CS 461, Lecture 2

Jared Saia

University of New Mexico

Today's Outline

- Recurrence Relation Review
- Recursion Tree Method
- Master Method
- Note that in last lecture, there's a bug in "Rule of Thumb Slide".
- Inequalities are wrong for O and Ω notation
- This is now fixed on slides on web page

Inequalities \qquad

- Often easier to prove that a recurrence is no more than some quantity than to prove that it equals something
- Consider: $f(n)=f(n-1)+f(n-2), f(1)=f(2)=1$
- "Guess" that $f(n) \leq 2^{n}$
\qquad
\qquad

Goal: Prove by induction that for $f(n)=f(n-1)+f(n-2)$, $f(1)=f(2)=1, f(n) \leq 2^{n}$

- Base case: $f(1)=1 \leq 2^{1}, f(2)=1 \leq 2^{2}$
- Inductive hypothesis: for all $j<n, f(j) \leq 2^{j}$
- Inductive step:

$$
\begin{align*}
f(n) & =f(n-1)+f(n-2) \tag{1}\\
& \leq 2^{n-1}+2^{n-2} \tag{2}\\
& <2 * 2^{n-1} \tag{3}
\end{align*}
$$

- Used to get a good guess which is then refined and verified using substitution method
- Best method (usually) for recurrences where a term like $T(n / c)$ appears on the right hand side of the equality

Recursion-tree method \qquad Example 1 \qquad

- Consider the recurrence for the running time of Mergesort: $T(n)=2 T(n / 2)+n, T(1)=O(1)$

n
\qquad
\qquad
- We can see that each level of the tree sums to n
- Further the depth of the tree is $\log n\left(n / 2^{d}=1\right.$ implies that $d=\log n]$).
- Thus there are $\log n+1$ levels each of which sums to n
- Hence $T(n)=\Theta(n \log n)$
- We can see that the i-th level of the tree sums to $(3 / 16)^{i} n^{2}$.
- Further the depth of the tree is $\log _{4} n\left(n / 4^{d}=1\right.$ implies that $d=\log _{4} n$)
- So we can see that $T(n)=\sum_{i=0}^{\log _{4} n}(3 / 16)^{i} n^{2}$

Example 2

\qquad

- Let's solve the recurrence $T(n)=3 T(n / 4)+n^{2}$
- Note: For simplicity, from now on, we'll assume that $T(i)=$ $\Theta(1)$ for all small constants i. This will save us from writing the base cases each time.

$$
\begin{align*}
T(n) & =\sum_{i=0}^{\log _{4} n}(3 / 16)^{i} n^{2} \tag{5}\\
& <n^{2} \sum_{i=0}^{\infty}(3 / 16)^{i} \tag{6}\\
& =\frac{1}{1-(3 / 16)} n^{2} \tag{7}\\
& =O\left(n^{2}\right) \tag{8}
\end{align*}
$$

\qquad
\qquad

- Divide and conquer algorithms often give us running-time recurrences of the form

$$
\begin{equation*}
T(n)=a T(n / b)+f(n) \tag{9}
\end{equation*}
$$

- Where a and b are constants and $f(n)$ is some other function.
- The so-called "Master Method" gives us a general method for solving such recurrences when $f(n)$ is a simple polynomial.
- Master Theorem is just a special case of the use of recursion trees
- Consider equation $T(n)=a T(n / b)+f(n)$
- We start by drawing a recursion tree

Master Theorem

\qquad

- Unfortunately, the Master Theorem doesn't work for all functions $f(n)$
- Further many useful recurrences don't look like $T(n)$
- However, the theorem allows for very fast solution of recurrences when it applies
- The root contains the value $f(n)$
- It has a children, each of which contains the value $f(n / b)$
- Each of these nodes has a children, containing the value $f\left(n / b^{2}\right)$
- In general, level i contains a^{i} nodes with values $f\left(n / b^{i}\right)$
- Hence the sum of the nodes at the i-th level is $a^{i} f\left(n / b^{i}\right)$
\qquad
\qquad
- It's not hard to see that $a^{\log _{b} n}=n^{\log _{b} a}$
- The tree stops when we get to the base case for the recurrence
- We'll assume $T(1)=f(1)=\Theta(1)$ is the base case
- Thus the depth of the tree is $\log _{b} n$ and there are $\log _{b} n+1$ levels

$$
\begin{align*}
a^{\log _{b} n} & =n^{\log _{b} a} \tag{10}\\
a^{\log _{b} n} & =a^{\log _{a} n * \log _{b} a} \tag{11}\\
\log _{b} n & =\log _{a} n * \log _{b} a \tag{12}
\end{align*}
$$

- We get to the last eqn by taking $\log _{a}$ of both sides
- The last eqn is true by our third basic log fact
\qquad Master Theorem \qquad
- Let $T(n)$ be the sum of all values stored in all levels of the tree:
$T(n)=f(n)+a f(n / b)+a^{2} f\left(n / b^{2}\right)+\cdots+a^{i} f\left(n / b^{i}\right)+\cdots+a^{L} f\left(n / b^{L}\right)$
- Where $L=\log _{b} n$ is the depth of the tree
- Since $f(1)=\Theta(1)$, the last term of this summation is $\Theta\left(a^{L}\right)=$ $\Theta\left(a^{\log _{b} n}\right)=\Theta\left(n^{\log _{b} a}\right)$
- We can now state the Master Theorem
- We will state it in a way slightly different from the book
- Note: The Master Method is just a "short cut" for the recursion tree method. It is less powerful than recursion trees.
\qquad

The recurrence $T(n)=a T(n / b)+f(n)$ can be solved as follows:

- If $a f(n / b) \leq f(n) / K$ for some constant $K>1$, then $T(n)=$ $\Theta(f(n))$.
- If $a f(n / b) \geq K f(n)$ for some constant $K>1$, then $T(n)=$ $\Theta\left(n^{\log _{b} a}\right)$.
- If $a f(n / b)=f(n)$, then $T(n)=\Theta\left(f(n) \log _{b} n\right)$.
- $T(n)=T(3 n / 4)+n$
- If we write this as $T(n)=a T(n / b)+f(n)$, then $a=1, b=$ $4 / 3, f(n)=n$
- Here $a f(n / b)=3 n / 4$ is smaller than $f(n)=n$ by a factor of $4 / 3$, so $T(n)=\Theta(n)$

Proof
 \qquad

- If $f(n)$ is a constant factor larger than $a f(n / b)$, then the sum is a descending geometric series. The sum of any geometric series is a constant times its largest term. In this case, the largest term is the first term $f(n)$.
- If $f(n)$ is a constant factor smaller than $a f(n / b)$, then the sum is an ascending geometric series. The sum of any geometric series is a constant times its largest term. In this case, this is the last term, which by our earlier argument is $\Theta\left(n^{\log _{b} a}\right)$.
- Finally, if af(n/b)=f(n), then each of the $L+1$ terms in the summation is equal to $f(n)$.
- Karatsuba's multiplication algorithm: $T(n)=3 T(n / 2)+$ n
- If we write this as $T(n)=a T(n / b)+f(n)$, then $a=3, b=$ $2, f(n)=n$
- Here $a f(n / b)=3 n / 2$ is bigger than $f(n)=n$ by a factor of $3 / 2$, so $T(n)=\Theta\left(n^{\log _{2} 3}\right)$
\qquad
\qquad
- Mergesort: $T(n)=2 T(n / 2)+n$
- If we write this as $T(n)=a T(n / b)+f(n)$, then $a=2, b=$ $2, f(n)=n$
- Here a $f(n / b)=f(n)$, so $T(n)=\Theta(n \log n)$
- Consider the recurrence: $\boldsymbol{T}(\boldsymbol{n})=4 \boldsymbol{T}(\boldsymbol{n} / 2)+\boldsymbol{n} \lg \boldsymbol{n}$
- Q: What is $f(n)$ and $a f(n / b)$?
- Q: Which of the three cases does the recurrence fall under (when n is large)?
- Q: What is the solution to this recurrence?

Example

\qquad

- $T(n)=T(n / 2)+n \log n$
- If we write this as $T(n)=a T(n / b)+f(n)$, then $a=1, b=$ $2, f(n)=n \log n$
- Here a $f(n / b)=n / 2 \log n / 2$ is smaller than $f(n)=n \log n$ by a constant factor, so $T(n)=\Theta(n \log n)$
- Consider the recurrence: $T(n)=2 T(n / 4)+n \lg n$
- Q: What is $f(n)$ and $a f(n / b)$?
- Q: Which of the three cases does the recurrence fall under (when n is large)?
- Q: What is the solution to this recurrence?
- Recursion tree and Master method are good tools for solving many recurrences
- However these methods are limited (they can't help us get guesses for recurrences like $f(n)=f(n-1)+f(n-2))$
- For info on how to solve these other more difficult recurrences, review the notes on annihilators on the class web page.

Todo

- Read Chapter 3 and 4 in the text
- Work on Homework 1

