
Defending Hash Tables from Subterfuge with Depth Charge
Trisha Chakraborty

Department of Computer Science
and Engineering

Mississippi State University
Mississippi State, Mississippi, USA

tc2006@msstate.edu

Jared Saia
Department of Computer Science,

University of New Mexico
Albuquerque, New Mexico, USA

saia@cs.unm.edu

Maxwell Young
Department of Computer Science

and Engineering
Mississippi State University

Mississippi State, Mississippi, USA
myoung@cse.msstate.edu

ABSTRACT

We consider the problem of defending a hash table against a Byzan-
tine attacker that is trying to degrade the performance of query, in-
sertion and deletion operations. Our defense makes use of resource
burning (RB)—the verifiable expenditure of network resources—
where the issuer of a request incurs some RB cost. Our algorithm,
Depth Charge, charges RB costs for operations based on the depth
of the appropriate object in the list that the object hashes to in the
table. By appropriately setting the RB costs, our algorithm miti-
gates the impact of an attacker on the hash table’s performance.
In particular, in the presence of a significant attack, our algorithm
incurs a cost which is asymptotically less that the attacker’s cost.

CCS CONCEPTS

• Theory of computation → Data structures design and anal-

ysis; • Security and privacy → Database and storage security.

KEYWORDS

Algorithmic complexity attack, hash table, resource burning.
ACM Reference Format:

Trisha Chakraborty, Jared Saia, and Maxwell Young. 2024. Defending Hash
Tables from Subterfuge with Depth Charge. In 25th International Conference

on Distributed Computing and Networking (ICDCN ’24), January 4–7, 2024,

Chennai, India. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3631461.3631550

1 INTRODUCTION

While hash tables are a popular data structure, their performance
can be significantly degraded if the objects to be stored are cho-
sen adversarially [8, 17, 56]. In an extreme case, all objects can be
hashed to the same index of the table. Under the common collision-
resolution method of chaining, this attack effectively transforms
the hash table into a linked list, which leads to a worst-case query
time that is linear in the number of objects; this is an example of
an algorithmic complexity attack (ACA) [8, 12, 17, 32, 55]. Many
data structures are vulnerable to ACAs, and designing a defense is
challenging, since malicious inputs need not be large, or arrive at a
high rate, in order to degrade performance; in other words, ACAs
are often less costly to launch than they are to defend against.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICDCN ’24, January 4–7, 2024, Chennai, India

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1673-7/24/01.
https://doi.org/10.1145/3631461.3631550

In hash tables, a common defensive measure is to keep the hash
function secret (known only to the server) and use stronger (cryp-
tographic) hash functions that are difficult to invert. However, side-
channel attacks may allow an adversary to learn the hash func-
tion [45], and in distributed settings where the hash table may
be stored on multiple machines, a single compromised machine
may reveal the secret. Similarly, stronger hash functions offer in-
sufficient protection, as an adversary can find objects that hash to
the same index through trial and error. These vulnerabilities are
discussed in Section 1.4, but a fundamental shortcoming of prior
defenses is that they do not counteract the cost advantage enjoyed
by the attacker.

In this work, we design and analyze a new defense for hash tables
that employs resource burning (RB)—the verifiable expenditure
of a network resource—to reverse this cost asymmetry. Specifically,
any user wishing to access the hash table must pay an RB cost. By
setting the amount of RB appropriately, our defense guarantees
that the cost to legitimate users grows slowly as a function of an
attacker’s cost for launching an ACA. In practice, attackers must of-
ten pay for the resources needed to launch attacks, such as renting
compromised machines (see [23]). Therefore, the asymptotic advan-
tage given by our approach ultimately translates into a financial
edge for the defenders.

Our Setting.We consider the challenging setting where both (1)
the number of indices in the hash table; and (2) the hash function
are fixed.1 Our “fixed” setting is particularly relevant for many
applications in distributed computing. For example, in the client-
server setting, changing the hash table size or the hash function
can result in down time that negatively impacts quality of service
for the clients. Thus, system administrators often analyze workload
data to set the hash table size appropriately [30]. In peer-to-peer
systems such as distributed hash tables (DHTs) (e.g. [22, 54, 60]),
memory and disk space is bound by the number of participating
machines, and thus resizing is not possible.

Our approach allows for flexibility in setting the appropriate
table size. Specifically, we parameterize our results by ℓ𝑴 , which is
the maximum number of (legitimate) objects that are hashed to the
same index. Intuitively, this parameter is small when the table is
appropriately sized (see Section 1.2 for additional discussion).

1.1 Model

In our setting, there are clients, an adversary, and a server. Note
that all clients are “good”; we do not refer to “bad” clients, since

1Our approach could be combined with heuristics that dynamically update the number
of indices or the hash function.

https://doi.org/10.1145/3631461.3631550
https://doi.org/10.1145/3631461.3631550
https://doi.org/10.1145/3631461.3631550

ICDCN ’24, January 4–7, 2024, Chennai, India Chakraborty et al.

the adversary incarnates them. Our server may represent multiple
real-world servers. We now describe the key aspects of our model.

Hash Table. The server holds a hash table that services insertions,
queries, and deletions of objects by request from the clients and
the adversary. An insertion by a client is a good insertion and the
corresponding object is said to be a good object, which is placed
at an index selected uniformly at random (u.a.r.).2 Otherwise, the
insertion is a bad insertion and the corresponding object is a
bad object; in this case, the adversary selects the index where the
object is inserted. Good insertions cannot be distinguished from
bad insertions. and good objects cannot be distinguished from bad
objects.

A collision occurs when two or more objects are inserted at the
same index of the hash table, and this is resolved via the popular
method of chaining. That is, the objects involved in the collision
form a list, where the head of the list (HoL) is located in the index
of the hash table, with subsequent objects added to the tail of the
list (ToL) in the order that they are inserted. The length of a list
at index 𝑖 is the number of objects stored at index 𝑖 . The depth
of an object is the position measured from the head of its list; the
minimum depth is 1. If a list exists at the index of insertion, then
an object inserted at that index is added to the ToL.3

In addition to insertion, the hash table also handles query and
delete requests. A query (deletion) from a client is said to be a
good query (good deletion); otherwise, it is a bad query (bad
deletion). Good queries (deletions) cannot be distinguished from
bad queries (deletions). Clients only issue queries for good objects,
while the adversary may issue queries for any object; this captures
a pessimistic setting where the objects inserted by the adversary
are not useful and only serve to degrade the performance of the
algorithm. Clients may delete good objects, and the adversary may
delete bad objects but not good objects.

Resource Burning. Upon receiving a request to insert or query an
object the server may issue a resource-burning (RB) challenge
to the requester (i.e., a client or the adversary). The requester must
return a solution to the RB challenge before the corresponding
request is satisfied. To specify the RB cost 𝑥 , for any positive integer
𝑥 , we will refer to an 𝒙-hard RB challenge.

The mechanisms for issuing and verifying RB challenges can be
protected from attack themselves, given their narrow functional-
ity [62]. Furthermore, significant work has gone into addressing the
many practical details of designing and deploying RB challenges,
such as handling device heterogeneity, pre-computation attacks,
and the reuse of old solutions (see [2, 35, 59]).

Performance Metrics. We use two metrics for gauging perfor-
mance: (1) the RB cost of solving RB challenges and (2) the latency
for servicing requests. Regarding (1), the algorithm’s RB cost is
the sum of the hardness values for all RB challenges solved by
the clients; likewise, the adversary’s RB cost is the sum of the
hardness values for RB challenges it solves.
2We can view this as performing a hash function evaluation on the object or, more
commonly, an identifier/key value/name of the object. The output is an index in the
hash table whose first evaluation is an index of selected uniformly at random, while
subsequent evaluations of this object always map to the same index (i.e., our hash
function obeys the random oracle assumption [34]).
3A design where objects are inserted at the HoL are also vulnerable to ACAs and
would result in essentially the same analysis.

To quantify (2), if the request is an insertion, then the latency
equals 1, since we assume that each list maintains a pointer to the
ToL. If the request is a query and the object exists in that list, then
the latency equals the object’s depth in that list; otherwise, the
latency equals the list length at the index where the object would
have been stored if it existed in the table.

Adversary.We consider a Byzantine adversary that is not con-
strained to obey protocol and is not computationally bounded. The
adversary has full knowledge of the hash table’s configuration, as
well as the state of the clients and server (see Section 3.2). The
adversary can instantaneously create as many (bad) objects as it
likes that hash to any targeted index of the hash table. In other
words, the number of bad objects and the indices into which they
are inserted is chosen by the adversary.

In contrast, the adversary has no control over where good objects
are inserted; each good object is inserted into an index chosen u.a.r.
from the set of all indices. While the adversary does not control
where good objects are inserted, it may control which good objects
are queried (i.e., generate or schedule queries for good objects). We
consider both the case where (1) the good queries are generated by
the adversary (Section 3.2); and (2) the good queries are distributed
u.a.r. over all indices (Section 3.3).

1.2 Main Results

For requests, we let I be the number of good insertions; let Q and
D be the number of good queries and good deletions for objects
that exist in the hash table.

In discussing the hash table, we denote the number of indices in
the hash table by 𝒕 ; the maximum number of good objects in any
index by ℓ𝑴 . The number of good objects in index 𝑖 is ℓ𝒊 , and the
average number of good objects, (1/𝑡)∑𝑡

𝑖=1 ℓ𝑖 , is denoted by ℓave.
Throughput, we use B to denote the total RB cost incurred by

the adversary. We state our main result below regarding our defense
algorithm, Depth Charge.

Theorem 1.1. Depth Charge guarantees the following properties:

(1) (Single Requests) Any single insertion has RB cost 𝑂 (
√
B + ℓ𝑀)

and latency 𝑂 (1). Any single query or deletion has an RB cost

and latency that are each 𝑂 (
√
B + ℓ𝑀).

(2) (Amortized Requests) When I, Q, andD are set by an Byzantine

adversary, the total RB cost and the total latency are each𝑂 ((I+
Q + D +

√︁
(I + Q + D)B)ℓ2

𝑀
).

(3) (Randomly Queried Indices) Consider 𝑄 queries where the cor-

responding objects belong to indices of the hash table chosen

u.a.r.. For 𝑄 ≥ ℓ2
𝑀
B, the average cost per query is 𝑂 (ℓ

ave
) in

expectation.

Discussion. As mentioned earlier, our results are parameterized
by ℓ𝑀 . For I insertions into a table of size 𝑡 , ℓ𝑀 = 𝑂 (⌈I/𝑡⌉ log 𝑡)
with high probability in 𝑡 (w.h.p.).4 Notably, for I = 𝑂 (𝑡), it is
well known that ℓ𝑀 = 𝑂 (log 𝑡/log log 𝑡) [31, 46, 48]. This case is
pertinent, since many applications limit the amount by which their
hash table can grow (see [17]), and the number of size increases
may be very limited (e.g. see [18]).5 From a theory perspective, such
4With probability at least 1 − 𝑡−𝑑 for some constant 𝑑 ≥ 1.
5For example, the table in the Cisco router examined in [18] has an initial size of 1024,
and can increase to sizes 2048, 4096, and 8192.

ICDCN ’24, January 4–7, 2024, Chennai, India

limited growth increases the table size by a constant factor, and
using the the largest size aligns with our model.

RB is a well-established tool for securing distributed systems [25].
We note that the choice of resource to burn likely depends on the
specifics of the application. Given this, our algorithm is deliber-
ately agnostic about the resource burned, such as computational
power [61], bandwidth [58], computer memory [1, 19, 21], and
human effort [44, 57].

To provide context for Theorem 1.1, it is helpful to compare
Depth Charge to a standard hash table with chaining. In the
latter, the adversary may create a list that has size linear in the
number of bad objects for “free”. This attack leads to poor latency if
good objects reside at the ToL. By comparison, Property 1 bounds
improves (roughly) quadratically by bounding the longest list length
to be𝑂 (

√
B + ℓ𝑀); clearly, this holds for any query, even for objects

that do not exist in the table. Another implication of Property 1
is that when there is little-to-no attack (i.e., when B ≈ 0), the RB
cost and latency are each roughly 𝑂 (ℓ𝑀), which should be small
(i.e., logarithmic in 𝑡) for an appropriately sized table, as discussed
above.

Regarding Property 2, formultiple requests scheduled by a Byzan-
tine adversary, Depth Charge retains an asymptotic advantage
when under significant attack. Conversely, when the attack is not
large relative to I +Q +D, Depth Charge has RB cost and latency
proportional to this number of requests and ℓ2

𝑀
. In contrast, in a

standard hash table, the adversary can amplify its attack by forcing
multiple requests involving a linear-sized chain.

Finally, Property 3 provides bounds on the expected performance
under a sequence of queries that map to indices selected u.a.r..
Specifically, the expected cost for 𝑄 such good queries is 𝑂 (𝑄ℓave +
ℓ𝑀

√︁
𝑄B). Thus, if that expectation holds, then the average cost

per query is 𝑂 (ℓave) when 𝑄 is large relative to B and ℓ𝑀 . When
ℓave = 𝑂 (1), this implies that the average cost per query is 𝑂 (1) in
expectation. Interestingly, this is comparable to the expected 𝑂 (1)
latency per query in a standard hash table.

1.3 Technical Overview

At a high level, our analysis relies on upper bounding Depth
Charge’s cost and lower bounding the adversary’s cost. Below
we sketch how to do this first for insertions, and then for queries
and deletions.

Insertion Costs.We define a targeted index to be an index where
there is at least one bad object and at least one good object. Then
we lower bound the adversary’s cost as a function of the number
of bad objects inserted into targeted indices (Lemma 3.1).

Next, we upper bound the total cost of good insertions as a func-
tion of the number of objects in targeted indices, noting that this
cost is maximized when the bad objects are distributed as uniformly
as possible across such indices (Lemma 3.3). We pessimistically as-
sume that good insertions come after bad insertions, since this
minimizes the insertion cost to the adversary, while maximizing
the insertion cost to the algorithm. Additionally, we assume that
there are ℓ𝑀 good insertions in every targeted index.

WhyUseMove-to-Front?An analysis of the longest list (Lemma 3.6)
shows that the worst-case latency per query is𝑂 (

√
B + ℓ𝑀). While

this significantly improves over the linear latency—for example,
where the adversary inserts all objects in a single list—that can arise
in undefended hash tables, there is still room for improvement. To
see why, consider that even if the adversary ceases its attack, good
objects will remain near the tails of their respective lists, leading
to persistently poor query latency. By moving queried objects to
the head of their respective lists, we can improve their latency in
subsequent queries.

The classic move-to-front (MTF) heuristic [10, 29, 52] is known
to improve performance in chained hash tables when they are not
under attack [4, 53, 64]. Our motivation for using MTF in our ad-
versarial setting is that a substantial improvement may be attained
over multiple queries, since good objects can “skip the line” in long
lists that contain mostly bad objects.

However, the adversary can cause trouble for MTF in the follow-
ing manner. When the adversary queries a bad object, it is moved
to the front of the list. This increments the depth of a number of
good objects as large as the depth of the bad object prior to being
moved to the front; this increases the query latency of these good
objects. We can discourage this bad behavior by charging for a
query, but how much should we charge? Intuitively, a reasonable
charge would be the depth of the queried object.

Analysis of Charging by Depth for Queries. To see why this
is the correct charging scheme, consider a list composed of bad
objects, except for a single good object 𝑜 at the HoL. In order to
increase the depth of 𝑜 by 𝑑 , the adversary must pay for 𝑑 bad
queries. Observe that each bad query must be for a bad object with
larger depth than 𝑜 ; otherwise, querying the bad object does not
increase 𝑜’s depth. Under our charging scheme, the adversary pays
at least

∑𝑑
𝑗=1 (𝑗 + 1) = Θ(𝑑2). Then, when Depth Charge next

queries 𝑜 , it will pay an RB cost of Θ(𝑑), and the query requires
Θ(𝑑) latency. Thus, Depth Charge obtains a quadratic advantage,
similar to what is achieved for our bound on insertion costs.

This charging scheme motivates the name Depth Charge6 and
it guarantees that the adversary must spend continually in order to
keep good objects at large depth in the list.

The Amortized Analysis. A major technical challenge of our
paper is to formalize the above intuition in the general case—with
multiple lists, each with potentially multiple good objects. This
analysis is challenging, since both bad and good queries can increase
the depth of multiple good objects in a list. Over all lists, we need
to track the depth of all good objects over a sequence of requests.
We highlight that must account not only for queries—although they
are what increases the depth of an object—but also insertions and
deletions. Fortunately, insertions do not increase depth of other
objects, given that objects are added to the ToL, so our bound on
insertion cost (discussed above) can be used. As for deletions, we
can treat them as queries, since they are no worse in terms of
increasing depth.

One main analytic tool used is amortized analysis; in particular,
the accountingmethod [16]. Each good object is given a (conceptual)
wallet into which Depth Charge makes deposits for each request
that increases the depth of that object. The payments ensure a key

6At the risk of ruining a pun via explanation, a depth charge also is a defense against
subs/subterfuge.

ICDCN ’24, January 4–7, 2024, Chennai, India Chakraborty et al.

invariant: the depth of a good object is never more than the number
of dollars in its wallet. Therefore, an object’s wallet always contains
enough dollars to cover the cost of its next query. Over a sequence
of requests, the total number of dollars deposited into all wallets is
an upper bound on both Depth Charge’s RB cost and latency.

How can we relate the number of dollars deposited into wallets
to the adversary’s cost? This is addressed formally in Lemma 3.7;
however, to gain insight, let us extend our example to 𝑞𝑖 ≥ 1
good queries in a single list at index 𝑖 . Prior to each good query,
there are 𝑑𝑟 bad queries that increase the depth of at most ℓ𝑀 good
objects by 𝑑𝑟 , for 𝑟 = 1, ..., 𝑞𝑖 . The resulting number of dollars that
Depth Charge places into the wallets of the corresponding ℓ𝑀
good objects is A𝑖 ≤ ℓ𝑀

∑𝑞𝑖
𝑟=1 𝑑𝑟 , while the adversary’s cost is

B𝑖 ≥ ∑𝑞𝑖
𝑟=1 𝑑

2
𝑟 = Ω((1/𝑞𝑖) (

∑𝑞𝑖
𝑟=1 𝑑𝑟)

2) by Jensen’s inequality for
concave functions. Therefore, the number of dollars deposited into
wallets for objects in the list at index 𝑖 is A𝑖 = 𝑂 (ℓ𝑀

√︁
𝑞𝑖B𝑖). To

this, we add Depth Charge’s cost for insertions, denoted by A ins
𝑖
,

to get an upper bound on all requests involving this list.
Finally, in Lemma 3.8 and Corollary 3.9, we sum up the costs

toDepth Charge over all lists. Our previous bound on the insertion
costs handles the sumof theA ins

𝑖
terms. To simplify𝑂 (∑𝑖 ℓ𝑀

√︁
𝑞𝑖B𝑖),

we apply the Cauchy-Schwarz inequality to get an upper bound of
𝑂 (ℓ𝑀

√
QB), where ∑

𝑖 𝑞𝑖 = Q is the total number of queries and∑B𝑖 ≤ B, where B is total adversarial cost. Together, these bounds
yield the expression in Property 2.

Randomly Queried Indices. Our result for randomly queried
indices does not follow directly from Property 2. Instead, our argu-
ment (Lemma 3.10) leverages the bound for a single list (Lemma 3.7)
in order to express the total cost from the randomly queried in-
dices as a function of 𝐸 [𝑄𝑖] and 𝐸 [

√
𝑄𝑖]. The latter is the more

complicated term, which is handled by the application of Jensen’s
inequality for the expectation of concave functions, which shows
that 𝐸 [

√
𝑄𝑖] ≤

√︁
𝐸 [𝑄𝑖]. Using the fact that 𝐸 [𝑄𝑖] = 𝑄/𝑡 , and sum-

ming the terms over all lists, yields the expression in Property 3.

1.4 Related Work

In this section, we summarize work on RB-based defenses for a
variety of attacks. Next, we discuss results from the literature on
ACAs, with a focus on prior results for hash tables.

Defenses using Resource Burning. The use of RB as a tool for
solving security problems spans several decades (e.g. see the sur-
veys [2, 25]). RB-based defenses arise in many contexts, such as
spam mitigation [19, 20], wireless networks [24], peer-to-peer sys-
tems [11, 35], blockchains [36], the Sybil attack [26], and denial-of-
service attacks [14, 47, 59].

Prior Defenses for ACAs.Many other common data structures
and algorithms are vulnerable to ACAs, such as linked lists [6],
quicksort [32, 39], cardinality sketches [51], pattern matchers [33,
43], cuckoo filters [49], and bloom filters [50]. As a result, AC attacks
can impact common applications: networked applications [6, 15],
firewalls [18], PDF compressors [27], web services [3], and intrusion
detection systems [17].

In the context of hash tables, the prior literature on defending
against ACAs falls into the three general categories discussed below.

(1) Choice of Hash Functions. Crosby et al. [17] showed the first
ACA on hash tables, which caused a server to drop over 70% of
queries. The authors proposed two techniques to mitigate ACAs:
(a) adding a secret value as a parameter to the hash function, and
(b) using universal hash functions (UHFs). The usage of UHFs can
minimize the number of collisions, but UHFs can add computa-
tional overhead on the server side. Furthermore, Yosef et al. [8]
demonstrated an ACA against hash tables despite the use of a secret
value; the authors suggest that the secret-key length should be in-
creased (beyond 32 bits) or be changed frequently. In a similar vein,
SipHash [7] uses a secret key (known only to the server), which
is used as input to the hash function. Unfortunately, a secret key
may be compromised via side-channel attacks [45] or, in distributed
settings, by an adversary who controls one or more of the servers.
Finally, perfect hashing is a technique that guarantees no collisions
(see [13, 37, 38]). However, constructing perfect hash functions
is time consuming and requires knowing the set of objects to be
hashed, which is not always available.
(2) Application-Specific Defenses. Many defenses against ACAs are
application-specific. For example, PHP limits the number of GET
and POST HTTP requests so that the adversary cannot request to
store many bad objects in a hash table [28]. Another approach is
the use of caching to store pre-computed results of expensive hash
table lookups [9, 40, 63].
(3) Switching to Deterministic Data Structures. Another method for
defending against ACAs is to adopt deterministic data structures
with strong worst-case performance guarantees. For example, a
deterministic skip list [42] performs each insertion and each query
with a worst-case bound that is logarithmic in the number of objects.
However, this is inferior to the performance of a hash table, which
have constant expected time per query in the absence of attack. If
attacks are likely to occur over a minority of the system lifetime,
then using a deterministic data structure is costly.

More generally, deterministic data structures incur theoretical
and/or practical costs exceeding that of their randomized equiva-
lents; for example, this shortcoming is acknowledged [18] in regards
to B-trees, AVL-trees, and red-black trees, which offer worst-case
logarithmic guarantees. Maintaining both a deterministic and ran-
domized data structure might provide the advantages of both op-
tions, but such redundancy is likely to be expensive. In contrast,
our algorithm’s costs adapts to the degree of attack—in particu-
lar, growing slowly in the amount spent by the adversary—which
allows for low cost when the attack is absent/small, and giving a
favorable relative cost when the attack is large.
Compatibility with Prior Defenses. Our results may be used
in conjunction with many prior solutions. For example, Depth
Charge can be used alongside methods that use stronger hash func-
tions and secret keys, and also within application-specific defenses—
these approaches are not mutually exclusive. Given that there is no
single approach that can completely protect against ACAs, having
multiple complementary tools for defense can be useful.

2 OUR ALGORITHM

The pseudocode for our algorithm (with deletions omitted), Depth
Charge, is presented in Figure 1 and is assumed to be executed by
the server. Below, are the requests supported.

ICDCN ’24, January 4–7, 2024, Chennai, India

Figure 1: Pseudocode for Depth Charge.

Insertions. Upon receiving an insertion request, the server re-
sponds with an RB challenge whose hardness equals 𝐿𝑖 + 1, where
𝐿𝑖 is list length at index 𝑖 . If the server receives a valid solution
to this challenge, then the object is inserted at the ToL, which is
assumed to require constant latency. A pointer is assumed to be
kept to the ToL in order to give 𝑂 (1) latency per insertion.

Queries. Upon receiving a query request for an object, the server
calculates the index 𝑖 where the object should be stored and tra-
verses that list starting from the HoL. If the object is found, then the
server responds with a Δ-hard RB challenge, where Δ is the object’s
depth. Otherwise, the server discovers that the object does not exist
by traversing the entire list and then issues an 𝐿𝑖 -hard RB challenge.
In the latter case, imposing a cost mitigates spurious requests by the
adversary for non-existent objects, while the cost for such requests
from clients can be viewed as the price for a membership test.

If a valid solution is received and the object exists in the table,
then the server services the query and also performs a move-to-
front operation by repositioning the queried object to the head of
its corresponding list. Otherwise, the queried object does not exist
in the table, and responds that the object was not found.

Deletions. A deletion is performed almost identically to a query.
However, in the case where the object is located, the object is deleted
rather than being moved to the HoL. For ease of presentation, we
omit deletions from the pseudocode in Figure 1.

3 ANALYSIS

Our analysis of Depth Charge is presented in three pieces. First,
in Section 3.1, we analyze the RB cost and latency for insertions;
this is a stepping stone to proving bounds on sequences of requests.
Second, in Section 3.2, we provide a bound on the longest list length
(Lemma 3.6), which is used to establish Property 1. We then use an
amortized analysis for a sequence of queries, which is combined
with our bound on insertions to prove Property 2 (in Corollary 3.9).
Third, in Section 3.3, we bound the expected RB cost and latency
for a sequence of queries that occur in indices selected u.a.r., which
allows us to establish Property 3 (in Lemma 3.10).

3.1 Insertion Cost

In this section, we analyze Depth Charge’s RB cost over all I
good insertions. Define an targeted index to be any index that
contains at least one bad object and at least one good object. In the
current table, let 𝒔 be the number of targeted indices.

Unless specified otherwise, our analysis in this section pessimisti-
cally assumes that all targeted indices contain ℓ𝑀 good objects; this
can only increase the cost to Depth Charge.

Lemma 3.1. Suppose the adversary inserts 𝑏 bad balls in the 𝑠

targeted indices. Then, Depth Charge’s RB cost for insertions into

the targeted indices is at most

𝑠ℓ2
𝑀

2 + 𝑏ℓ𝑀 .

Proof. Let 𝑥𝑖 be the number of bad objects placed by the adver-
sary into the 𝑖-th targeted index, where 𝑖 = 1, ..., 𝑠 . Fix any particular
index 𝑖 , Depth Charge’s cost for this index is at most:

ℓ𝑀∑︁
𝑘=1

(𝑥𝑖 + 𝑘) <
ℓ2
𝑀

2
+ ℓ𝑀𝑥𝑖 .

Using the above bound, Depth Charge’s insertion cost over all
targeted indices is at most:

𝑠∑︁
𝑖=1

(
ℓ2
𝑀

2
+ ℓ𝑀𝑥𝑖

)
≤ 𝑠

ℓ2
𝑀

2
+ ℓ𝑀

𝑠∑︁
𝑖=1

𝑥𝑖

=
𝑠ℓ2
𝑀

2
+ 𝑏ℓ𝑀

where the second line follows from noting that
∑𝑠
𝑖=1 𝑥𝑖 = 𝑏. □

Lemma 3.2. Suppose that the adversary inserts 𝑏 ≥ 1 objects in
𝑠 ≥ 1 targeted indices. Then, B ≥ 𝑏2

8𝑠 .

Proof. Assume that the adversary’s bad objects are all added
before any good objects are added to the table; this only reduces
the adversary’s cost. Furthermore, observe that the adversary’s cost
from the placement of bad objects in targeted indices is minimized
when these 𝑏 objects are spread as evenly as possible over the 𝑠
indices. To see this, we describe two cases.

Case 1: 𝒃 (𝒎𝒐𝒅 𝒔) = 0. Consider any two indices, each with 𝑥 = 𝑏/𝑠
bad objects. In this case, the adversary’s cost is 2

∑𝑥
𝑖=1 𝑖 . In contrast,

if we move 𝑝 bad object, where 𝑝 ∈ [1, 𝑥] from one of these indices
to the other, the adversary’s cost is

∑𝑥−𝑝
𝑗=1 𝑗 +∑𝑥+𝑝

𝑘=1 𝑘 . Note that the
first cost minus the second cost is:

2
𝑥∑︁
𝑖=1

𝑖 − ©«
𝑥−𝑝∑︁
𝑗=1

𝑗 +
𝑥+𝑝∑︁
𝑘=1

𝑘
ª®¬

= ((𝑥 − 𝑝 + 1) + ... + 𝑥) − ((𝑥 + 1) + ... + (𝑥 + 𝑝))
< 0.

Therefore, deviating from the case where all indices have the same
number of bad objects will increase the adversary’s cost.
Case 2: 𝒃 (𝒎𝒐𝒅 𝒔) ≠ 0. In this case, consider that the inserted bad
objects are spread as evenly as possible. Then, we will show that
deviating from this arrangement can only increase the adversary’s
cost. Under this spreading of bad objects, there will be indices with
𝑥 = 𝑏/𝑠 bad objects and at least one index with at most 𝑥 + 1
bad objects; thus, there can be at most a difference of 1 bad object
between any two indices. Consider any a “small” index and a “large”

ICDCN ’24, January 4–7, 2024, Chennai, India Chakraborty et al.

index with 𝑥 and 𝑥 + 1 bad objects, respectively. In this case, the
adversary’s cost is

∑𝑥
ℎ=1 ℎ + ∑𝑥+1

𝑖=1 𝑖 .
Moving 𝑝 bad objects from the small index to the large index

means that the adversary’s cost is now
∑𝑥−𝑝

𝑗=1 𝑗 + ∑(𝑥+1)+𝑝
𝑘=1 𝑘 . Note

that the first cost minus the second cost is:
𝑥∑︁

ℎ=1
ℎ +

𝑥+1∑︁
𝑖=1

𝑖 − ©«
(𝑥+1)+𝑝∑︁

𝑗=1
𝑗 +

𝑥−𝑝∑︁
𝑘=1

𝑘
ª®¬

= ((𝑥 − 𝑝 + 1) + ... + (𝑥 + 1)) − ((𝑥 + 1) + ... + (𝑥 + 1 + 𝑝))
< 0.

Again, deviating from the case where all indices have the same
number of bad objects will increase the adversary’s cost.

Given this case analysis, the adversary’s cost over the 𝑠 targeted
indices is at least:

𝑠

⌊𝑏/𝑠 ⌋∑︁
𝑖=1

𝑖 ≥ 𝑠

∫ ⌊𝑏/𝑠 ⌋

0
𝑖 𝑑𝑖

=

(𝑠
2

)
(⌊𝑏/𝑠⌋)2

≥
(𝑠
2

)
(max{1, (𝑏/𝑠) − 1})2

≥
(𝑠
2

) (
𝑏

2𝑠

)2
=
𝑏2

8𝑠
where the first line follows since 𝑖 is a monotonically increasing
function, and the third line holds since 𝑏 ≥ 𝑠 by definition of
targeted indices and ⌊𝑥⌋ ≥ 𝑥 − 1. The fourth line follows by noting
that, if max{1, (𝑏/𝑠) − 1} = 1, then 𝑏/𝑠 ≤ 2 and so 𝑏/(2𝑠) ≤ 1,
which justifies the inequality. Else, if 𝑏/𝑠 − 1 > 1, which implies
𝑏/(2𝑠) > 1 iff (𝑏/𝑠) − (𝑏/2𝑠) > 1 iff (𝑏/𝑠) − 1 > 𝑏/(2𝑠), which again
justifies the inequality (although, it is strict in this case). □

Lemma 3.3. The RB cost to Depth Charge for insertions into

targeted indices is 𝑂

(
ℓ2
𝑀

√
𝑠B

)
.

Proof. By Lemma 3.2,B ≥ 𝑏2

8𝑠 for placing𝑏 objects into targeted
indices. Solving for 𝑏 yields 𝑏 ≤

√
8𝑠B. Next, we use Lemma 3.1,

which shows that the RB cost to Depth Charge due to the targeted

indices is at most 𝑠ℓ2
𝑀

2 + ℓ𝑀𝑏. Thus, Depth Charge ’s cost for good
objects in targeted indices is at most:

=
𝑠ℓ2
𝑀

2
+ 𝑏ℓ𝑀

≤
𝑠ℓ2
𝑀

2
+ ℓ𝑀

√
8𝑠B

= 𝑂

(
ℓ𝑀

√
𝑠B + 𝑠ℓ2𝑀

)
where the second step holds by substituting the upper bound on 𝑏.
Noting that B ≥ 𝑠 yields the claim. □

Define a good index to be an index containing only good objects.
Having analyzed the cost to targeted indices, we now analyze the
additional cost to Depth Charge due to good indices.

Lemma 3.4. With high probability, the RB cost to Depth Charge

for good insertions into good indices is 𝑂 (Iℓ2
𝑀
).

Proof. There are at most I good indices, each with ℓ𝑀 good
objects. The resource burning cost to Depth Charge for at most 𝑡
such indices is at most:

I
(
ℓ𝑀∑︁
𝑖=1

𝑖

)
= 𝑂

(
Iℓ2𝑀

)
which completes the argument. □

We can now bound the total RB cost to Depth Charge over the I
insertions.

Corollary 3.5. The total RB cost to Depth Charge for good

insertions is:

𝑂

((√
IB + I

)
ℓ2𝑀

)
.

Proof. This follows directly by adding up Depth Charge’s cost
incurred by all targeted indices and good indices as derived in
Lemmas 3.3 and 3.4, respectively, and noting that I ≥ 𝑠 . □

3.2 Single and Amortized Requests

We start by obtaining an upper bound on the longest list that can be
created by the adversary, which in turn, provides an upper bound
on the RB cost and latency for any single query. Note that this
bound holds regardless of whether the corresponding object exists
in the hash table, which establishes Property 1 in Theorem 1.1.

Lemma 3.6. The maximum number of bad objects in any list is

𝑂 (
√
B) and, with high probability, the RB cost and latency for any

single query is 𝑂

(√
B + ℓ𝑀

)
.

Proof. The cost to the adversary is minimized if its bad objects
are inserted in a list ahead of any good objects; thus, the cost for
𝑏 bad objects is at least

∑𝑏
𝑗=1 𝑗 . Given that the adversary spends

B, the maximum number of bad objects 𝑏 that can be placed in an
index satisfies the following equation:

B ≥
𝑏∑︁
𝑗=1

𝑗

> 𝑏2/2

and solving for 𝑏 yields 𝑏 <
√
2B. Noting that there are at most

ℓ𝑀 good objects in this list establishes the maximum number of
bad objects in the list. Finally, since the RB cost and latency for a
query are both equal to the depth of the associated object, the claim
follows. □

Next, we examine the cost to our algorithm under a sequence
of Q good queries, whose corresponding objects exist in the table.
We analyze the MTF heuristic to show that the adversary must
continually incur an RB cost in order cause bad latency for Q.

Setup and Argument Overview. We first focus on a single list
and the subsequence of 𝑞 good queries that involve this list: we
denote these queries by𝑄1, 𝑄2, . . . , 𝑄𝑞 for the queried (good) objects
𝑜1, 𝑜2, . . . , 𝑜𝑞 . We can later aggregate the costs to Depth Charge
over all lists to arrive at our final claim.

ICDCN ’24, January 4–7, 2024, Chennai, India

Figure 2: An illustration of the query analysis for some intermediate round 𝑟 . Green and red balls represent good and bad

objects, respectively. The amount of money in a wallet is depicted by the number of coins.

A complication arises due to the changing position of good ob-
jects over time. For example, once a good object 𝑜𝑟 is queried under
𝑄𝑟 , for 1 ≤ 𝑟 ≤ 𝑞, we must keep track of 𝑜𝑟 , so that we can charge
Depth Charge the correct amount if it is queried again later; sim-
ply assuming the object has an RB cost and latency equal to the
list length would result in poor bounds. Additionally, queries prior
to 𝑄𝑟 do not only increase the depth of 𝑜𝑟 , but also every other
object in the list (except for the object at the ToL), thus increasing
their query cost and latency. This increase in depth is illustrated in
Figure 2.

As discussed in Section 1.3, we use amortized analysis to handle
such complications. Specifically, we use the accounting method,
where we track Depth Charge’s cost by letting each good object
have a conceptual “wallet”; in this section, we speak of cost in
terms of generic dollars. When queried, the good object pays for
this query with dollars from its wallet. The total amount of money
placed in the wallets of all good objects provides an upper bound
on Depth Charge’s RB cost and latency for queries.

Initially, each wallet holds a dollar amount equal to the insertion
cost in its list. For the purposes of our accounting-method analysis,
this means that when 𝑜𝑟 is originally inserted, Depth Charge
conceptually pays 𝐿 + 1 dollars for the insertion and another 𝐿 + 1
dollars as a down-payment towards its next query, where 𝐿 is the
list length immediately prior to the insertion of 𝑜𝑟 . Thus, the RB
cost for the first query of 𝑜𝑟 is at least partially paid for, since 𝑜𝑟 ’s
wallet holds dollars equal to its depth when inserted. These extra
𝐿 + 1 dollars are charged to the insertion of 𝑜𝑟 ; this is captured by
Corollary 3.5.

Defining Rounds. To analyze attacks on the use of MTF in a
single list, we consider a sequence of rounds also indexed by 𝑟 , for
𝑟 = 1, ..., 𝑞. Round 𝑟 starts with the adversary selecting an integer
value 𝑑𝑟 ≥ 0 and moving 𝑑𝑟 bad objects to the HoL via 𝑑𝑟 queries,
which the adversary pays for.7 For each good object in this list,

7The adversary can never increase the depth of a good object to more than the its
corresponding list length; however, the adversary can perform as many bad queries as
it wishes, i.e. it can set 𝑑𝑟 to any non-negative value.

Depth Charge places a dollar amount into each wallet equal to the
increase in the depth of the corresponding good object, which is
upper bounded by 𝑑𝑟 . Then, query𝑄𝑟 is executed, which brings the
queried good object 𝑜𝑟 to the HoL and reduces 𝑜𝑟 ’s wallet to zero.
Next, we insert an additional 1 dollar into each of the wallets of all
good objects in the list whose depth increased by 1 by bringing 𝑜𝑟
to the HoL, and also place an additional 1 dollar into 𝑜𝑟 ’s wallet.
After these actions are completed, round 𝑟 ends.

Figure 2 illustrates the query analysis for some intermediate
round 𝑟 . In Figure 2 (left), the hash table’s state at the end of previous
round 𝑟 − 1, where object 𝑜𝑟−1 resides at the HoL and the good
objects hold $1, $5, and $8 in their respective wallets. In Figure 2
(center), the adversary chooses 𝑑𝑟 = 2 and so executes 2 bad queries,
which increases the depth of the first two good objects by 2 (and
does not impact the good object already at the ToL). In Figure 2
(right), a query for object 𝑜𝑟 is executed, which empties its wallet
corresponding to the cost of 7 for this query. This results in a depth
of 1 for 𝑜𝑟 , while increasing the depth of the second good object
from the HoL by 1; therefore, Depth Charge adds $1 to each of
their wallets (but not to the wallet of the good object at the ToL).
Thus, round 𝑟 ends with each good object holding an amount of
money at least equal to its current depth.

Payments by Depth Charge at the end of each round allow us
to maintain the following invariant in our amortized analysis: At
the end of each round, for every good object, the amount of money in

the good object’s wallet is at least equal to its depth. We leverage this
invariant in our analysis of Depth Charge’s RB cost and latency.

Finally, over all rounds, the adversary may schedule good and
bad insertions arbitrarily. These insertions do not increase the depth
of any good object in a list, since objects are inserted at the ToL.
Consequently, Depth Charge’s RB cost and latency for good in-
sertions in any list can be accounted for separately in our analysis.

Our next lemma considers the subsequence of queries in a single
list of the hash table. We note that deletions are no worse than
any queries, since deletions can only decrease the depth of a good
object. Thus, for ease of presentation, our analysis only argues

ICDCN ’24, January 4–7, 2024, Chennai, India Chakraborty et al.

about insertions and queries, even though the statement of our
final result will include deletions.

Lemma 3.7. Consider any fixed list at index 𝑖 in the hash table and
suppose this list is involved in 𝑞𝑖 good queries whose corresponding

objects exist in the table. Let A ins

𝑖
be Depth Charge’s total RB cost to

insert the good objects in list 𝑖 . Let B𝑖 be the cost to the adversary for

bad queries and bad insertions in list 𝑖 . For all of the 𝑞𝑖 queries, the

total RB cost and total latency for Depth Charge is at most:

A ins

𝑖 + ℓ𝑖

(
𝑞𝑖 +

√︁
2𝑞𝑖B𝑖

)
.

Proof. Our aim is to guarantee that, prior to round 𝑟 ≥ 1, each
good object has a number of dollars in its wallet equal to its depth.
Given this, we then argue that the number of dollars in each object’s
wallet can pay for the cost of querying the object; notably, this cost
can be either RB cost or latency, since they are both equal to the
object’s depth.

Round 1. We first prove that, for each good object, the depth
is at most the number of dollars in the corresponding object’s
wallet. Initially, sometime prior to 𝑄1, 𝑜1 is be inserted (since, by
assumption, it exists in the table when 𝑄1 is executed). The wallet
of 𝑜1 contains a number of dollars equal to its depth when 𝑜𝑖 is
inserted. This is done by having 𝑜𝑖 pay 2(𝐿 + 1) when inserted,
where 𝐿 is the list length immediately prior to the 𝑜1’s insertion.
The first 𝐿 + 1 dollars pay for the insertion, while the extra 𝐿 + 1
dollars are held in the 𝑜1’s wallet to help pay for the cost when it is
next queried.

Any increase in depth experienced by good objects due to 𝑑1 bad
queries in round 1 results in a matching number of dollars added to
each wallet. Thus, when 𝑄1 is executed, 𝑜1’s wallet has sufficient
funds to pay for the latency of the query. Object 𝑜1 moves to the
HoL, and every good object whose depth increased by 1, along with
𝑜1, has 1 dollar added to its corresponding wallet. These deposits to
the wallets ensures that the invariant holds at the end of round 1.

Round ≥ 2. At the end of round 𝑟 − 1, for 𝑟 ≥ 2, each good object
in the list holds a number of dollars at least equal to its depth. Thus,
in round 𝑟 , 𝑜𝑟 has sufficient funds in its wallet to pay for the RB
cost of 𝑄𝑟 . The adversary’s 𝑑𝑟 bad queries increase the depth of
each good object by at most an additional 𝑑𝑟 , and 𝑄𝑟 results in all
other good objects increasing their depth by at most 1. Since Depth
Charge puts dollars in each good objects’ wallets equal to the
corresponding increase in depth due to bad queries, the invariant
holds at the end of round 𝑟 .

Total Cost. Depth Charge pays the following. First, the cost for
all good insertions is A ins

𝑖
. Second, the algorithm pays for all the

increases in depth over all rounds for all ℓ𝑖 good objects in this list,
which amounts to at most ℓ𝑖

∑𝑞𝑖
𝑟=1 (𝑑𝑟 + 1) dollars.

In contrast, the total RB cost to the adversary is at least:

B ≥
𝑞𝑖∑︁
𝑟=1

𝑑𝑟∑︁
𝑗=1

𝑗

≥ 1
2

𝑞𝑖∑︁
𝑟=1

𝑑2𝑟

≥ 1
2𝑞𝑖

(
𝑞𝑖∑︁
𝑟=1

𝑑𝑟

)2
(1)

where the last line follows from Jensen’s inequality for convex
functions. By substituting into the algorithm’s cost, we have that
Depth Charge pays at most:

A ins
𝑖 + ℓ𝑖

𝑞𝑖∑︁
𝑟=1

(𝑑𝑟 + 1) = A ins
𝑖 + ℓ𝑖𝑞𝑖 + ℓ𝑖

𝑞𝑖∑︁
𝑟=1

𝑑𝑟

= A ins
𝑖 + ℓ𝑖𝑞𝑖 + ℓ𝑖

√︁
2𝑞𝑖B𝑖

where the second line follows by solving for
∑𝑞𝑖
𝑟=1 𝑑𝑟 ≤

√︁
2𝑞𝑖B𝑖 in

Equation 1. Since A ins
𝑖

is measured in RB cost, this concludes the
bound on RB cost.

To derive total latency, recall that the RB cost for an insertion
equals the depth of the object being inserted. In other words, A ins

𝑖
equals the sum of the depths of the good objects when they are
inserted. Thus, the extra dollars can also be viewed as being stored
in 𝑜𝑖 ’s wallet to help pay the latency when the object is next queried.
This leads to the same bound on latency. □

We can now account for the algorithm’s total RB cost and total
latency for all good queries Q.

Lemma 3.8. The total RB cost and the total latency of Depth

Charge due to the Q queries is:

𝑂

((
I + Q +

√︁
(I + Q)B

)
ℓ2𝑀

)
.

Proof. Let 𝑆 denote the indices of the hash table where at least
one good query takes place. For 𝑖 ∈ 𝑆 , 𝑞𝑖 is the number of good
queries that occur in this list;A ins

𝑖
is algorithm’s RB cost to insert the

good objects in list 𝑖; and 𝐵𝑖 be the amount spent by the adversary
on bad queries in this list.

By Lemma 3.7, over all good queries, the total RB cost and the
total latency are each at most:∑︁

𝑖∈𝑆

(
A ins

𝑖 + ℓ𝑖

(
𝑞𝑖 +

√︁
2𝑞𝑖B𝑖

))
≤

∑︁
𝑖∈𝑆

(
A ins

𝑖 + ℓ𝑀

(
𝑞𝑖 +

√︁
2𝑞𝑖B𝑖

))
≤

(∑︁
𝑖∈𝑆

A ins
𝑖

)
+

(
ℓ𝑀

∑︁
𝑖∈𝑆

𝑞𝑖

)
+ ℓ𝑀

√√√
2

(∑︁
𝑖∈𝑆

𝐵𝑖

) (∑︁
𝑖∈𝑆

𝑞𝑖

)
≤

(∑︁
𝑖∈𝑆

A ins
𝑖

)
+ ℓ𝑀

(
Q +

√
2BQ

)
= 𝑂

((
I +

√
IB

)
ℓ2𝑀 +

(
Q +

√
QB

)
ℓ𝑀

)
where the first line follows since ℓ𝑖 ≤ ℓ𝑀 . The second line is obtained
via the Cauchy–Schwarz inequality

(∑
𝑖∈𝑆

√
𝐵𝑖
√
𝑞𝑖 ≤

√︁∑
𝑖 𝐵𝑖

∑
𝑖 𝑞𝑖

)
.

ICDCN ’24, January 4–7, 2024, Chennai, India

The third line is derived from noting
∑
𝑖∈𝑆 𝑞𝑖 = Q and

∑
𝑖∈𝑆 𝐵𝑖 ≤

B. The fourth line follows from Corollary 3.5, which states that∑
𝑖∈𝑆 A ins

𝑖
= 𝑂 (I +

√
IB). □

We are now ready to bound the total RB cost and the total latency for
all good insertions, along with all good queries and good deletions
whose corresponding objects are in the hash table. Corollary 3.9
establishes the expression in Property 2 of Theorem 1.1.

Corollary 3.9. Each of the total RB cost and the total latency for

Depth Charge is:

𝑂

((
I + Q + D +

√︁
(I + Q + D)B

)
ℓ2𝑀

)
.

Proof. Adding the cost from all good insertions in the table,
given byCorollary 3.5, alters the asymptotic cost given in Lemma 3.8.
Then, since (as discussed earlier) deletions are no more costly than
queries, we may replace Q with Q + D to obtain the result. □

3.3 Randomly Queried Indices

Note that Corollary 3.9 addresses a challenging setting: deriving
worst case bounds where a significant attack may be underway and
the good requests are scheduled by the adversary. We conclude this
section on a more optimistic note in regards to𝑄 queries that occur
in randomly chosen indices. Recall (from Section 1.2) that ℓ𝑖 is the
maximum number of good objects that are ever in bin 𝑖 and that
ℓave = (1/𝑡)∑𝑡

𝑖=1 ℓ𝑖 . We show that when𝑄 is large relative to B and
ℓ𝑀 , the average query cost is 𝑂 (ℓave) in expectation.

This result implies that, if ℓave = 𝑂 (1) and the adversary does
not launch a significant attack, then we should expect per-query
performance that matches that of standard hash tables in benign
settings. The following result establishes Property 3 of Theorem 1.1.

Lemma 3.10. Consider 𝑄 queries where the corresponding objects

belong to indices of the hash table chosen u.a.r.. For 𝑄 ≥ ℓ2
𝑀
B, the

average cost per query is 𝑂 (ℓ
ave
) in expectation.

Proof. By Lemma 3.7, the RB cost and latency for the 𝑖-th index
are each at most:

ℓ𝑖

(
𝑄𝑖 +

√︁
2𝑄𝑖B𝑖

)
where ℓ𝑖 , 𝑄𝑖 , and B𝑖 are the number of good objects, number of
good queries, and adversarial cost in the 𝑖-th index. Given that
each query occurs in an index selected uniformly at random, in
expectation over 𝑄𝑖 the RB cost and latency are each at most:

ℓ𝑖𝐸 [𝑄𝑖] + ℓ𝑖
√︁
2B𝑖𝐸 [

√︁
𝑄𝑖] ≤ ℓ𝑖 (𝑄/𝑡) + ℓ𝑖

√︁
2B𝑖

√︁
𝑄/𝑡

where the second step holds since 𝐸 [𝑄𝑖] = 𝑄/𝑡 , and by applying
Jensen’s inequality for concave functions (i.e., 𝐸 [𝜑 (𝑋)] ≤ 𝜑 (𝐸 [𝑋]),
where𝜑 is a concave function and𝑋 is a random variable). Summing
the above over all bins, we can bound the total RB cost and latency
for queries to be at most:

𝑡∑︁
𝑖=1

ℓ𝑖

(
𝑄/𝑡 +

√︁
2B𝑖

√︁
𝑄/𝑡

)
= 𝑂 (𝑄 ℓave) +𝑂

(√︁
2𝑄/𝑡

𝑡∑︁
𝑖=1

ℓ𝑖
√︁
B𝑖

)
≤ 𝑂 (𝑄 ℓave) +𝑂

((√︁
2𝑄/𝑡

)
𝑡ℓ𝑀

√︁
B/𝑡

)
≤ 𝑂

(
𝑄 ℓave + ℓ𝑀

√︁
𝑄B

)

where the first line follows since ℓave = (1/𝑡)∑𝑡
𝑖=1 ℓ𝑖 , the second line

follows from again noting that ℓ𝑖 ≤ ℓ𝑀 , and the third line follows
from simplifying terms. For 𝑄 ≥ ℓ2

𝑀
B, if this expectation holds,

then the average cost per query is 𝑂 (ℓave), as claimed. □

4 CONCLUSION AND FUTUREWORK

We have designed and analyzed an RB-based defense against al-
gorithmic complexity attacks on hash tables. To the best of our
knowledge, our defense is the first to leverage RB for defending
against ACA attacks, and there are several promising questions
for future work. First, our current work addresses fixed-size hash
tables, which captures settings where there is no need to resize the
hash table, or it is not desirable to do so. However, can we extend
our approach to the case when legitimate system load is unpre-
dictable and there exist adequate server-side resources to resize
many times?

Second, can we achieve zero cost to the algorithm when there
is no attack? We conjecture this can be achieved by only charging
objects in lists whose size exceeds a certain threshold.

Third, can we extend our approach to other data structures that
employ hash functions, such as Bloom filters? Similarly, decentral-
ized data structures other than those based on hash tables—such as
skip graphs [5]—might also benefit from such a defense.

Fourth, our upper bounds are likely pessimistic, given that we
allow the adversary to select the index into which good objects are
inserted. We also note that the worst-case cost in an undefended
hash table arises when a single index is attacked; in contrast, our
upper bound applies to any index. It may be illuminating to give
an analysis for Depth Charge that accounts for the difference in
cost between highly-loaded and normally-loaded indices.

Finally, machine learning (ML) has become an important tool for
improving the performance of algorithms [14, 41]. In our setting, it
would be interesting to determine if ML predictions about whether
a request is good or bad can be leveraged to improve performance.

Acknowledgements.We are grateful to the anonymous reviewers
for their valuable feedback. This work is supported by NSF awards
CNS-2210299, CNS-2210300, and CCF-2144410.

REFERENCES

[1] Martin Abadi, Mike Burrows, Mark Manasse, and Ted Wobber. Moderately
hard, memory-bound functions. ACM Transactions on Internet Technology (TOIT),
5(2):299–327, 2005.

[2] Isra Mohamed Ali, Maurantonio Caprolu, and Roberto Di Pietro. Foundations,
properties, and security applications of puzzles: A survey. ACM Computing

Survey, 53(4):1–38, 2020.
[3] Christian Altmeier, Christian Mainka, Juraj Somorovsky, and Jörg Schwenk.

AdIDoS–adaptive and intelligent fully-automatic detection of denial-of-service
weaknesses in web services. In Proceedings of the 10th International Workshop on

Data Privacy Management, and Security Assurance, pages 65–80, 2016.
[4] Nikolas Askitis and Justin Zobel. Redesigning the string hash table, burst trie,

and BST to exploit cache. Journal of Experimental Algorithmics (JEA), 15:1–1,
2011.

[5] James Aspnes and Gauri Shah. Skip graphs. In Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 384–393, 2003.

[6] Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, and Justine Sherry. Surge-
protector: Mitigating temporal algorithmic complexity attacks using adversarial
scheduling. In Proceedings of the ACM SIGCOMM 2022 Conference, pages 723–738,
2022.

[7] Jean-Philippe Aumasson and Daniel J Bernstein. SipHash: a fast short-input
PRF. In Proceedings of the 13th International Conference on Cryptology in India

(INDOCRYPT), pages 489–508. Springer, 2012.

ICDCN ’24, January 4–7, 2024, Chennai, India Chakraborty et al.

[8] Noa Bar-Yosef and Avishai Wool. Remote algorithmic complexity attacks against
randomized hash tables. In Proceedings of the International Conference on E-

Business and Telecommunications (ICETE), pages 162–174, 2007.
[9] Michael A Bender, Martin Farach-Colton, Rob Johnson, Bradley C Kuszmaul,

Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P Spillane, and Erez
Zadok. Don’t thrash: how to cache your hash on flash. In Proceedings of the 3rd

Workshop on Hot Topics in Storage and File Systems (HotStorage 11), 2011.
[10] Jon L Bentley and Catherine C McGeoch. Amortized analyses of self-organizing

sequential search heuristics. Communications of the ACM, 28(4):404–411, 1985.
[11] Nikita Borisov. Computational puzzles as Sybil defenses. In Proceedings of the 6𝑡ℎ

IEEE International Conference on Peer-to-Peer Computing (P2P), pages 171–176,
2006.

[12] Xiang Cai, Yuwei Gui, and Rob Johnson. Exploiting UNIX file-system races via
algorithmic complexity attacks. In 2009 30th IEEE Symposium on Security and

Privacy, pages 27–41. IEEE, 2009.
[13] Nick Cercone. Finding and applying perfect hash functions. Applied Mathematics

Letters, 1(1):25–28, 1988.
[14] Trisha Chakraborty, Abir Islam, Valerie King, Daniel Rayborn, Jared Saia, and

Maxwell Young. Bankrupting DoS attackers. arXiv preprint arXiv:2205.08287,
2022.

[15] Richard Chang, Guofei Jiang, Franjo Ivancic, Sriram Sankaranarayanan, and
Vitaly Shmatikov. Inputs of coma: Static detection of denial-of-service vulnerabil-
ities. In Proceedings of the 22nd IEEE Computer Security Foundations Symposium,
pages 186–199, 2009.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[17] Scott A. Crosby and Dan S. Wallach. Denial of service via algorithmic complexity
attacks. In Proceedings of the 12th USENIX Security Symposium (USENIX Security

03), Washington, D.C., August 2003. USENIX Association.
[18] Adam Czubak and Marcin Szymanek. Algorithmic complexity vulnerability

analysis of a stateful firewall. In Proceedings of 37th International Conference on

Information Systems Architecture and Technology (ISAT), pages 77–97, 2017.
[19] Cynthia Dwork, Andrew Goldberg, and Moni Naor. On memory-bound func-

tions for fighting spam. In Proceedings of the Annual International Cryptology

Conference, pages 426–444. Springer, 2003.
[20] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.

In Proceedings of the 12𝑡ℎ Annual International Cryptology Conference on Advances

in Cryptology, pages 139–147, 1993.
[21] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof

Pietrzak. Proofs of space. In Annual Cryptology Conference, pages 585–605.
Springer, 2015.

[22] Jarret Falkner, Michael Piatek, John P. John, Arvind Krishnamurthy, and Thomas
Anderson. Profiling a million userDHT. In Proceedings of the 7𝑡ℎ ACM SIGCOMM

Conference on Internet Measurement, pages 129–134, 2007.
[23] Jason Franklin, Vern Paxson, Adrian Perrig, and Stefan Savage. An inquiry into

the nature and causes of the wealth of internet miscreants. In Proceedings of the

14th ACM Conference on Computer and Communications Security, pages 375–388,
2007.

[24] Seth Gilbert and Chaodong Zheng. Sybilcast: Broadcast on the open airwaves.
In Proceedings of the 25𝑡ℎ Annual ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA), pages 130–139, 2013.
[25] Diksha Gupta, Jared Saia, and Maxwell Young. Resource burning for permis-

sionless systems. In Proceedings of the International Colloquium on Structural

Information and Communication Complexity, pages 19–44. Springer, 2020.
[26] Diksha Gupta, Jared Saia, and Maxwell Young. Bankrupting Sybil despite churn.

In Proceedings of the 41st IEEE International Conference on Distributed Computing

Systems (ICDCS), 2021.
[27] Nathan Hauke and David Renardy. Denial of service with a fistful of packets:

Exploiting algorithmic complexity vulnerabilities. Black Hat USA, 2019.
[28] Christian Heimes. Alternative counter measures against hash collision

DoS. https://peps.python.org/pep-0456/#alternative-counter-measures-against-
hash-collision-dos, 2013.

[29] James H. Hester and Daniel S. Hirschberg. Self-organizing linear search. ACM
Computing Surveys, 17(3):295–311, 1985.

[30] IBM. Considerations for sizing hash tables. https://www.ibm.com/docs/en/iirfz/
11.3.0?topic=analysis-considerations-sizing-hash-tables, 2023.

[31] Thomas Kesselheim. Load balancing and chernoff bounds. www.mpi-
inf.mpg.de/fileadmin/inf/d1/teaching/summer16/random/loadbalancing.pdf,
2016.

[32] Suraiya Khan and Issa Traore. A prevention model for algorithmic complexity
attacks. In Second International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment (DIMVA), pages 160–173. Springer, 2005.
[33] James Kirrage, Asiri Rathnayake, and Hayo Thielecke. Static analysis for regu-

lar expression denial-of-service attacks. In Proceedings of the 7th International

Conference on Network and System Security (NSS), pages 135–148, 2013.
[34] Neal Koblitz and Alfred J Menezes. The Random Oracle Model: A Twenty-Year

Retrospective. Designs, Codes and Cryptography, 77(2-3):587–610, 2015.

[35] Frank Li, Prateek Mittal, Matthew Caesar, and Nikita Borisov. SybilControl:
Practical Sybil defense with computational puzzles. In Proceedings of the Seventh

ACM Workshop on Scalable Trusted Computing, pages 67–78, 2012.
[36] Iuon-Chang Lin and Tzu-Chun Liao. A survey of blockchain security issues and

challenges. International Journal of Network Security, 19(5):653–659, 2017.
[37] Yi Lu, Balaji Prabhakar, and Flavio Bonomi. Perfect hashing for network ap-

plications. In 2006 IEEE International Symposium on Information Theory, pages
2774–2778. IEEE, 2006.

[38] Bohdan S Majewski, Nicholas C Wormald, George Havas, and Zbigniew J Czech.
A family of perfect hashing methods. The Computer Journal, 39(6):547–554, 1996.

[39] M. Douglas McIlroy. A killer adversary for quicksort. Software: Practice and

Experience, 29(4):341–344, 1999.
[40] Zviad Metreveli, Nickolai Zeldovich, and M Frans Kaashoek. CPHash: A cache-

partitioned hash table. ACM SIGPLAN Notices, 47(8):319–320, 2012.
[41] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with Predictions. In

Beyond the Worst-Case Analysis of Algorithms. T. Roughgarden, Ed. Cambridge
University Press, 2021.

[42] J Ian Munro, Thomas Papadakis, and Robert Sedgewick. Deterministic skip lists.
In Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 367–375, 1992.
[43] Kedar Namjoshi and Girija Narlikar. Robust and fast pattern matching for intru-

sion detection. In Proceedings of the IEEE International Conference on Computer

Communications (INFOCOM), pages 1–9. IEEE, 2010.
[44] Georgios Oikonomou and Jelena Mirkovic. Modeling human behavior for defense

against flash-crowd attacks. In Proceedings of the IEEE International Conference

on Communications, pages 1–6, 2009.
[45] Matúš Olekšák and Vojtěch Miškovský. Correlation power analysis of SipHash.

In Proceedings of the 25th International Symposium on Design and Diagnostics of

Electronic Circuits and Systems (DDECS), pages 84–87, 2022.
[46] Rafael Oliveira. Lecture 4: Balls & bins. cs.uwaterloo.ca/∼r5olivei/courses/2021-

spring-cs466/lecture04.pdf, 2021.
[47] Bryan Parno, Dan Wendlandt, Elaine Shi, Adrian Perrig, Bruce Maggs, and Yih-

Chun Hu. Portcullis: Protecting connection setup from denial-of-capability
attacks. ACM SIGCOMM Computer Communication Review, 37(4):289–300, 2007.

[48] Martin Raab and Angelika Steger. “Balls into bins”—A simple and tight analysis.
In International Workshop on Randomization and Approximation Techniques in

Computer Science, pages 159–170. Springer, 1998.
[49] Pedro Reviriego and David Larrabeiti. Denial of service attack on cuckoo filter

based networking systems. IEEE Communications Letters, 24(7):1428–1432, 2020.
[50] Pedro Reviriego and Ori Rottenstreich. Pollution attacks on counting bloom

filters for black box adversaries. In Proceedings of the 16th International Conference
on Network and Service Management (CNSM), pages 1–7, 2020.

[51] Pedro Reviriego and Daniel Ting. Security of hyperloglog (HLL) cardinality esti-
mation: Vulnerabilities and protection. IEEE Communications Letters, 24(5):976–
980, 2020.

[52] Ronald Rivest. On self-organizing sequential search heuristics. Communications

of the ACM, 19(2):63–67, 1976.
[53] Tian Song, Yating Yang, and Patrick Crowley. RwHash: Rewritable hash table for

fast network processing with dynamic membership updates. In Proceedings of

the ACM/IEEE Symposium on Architectures for Networking and Communications

Systems (ANCS), pages 142–152. IEEE, 2017.
[54] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-

ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications (SIGCOMM), pages 149–160, 2001.
[55] Xiaoshan Sun, Liang Cheng, and Yang Zhang. A covert timing channel via

algorithmic complexity attacks: Design and analysis. In 2011 IEEE International

Conference on Communications (ICC), pages 1–5. IEEE, 2011.
[56] R. Joshua Tobin and David Malone. Hash pile ups: Using collisions to identify

unknown hash functions. In Proceedings of the 7th International Conference on

Risks and Security of Internet and Systems (CRiSIS), pages 1–6, 2012.
[57] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford. CAPTCHA:

Using hard AI problems for security. In Proceedings of the International Confer-

ence on the Theory and Applications of Cryptographic Techniques, pages 294–311.
Springer, 2003.

[58] Michael Walfish, Mythili Vutukuru, Hari Balakrishnan, David Karger, and Scott
Shenker. DDoS defense by offense. In Proceedings of the 2006 Conference on Appli-

cations, Technologies, Architectures, and Protocols for Computer Communications

(SIGCOMM), pages 303–314, 2006.
[59] Michael Walfish, Mythili Vutukuru, Hari Balakrishnan, David Karger, and Scott

Shenker. DDoS defense by offense. ACM Transactions on Computer Systems

(TOCS), 28(1):3, 2010.
[60] L. Wang and J. Kangasharju. Measuring large-scale distributed systems: Case of

BitTorrent Mainline DHT. In IEEE 13th International Conference on Peer-to-Peer

Computing (P2P), pages 1–10, 2013.
[61] XiaoFeng Wang and Michael K. Reiter. Defending against denial-of-service

attacks with puzzle auctions. In Proceedings of the 2003 IEEE Symposium on

Security and Privacy, pages 78–92, 2003.

https://www.ibm.com/docs/en/iirfz/11.3.0?topic=analysis-considerations-sizing-hash-tables
https://www.ibm.com/docs/en/iirfz/11.3.0?topic=analysis-considerations-sizing-hash-tables

ICDCN ’24, January 4–7, 2024, Chennai, India

[62] Brent Waters, Ari Juels, Alex Halderman, and Edward Felten. New client puzzle
outsourcing techniques for DoS resistance. In Proceedings of the 11th ACM

Conference on Computer and Communications Security (CCS), pages 246–256,
2004.

[63] Guowei Zhang and Daniel Sanchez. Leveraging caches to accelerate hash tables
and memoization. In Proceedings of the 52nd Annual IEEE/ACM International

Symposium on Microarchitecture, pages 440–452, 2019.
[64] Justin Zobel, Steffen Heinz, and Hugh E Williams. In-memory hash tables for

accumulating text vocabularies. Information Processing Letters, 80(6):271–277,
2001.

	Abstract
	1 Introduction
	1.1 Model
	1.2 Main Results
	1.3 Technical Overview
	1.4 Related Work

	2 Our Algorithm
	3 Analysis
	3.1 Insertion Cost
	3.2 Single and Amortized Requests
	3.3 Randomly Queried Indices

	4 Conclusion and Future Work
	References

