
CS 461, Lecture 15

Jared Saia

University of New Mexico

Today’s Outline

• Data Structures for Disjoint Sets

1

Disjoint Sets

• A disjoint set data structure maintains a collection {S1, S2, . . . Sk}
of disjoint dynamic sets

• Each set is identified by a representative which is a member

of that set

• Let’s call the members of the sets objects.

2

Operations

We want to support the following operations:

• Make-Set(x): creates a new set whose only member (and

representative) is x

• Union(x,y): unites the sets that contain x and y (call them

Sx and Sy) into a new set that is Sx ∪ Sy. The new set is

added to the data structure while Sx and Sy are deleted. The

representative of the new set is any member of the set.

• Find-Set(x): Returns a pointer to the representative of the

(unique) set containing x

3



Simple Union

Make-Set(x){

parent(x) = x;

size(x) = 1;

}

Simple-Union(x,y){

xRep = Find-Set(x);

yRep = Find-Set(y);

if (size(xRep)) > size(yRep)){

parent(yRep) = xRep;

}else{

parent(xRep) = yRep;

}

size(yRep) = size(yRep) + size(xRep);

}

4

Analysis

• We showed in last class that the heights of all trees are no

more than logarithmic in the number of nodes in the tree

• Thus all of these operations take O(logn) time

• Q: Can we do better?

• A: Yes we can do much better in an amortized sense.

5

Shallow Threaded Trees

• One good idea is to just have every object keep a pointer to

the leader of it’s set

• In other words, each set is represented by a tree of depth 1

• Then Make-Set and Find-Set are completely trivial, and they

both take O(1) time

• Q: What about the Union operation?

6

Union

• To do a union, we need to set all the leader pointers of one

set to point to the leader of the other set

• To do this, we need a way to visit all the nodes in one of the

sets

• We can do this easily by “threading” a linked list through

each set starting with the sets leaders

• The threads of two sets can be merged by the Union algo-

rithm in constant time

7



The Code

Make-Set(x){

leader(x) = x;

next(x) = NULL;

}

Find-Set(x){

return leader(x);

}

8

The Code

Union(x,y){

xRep = Find-Set(x);

yRep = Find-Set(y);

leader(y) = xRep;

while(next(y)!=NULL){

y = next(y);

leader(y) = xRep;

}

next(y) = next(xRep);

next(xRep) = yRep;

}

9

Example

a

b c d

p

q r

a

p q r b c d

Merging two sets stored as threaded trees.

Bold arrows point to leaders; lighter arrows form the threads.

Shaded nodes have a new leader.

10

Analysis

• Worst case time of Union is a constant times the size of the

larger set

• So if we merge a one-element set with a n element set, the

run time can be Θ(n)

• In the worst case, it’s easy to see that n operations can take

Θ(n2) time for this alg

11



Problem

• The main problem here is that in the worst case, we always

get unlucky and choose to update the leader pointers of the

larger set

• Instead let’s purposefully choose to update the leader point-

ers of the smaller set

• To do this, we will need to keep track of the sizes of all the

sets

12

The Code

Make-Weighted-Set(x){

leader(x) = x;

next(x) = NULL;

size(x) = 1;

}

13

The Code

Weighted-Union(x,y){

xRep = Find-Set(x);

yRep = Find-Set(y)

if(size(xRep)>size(yRep){

Union(xRep,yRep);

size(xRep) = size(xRep) + size(yRep);

}else{

Union(yRep,xRep);

size(yRep) = size(xRep) + size(yRep);

}

}

14

Analysis

• The Weighted-Union algorithm still takes Θ(n) time to merge

two n element sets

• However in an amortized sense, it is more efficient

• Intuitively, in order to merge two large sets, we need to per-

form a large number of cheap Weighted-Unions

• We will show that a sequence of n Make-Weighted-Set oper-

ations and m Weighted-Union operations takes O(m+n logn)

time in the worst case.

15



Proof

• Whenever the leader of an object x is changed by a call to

Weighted-Union, the size of the set containing x increases

by a factor of at least 2

• Thus if the leader of x has changed k times, the set contain-

ing x has at least 2k members

• After the sequence of operations ends, the largest set has at

most n members

• Thus the leader of any object x has changed at most blognc
times

16

Proof

• Let n be the number of calls to Make-Weighted-Set and m

be the number of calls to Weighted-Union

• Since each call to Weighted-Union reduces the number of

sets by one, there are n−m sets at the end of the sequence

• Further at most m objects are not in singleton sets

• We’ve shown that each of the objects that are not in single-

ton sets had at most O(logn) leader changes

• Thus, the total amount of work done in updating the leader

pointers is O(n logn)

17

Proof

• We’ve just shown that for n calls to Make-Weighted-Set

and m calls to Weighted-Union, that total cost for updat-

ing leader pointers is O(n logn)

• We know that other than the work needed to update these

leader pointers, each call to one of our functions does only

constant work

• Thus total amount of work is O(n logn+m)

• Thus each Weighted-Union call has amortized cost of O(logn)

Side Note: We’ve just used the aggregate method of amortized

analysis

18

Analysis

• Using Simple-Union, Find takes logarithmic worst case time

and everything else is constant

• Using Weighted-Union, Union takes logarithmic amortized

time and everything else is constant

• A third method allows us to get both of these operations in

almost constant amortized time

19



Path Compression

• We start with the unthreaded tree representation (from Simple-

Union)

• Key Observation is that in any Find operation, once we get

the leader of an object x, we can speed up future Find’s by

redirecting x’s parent pointer directly to that leader

• We can also change the parent pointers of all ancestors of x

all the way up to the root (We’ll do this using recursion)

• This modification to Find is called path compression

20

Example

p

q rabc

d

p

q ra

b

c

d

Path compression during Find(c). Shaded nodes have a new

parent.

21

PC-Find Code

PC-Find(x){

if(x!=Parent(x)){

Parent(x) = PC-Find(Parent(x));

}

return Parent(x);

}

22

Rank

• For ease of analysis, instead of keeping track of the size of

each of the trees, we will keep track of the rank

• Each node will have an associated rank

• This rank will give an estimate of the log of the number of

elements in the set

23



Code

PC-MakeSet(x){

parent(x) = x;

rank(x) = 0;

}

PC-Union(x,y){

xRep = PC-Find(x);

yRep = PC-Find(y);

if(rank(xRep) > rank(yRep))

parent(yRep) = xRep;

else{

parent(xRep) = yRep;

if(rank(xRep)==rank(yRep))

rank(yRep)++;

}

}

24

Rank Facts

• If an object x is not the set leader, then the rank of x is

strictly less than the rank of its parent

• For a set X, size(X) ≥ 2rank(leader(X)) (can show using in-

duction)

• Since there are n objects, the highest possible rank is O(logn)

• Only set leaders can change their rank

25

Rank Facts

Can also say that there are at most n/2r objects with rank r.

• When the rank of a set leader x changes from r − 1 to r,

mark all nodes in that set. At least 2r nodes are marked and

each of these marked nodes will always have rank less than r

• There are n nodes total and any object with rank r marks 2r

of them

• Thus there can be at most n/2r objects of rank r

26

Blocks

• We will also partition the objects into several numbered blocks

• x is assigned to block number log∗(rank(x))

• Intuitively, log∗ n is the number of times you need to hit the

log button on your calculator, after entering n, before you

get 1

• In other words x is in block b if

2 ↑↑ (b− 1) < rank(x) ≤ 2 ↑↑ b,
where ↑↑ is defined as in the next slide

27



Definition

• 2 ↑↑ b is the tower function

2 ↑↑ b = 222.
..

2
}
b

=





1 if b = 0

22↑↑(b−1) if b > 0

28

Number of Blocks

• Every object has a rank between 0 and blognc
• So the blocks numbers range from 0 to log∗ blognc = log∗(n)−

1

• Hence there are log∗ n blocks

29

Number Objects in Block b

• Since there are at most n/2r objects with any rank r, the

total number of objects in block b is at most

2↑↑b∑

r=2↑↑(b−1)+1

n

2r
<

∞∑

r=2↑↑(b−1)+1

n

2r
=

n

22↑↑(b−1)
=

n

2 ↑↑ b.

30

Theorem

• Theorem: If we use both PC-Find and PC-Union (i.e. Path

Compression and Weighted Union), the worst-case running

time of a sequence of m operations, n of which are MakeSet

operations, is O(m log∗ n)

• Each PC-MakeSet aand PC-Union operation takes constant

time, so we need only show that any sequence of m PC-Find

operations require O(m log∗ n) time in the worst case

• We will use a kind of accounting method to show this

31



Proof

• The cost of PC-Find(x0) is proportional to the number of

nodes on the path from x0 up to its leader

• Each object x0, x1, x2, . . . , xl on the path from x0 to its leader

will pay a 1 tax into one of several bank accounts

• After all the Find operations are done, the total amount of

money in these accounts will give us the total running time

32

Taxation

• The leader xl pays into the leader account.

• The child of the leader xl−1 pays into the child account.

• Any other object xi in a different block from its parent xi+1

pays into the block account.

• Any other object xi in the same block as its parent xi+1 pays

into the path account.

33

Example

L

B

B

P

B

P

B

P

P

B

P

P

C

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Different nodes on the find path pay into different accounts: B=block,
P=path, C=child, L=leader.

Horizontal lines are boundaries between blocks. Only the nodes on the find
path are shown.

34

Leader, Child and Block accounts

• During any Find operation, one dollar is paid into the leader

account

• At most one dollar is paid into the child account

• At most one dollar is paid into the block account for each of

the log∗ n blocks

• Thus when the sequence of m operations ends, these ac-

counts share a total of at most 2m+m log∗ n dollars

35



Path Account

• The only remaining difficulty is the Path account

• Consider an object xi in block b that pays into the path

account

• This object is not a set leader so its rank can never change.

• The parent of xi is also not a set leader, so after path com-

pression, xi gets a new parent, xl, whose rank is strictly larger

than its old parent xi+1

• Since rank(parent(x)) is always increasing, parent of xi must

eventually be in a different block than xi, after which xi will

never pay into the path account

• Thus xi pays into the path account at most once for every

rank in block b, or less than 2 ↑↑ b times total

36

Path Account

• Since block b contains less than n/(2 ↑↑ b) objects, and each

of these objects contributes less than 2 ↑↑ b dollars, the total

number of dollars contributed by objects in block b is less

than n dollars to the path account

• There are log∗ n blocks so the path account receives less than

n log∗ n dollars total

• Thus the total amount of money in all four accounts is less

than 2m+m lg∗ n+n lg∗ n = O(m lg∗ n), and this bounds the

total running time of the m operations.

37

Take Away

• We can now say that each call to PC-Find has amortized

cost O(log∗ n), which is significantly better than the worst

case cost of O(logn)

• The book shows that PC-Find has amortized cost of O(A(n))

where A(n) is an even slower growing function than log∗ n

38


