
CS 591 Cybersecurity, Final

Prof. Jared Saia, University of New Mexico

Due May 12th at 5pm

You can use any textbook in completing this exam and you may refer
to your class notes (and the notes on Jonathan Katz’s web page) and the
papers we discussed in class. However, do not discuss the exam with anyone
and do not try to look up answers on the Internet. When you are finished,
please either email the finished exam to me or put it in my mailbox or under
my office door.

1. Consider the following function f(G, C) = G where G is a graph and C
is a set of vertices that form a maximum clique in G (in the case where
there is more than one maximum clique, C is the first in some canonical
ordering of cliques determined by the indices of vertices they contain).
Assuming P 6= NP , is f a 1-way function? Justify your answer. You
will need to make use of the definition of 1-way functions, which we
discussed in class. Solution: f is not a 1-way function. In particular,
we know that if P 6= NP , it is hard to compute the inverse of f on an
infinite number of instances in the range of f . However, this does not
imply that it is hard to find the maximum sized clique in a random
graph. Hardness to compute the problem on a random input instance
is critical in order for f to be 1-way.

2. Following are three question about the exponential information gath-
ering algorithm discussed in class.

• What is the number of nodes at the level i layer of each informa-
tion gathering tree when the algorithm ends?

• Consider two information gathering trees T1 and T2 which belong
to two good players and assume the sender is a bad player. What
is the minimum number of children of the root node that will
have the same reduced value in both T1 and T2?
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• What if the sender is a good player. What is the minimum num-
ber of children of the root node that will have the same reduced
value in both T1 and T2?

Solution: If i = 0, it is 1, otherwise it is n− i * the number of nodes
at the i− i level. In other words, (n− i)∗ (n− i+1)∗ ...∗ (n−1)∗1. If
the root node corresponds to a bad player, then by the lemma discussed
in class, the reduced values of all the children nodes of the root will
be the same in T1 and T2. If the root node is a good player, then only
the children nodes associated with good players are guaranteed to have
the same reduced value. The number of children nodes associated with
good players will be n− t− 1, so this is the minimum number of nodes
that share the same reduced value.

3. The ε-approximation cake-cutting algorithm we discusses in class as-
sumed the existence of a trusted third party to pose questions to the
players, collect the answers to these questions and then calculate how
to cut the cake and assign pieces to the players. Describe how you
could implement this algorithm if there is not such a trusted third
party. Assume that a 1/10 fraction of the players in the protocol are
bad. These bad players may give different answers to different players,
not answer questions, not obey the rules of the protocol, etc., but they
are computationally bounded. Your goal is to guarantee that at the
end of the protocol, all the good players agree on how to cut the cake
and assign the pieces and that this cut and assignment of pieces is the
same as would have been decided by the trusted third party.

Solution: Each player simulates the protocol, asking other players for
which piece the prefer at the appropriate time. Whenever a question
is asked by the trusted third party in the original protocol, the queried
player simply sends its answer to all other players in our new protocol.
All players then use Byzantine agreement to come to consensus on
what the queried player actually answered. Note that the protocol is
deterministic so everyone knows who the queried player will be at each
step. If the queried player is good, they will give the same answer to
everyone. If they are bad, they may give different answers to different
players, but after running the agreement protocol, the players will at
least come to consensus on some answer (note that the answers are not
just yes or no, but as discussed in class, we can solve agreement on
muti-valued inputs simply by running single bit Byzantine agreement
multiple times). Finally at the end, all the good players will agree
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on how the cake should be cut and who should get each piece for the
following reasons: 1) all players will have the same inputs as to the
sequence of questions asked and 2) the algorithm that decides the cut
and division of pieces is a deterministic one.

4. Imagine there are n players connected in a ring topology. What is the
maximum number of faulty players that can be tolerated to perform
Byzantine agreement in such a network. Hint: You will need to mimic
the “hexagon proof” we went over in class. First look at the situation
for n = 4 and then see if you can generalize to arbitrary n. Solution:
t can not even be one. To see this, assume there is some algorithm to
solve Byzantine agreement on such a network. First set up a 2n node
ring network, G′, that looks like s, 1, 2, 3, ..., n, s′, 1′, 2′, ...n′, s. Next,
consider the case where the players all execute the algorithm honestly
communicating but where s has input 0 and s′ has input 1. Note the
following three facts. 1) From the point of view of players 1, 2, ..., n the
action of s and s′ represents possible adversarial behavior. Thus, all of
these players must output the same value. 2) From the point of view of
players s, 1, ..., n−1, the actions of players n and n′ represent possible
malicious behavior of player n in the original network. Thus, all of
these players must output a 0. 3) A symmetric argument with respect
to s′ and 1 shows that players 2, 3, ..., s′ must all output a 1. However,
this is a contradiction so the original algorithm cannot exist.

5. In a special game-theory episode of “Fear Factor”, Alice, Bob and
Eve are required to eat pieces of a very disgusting cake. In this new
situation, a player will always prefer an empty piece of the cake to a
non-empty piece. However, different players may prefer different non-
empty pieces. For example, Alice may have less of an aversion than
Bob to a piece with maggots and Bob may have less of an aversion
than Eve to a piece with pig ovaries. Give a variant of the cake-cutting
algorithm discussed in class that ensures that this cake is split up fairly.
Please show that your algorithm works correctly (up to ε small crumbs
of cake).

Solution: This is just the chore division problem. One can use the
same algorithm described in the “Rental Harmony” paper we read in
class. The key observation is that even though for this new problem the
labels on the vertices will not be a Sperner labeling, it’s still the case
that some triangle has a 1,2 and 3 vertex. See the rental harmony
paper for details on how to prove this.
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