is paid into the block account for each of the log* n blocks
- Thus when the sequence of m operations ends, these accounts share a total of at most $2 m+m \log ^{*} n$ dollars
\qquad
- The only remaining difficulty is the Path account
- Consider an object x_{i} in block b that pays into the path account
- This object is not a set leader so its rank can never change.
- The parent of x_{i} is also not a set leader, so after path compression, x_{i} gets a new parent, x_{l}, whose rank is strictly larger than its old parent x_{i+1}
- Since $\operatorname{rank}($ parent $(x))$ is always increasing, parent of x_{i} must eventually be in a different block than x_{i}, after which x_{i} will never pay into the path account
- Thus x_{i} pays into the path account at most once for every rank in block b, or less than $2 \uparrow \uparrow b$ times total
- We can now say that each call to PC-Find has amortized cost $O\left(\right.$ log $\left.^{*} n\right)$, which is significantly better than the worst case cost of $O(\log n)$
- The book shows that PC-Find has amortized cost of $O(A(n))$ where $A(n)$ is an even slower growing function than log* n
- Since block b contains less than $n /(2 \uparrow \uparrow b)$ objects, and each of these objects contributes less than $2 \uparrow \uparrow b$ dollars, the total number of dollars contributed by objects in block b is less than n dollars to the path account
- There are $\log ^{*} n$ blocks so the path account receives less than $n \log ^{*} n$ dollars total
- Thus the total amount of money in all four accounts is less than $2 m+m \mathrm{Ig}^{*} n+n \mathrm{Ig}^{*} n=O\left(m \mathrm{Ig}^{*} n\right)$, and this bounds the total running time of the m operations.

Path Account

\qquad
tal

