Jared Saia

Jared Saia

Jared Saia

Jared Saia

ANTS problem

N agents start at node (*nest*) on infinite grid *Target* is placed on node at distance L Goal: Find the target ASAP

ANTS problem

N agents start at node (*nest*) on infinite grid *Target* is placed on node at distance L Goal: Find the target ASAP

Synchronous agents; no communication *Advice*: bits to encode #agents, roles, etc

[Feinerman and Korman, 2017]

ANTS Results

N agents start at node (nest) on infinite grid

Target is placed on node at distance L

Advice: bits to encode #agents, roles, etc

ANTS Results

N agents start at node (nest) on infinite grid

Target is placed on node at distance L

Advice: bits to encode #agents, roles, etc

 $O(L + L^2/N)$ time with $O(\log \log N)$ bits advice

 $O((L + L^2/N)\log^{1+\epsilon}N)$ time with no advice, for any fixed $\epsilon > 0$

[Feinerman and Korman, 2017]

$O(L + L^2/N)$ is Optimal

Area to Search $\approx L^2$ N agents Need $\approx L^2/N$ to search area Plus *L* time to reach target

Motivation: Drones seek CO_2

Use grid to approximate plane?

Use grid to approximate plane? Problems:

Choosing grid granularity

Too low: May miss target

Too high: Computational load on agents

Hard to handle different target shapes

Use grid to approximate plane? Problems:

Choosing grid granularity

Too low: May miss target

Too high: Computational load on agents

Hard to handle different target shapes

Solution: Formulate problem on Euclidean plane

Target Shape

What target shape can we handle?

Target Shape

What target shape can we handle?

- A convex shape
- Width: Smallest distance between two parallel lines touching boundary but not interior

L is distance to segment W. Assume $W \leq L$.

Our Result - No Advice $O\left(\left(L + \left(\frac{L^2}{NW}\right)\right)\log L\right) \text{ search time}$

[F&K '15] $O((L + L^2/N)\log^{1+\epsilon}N)$ time, for any $\epsilon > 0$

Our Result - No Advice $O\left(\left(L + \left(\frac{L^2}{NW}\right)\right)\log L\right) \text{ search time}$

[F&K '15] $O((L + L^2/N)\log^{1+\epsilon}N)$ time, for any $\epsilon > 0$

If t < N agents removed by adversary $O\left(\left(L + \frac{L^2(t+1)}{NW}\right)\log L\right)$ search time

Spokes

Spoke: line segment from nest and back

Say target is on circle of circumference 1

How many spokes are needed to find it?

Spokes

Spoke: line segment from nest and back

Say target is on circle of circumference 1

How many spokes are needed to find it?

Suffices: 1/W evenly spaced spokes

Spokes

Spoke: line segment from nest and back

Say target is on circle of circumference 1

How many spokes are needed to find it?

Suffices: 1/W evenly spaced spokes

How to get "evenly" space spokes, when don't know W in advance?

[Swierczkowski, '58] M points placed at arc distance $\phi \rightarrow$ arc length between any neighboring points is O(1/M)

Moreover, ϕ minimizes hidden constant over all numbers

arc lengths between neighboring spokes are $\approx 1/4$

[Swierczkowski, '58] M points placed at arc distance $\phi \rightarrow$ arc length between any neighboring points is O(1/M)

Moreover, ϕ minimizes hidden constant over all numbers

 $x_2 + \frac{1}{x_3 + \dots}$

Any number can be written as: $x_1 + -$

where x_i are integers.

 $x_2 + \frac{1}{x_3 + \dots}$

Any number can be written as: $x_1 + -$

where x_i are integers.

Small x_i means rational approximation hard

- Any number can be written as: $x_1 + \frac{1}{x_2 + \frac{1}{x_3 + \dots}}$
- where x_i are integers.
- Small x_i means rational approximation hard
- "Hardest to approximate" number \rightarrow all $x_i = 1$

- Any number can be written as: $x_1 + \frac{1}{x_2 + \frac{1}{x_3 + \dots}}$
- where x_i are integers.
- Small x_i means rational approximation hard
- "Hardest to approximate" number \rightarrow all $x_i = 1$

To get this, set $y = 1 + \frac{1}{y}$. Solving yields: $y = \phi$

 $x_2 + x_3 + x_3$

"very irrational" →well-spread

- Any number can be written as: $x_1 +$
- where x_i are integers.
- Small x_i means rational approxir
- "Hardest to approximate" number

To get this, set $y = 1 + \frac{1}{v}$. Solvir

Why not powers of 2?

Q: Why not have 2^i evenly space spokes in iteration i?

Why not powers of 2?

Q: Why not have 2^i evenly space spokes in iteration i?

A1: Off from optimal number of spokes by \leq factor of 2 A2: Requires memory for the counter, and also adds algorithmic complexity.

How many spokes?

How many spokes?

 $\theta = \sin^{-1} \frac{W}{2L}$

How many spokes?

Let α be arc length on unit circle

How many spokes?

Let α be arc length on unit circle $\alpha = \frac{1}{\pi} \sin^{-1} \frac{W}{2L}$ Power Series: $\sin^{-1} x \ge x$, for $|x| \le 1$

How many spokes?

Let α be arc length on unit circle $\alpha = \frac{1}{\pi} \sin^{-1} \frac{W}{2L}$ Power Series: $\sin^{-1} x \ge x$, for $|x| \leq 1$ Thus, $\alpha \geq \frac{W}{2\pi L}$

So by [Swierczkowski, '58], need O(L/W) spokes

How many spokes?

 $O(L^2/W)$ search time! If know L in advance

Let α be arc length on unit circle $\alpha = \frac{1}{\pi} \sin^{-1} \frac{W}{2L}$ Power Series: $\sin^{-1} x \ge x$, for $|x| \leq 1$ Thus, $\alpha \geq \frac{W}{2\pi L}$

So by [Swierczkowski, '58], need O(L/W) spokes

Spoke Length

		1	2	4	8	16
# spokes	1	×				
	2					
	4					
	8					
	16					

	1	2	4	8	16
1	×				
2					
4					
8					
16					

	1	2	4	8	16
1	×				
2					
4					
8					
16					

1) Target hidden in a cell

2) Algorithm chooses a stream of cells

3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched

1) Target hidden in a cell

- 2) Algorithm chooses a stream of cells
- 3) Game ends when algorithm finds target
- Total cost is sum of costs of cells searched

1) Target hidden in a cell

- 2) Algorithm chooses a stream of cells
- 3) Game ends when algorithm finds target
- Total cost is sum of costs of cells searched

1) Target hidden in a cell

- 2) Algorithm chooses a stream of cells
- 3) Game ends when algorithm finds target
- Total cost is sum of costs of cells searched

1) Target hidden in a cell

2) Algorithm chooses a stream of cells

3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched

1) Target hidden in a cell

2) Algorithm chooses a stream of cells

3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched

For epoch i = 1 to ∞ , For each $1 \le x \le i$, Make 2^{i-x} spokes of length 2^x , rotated by ϕ

For epoch i = 1 to ∞ , For each $1 \le x \le i$, Make 2^{i-x} spokes of length 2^x , rotated by ϕ

Number of epochs before reaching distance L: O(log L)

For epoch i = 1 to ∞ , For each $1 \le x \le i$, Make 2^{i-x} spokes of length 2^x , rotated by ϕ

Number of epochs before reaching distance L: O(log L)

For epoch i = 1 to ∞ , For each $1 \le x \le i$, Make 2^{i-x} spokes of length 2^x , rotated by ϕ

Number of epochs before reaching distance L: O(log L)

Number of epochs before the spokes are sufficiently close: O(log (L/W))

For epoch i = 1 to ∞ , For each $1 \le x \le i$, Make 2^{i-x} spokes of length 2^x , rotated by ϕ

Number of epochs before reaching distance L: O(log L)

Number of epochs before the spokes are sufficiently close: O(log (L/W))

For epoch i = 1 to ∞ , For each $1 \le x \le i$, Make 2^{i-x} spokes of length 2^x , rotated by ϕ

Number of epochs before reaching distance L: O(log L)

Number of epochs before the spokes are sufficiently close: O(log (L/W))

Cost for epoch i: $2^i \cdot i$

For epoch i = 1 to ∞ , For each $1 \le x \le i$, Make 2^{i-x} spokes of length 2^x , rotated by ϕ

Number of epochs before reaching distance L: O(log L)

Number of epochs before the spokes are sufficiently close: O(log (L/W))

Cost for epoch i: $2^i \cdot i$

For epoch i = 1 to ∞ , For each $1 \le x \le i$, Make 2^{i-x} spokes of length 2^x , rotated by ϕ

Number of epochs before reaching distance L: O(log L)

Number of epochs before the spokes are sufficiently close: O(log (L/W))

```
Cost for epoch i: 2^i \cdot i
```

Total cost dominated by last epoch:

For epoch i = 1 to ∞ , For each $1 \le x \le i$, Make 2^{i-x} spokes of length 2^x , rotated by ϕ

Number of epochs before reaching distance L: O(log L)

Number of epochs before the spokes are sufficiently close: O(log (L/W))

Cost for epoch i: $2^i \cdot i$

Total cost dominated by last epoch: $O\left(\frac{L^2}{W}\log\frac{L^2}{W}\right) = O\left(\frac{L^2}{W}\log L\right)$

For epoch i = 1 to ∞ , For each $1 \le x \le i$, Make 2^{i-x} spokes of length 2^x , rotated by ϕ

Number of epochs before reaching distance L: O(log L)

Number of epochs before the spokes are sufficiently close: O(log (L/W))

Cost for epoch i: $2^i \cdot i$

Total cost dominated by last epoch: $O\left(\frac{L^2}{W}\log\frac{L^2}{W}\right) = O\left(\frac{L^2}{W}\log L\right)$

Multiple Searchers?

Multiple Searchers?

Random Initial Orientation!

NAgents

N = 3

NAgents

 $\mathsf{N}=\mathsf{3}$

NAgents

 $\mathsf{N}=\mathsf{3}$

NAgents

N = 3

t < N faults

Expected search time:

 $O\left(L + \frac{L^2(t+1)}{NW}\right)\log L$

NAgents; t < N faults

Expected search time: $O\left(L + \frac{L^2(t+1)}{NW}\right)\log L$

Expected search time:

$$O\left(\left(L + \frac{L^2(t+1)}{NW}\right)\log L\right)$$

Lower bound on expected search time for "spoke-based": $\Omega\left(L + \left(\frac{L^2(t+1)}{NW}\right)\log L\right)$

Expected search time:

$$O\left(\left(L + \frac{L^2(t+1)}{NW}\right)\log L\right)$$

Compute expected # agents finding target in each epoch

Lower bound on expected search time for "spoke-based": $\Omega\left(L + \left(\frac{L^2(t+1)}{NW}\right)\log L\right)$

Expected search time:

$$O\left(\left(L + \frac{L^2(t+1)}{NW}\right)\log L\right)$$

Compute expected # agents finding target in each epoch

Use this expectation to bound probability $\leq t$ agents find target

Lower bound on expected search time for "spoke-based":

$$\Omega\left(L + \left(\frac{L^2(t+1)}{NW}\right)\log L\right)$$

Expected search time:

$$O\left(\left(L + \frac{L^2(t+1)}{NW}\right)\log L\right)$$

Compute expected # agents finding target in each epoch

Use this expectation to bound probability $\leq t$ agents find target

Lower bound on expected search time for "spoke-based":

$$\Omega\left[L + \left(\frac{L^2(t+1)}{NW}\right)\log L\right]$$

Yao's Lemma on Stream Problem

Experiments

F&K Advice

Each agent does the following:

```
For stage j = 1 to \infty
For phase i = 1 to j
Go to a random point at distance \leq 2^i
Spiral search for time 2^{2i+2}/N
Return to nest
```


F&K Advice

Each agent does the following:

For stage j = 1 to ∞ For phase i = 1 to j Go to a random point at distance $\leq 2^i$ Spiral search for time $2^{2i+2}/N$ Return to nest

- $\log N$ bits of advice to know N
- $\log \log N$ bits of advice to know 2-approximation to N

F&K NoAdvice (fix $\epsilon > 0$)

Each agent does the following

Algorithms Tested

Algorithm	Advice (bits)	Robustness	Runtime
F&K (advice)	$O(\log \log N)$	Not Robust	$O\left(L + \frac{L^2}{N}\right)$ for $W = \Theta(1)$
F&K (no advice)	0	Not Robust	$O\left(\left(L + \frac{L^2}{N}\right)\log^{1+\varepsilon}N\right) \text{ for fixed}$ $\varepsilon > 0 \text{ and } W = \Theta(1)$
GoldenFA	0	t < N	$O\left(\left(L + \frac{L^2(t+1)}{NW}\right)\log L\right)$

Algorithms Tested

Algorithm	Advice (bits)	Robustness	Runtime
F&K (advice)	$O(\log \log N)$	Not Robust	$O\left(L + \frac{L^2}{N}\right)$ for $W = \Theta(1)$
F&K (no advice)	0	Not Robust	$O\left(\left(L + \frac{L^2}{N}\right)\log^{1+\varepsilon}N\right) \text{ for fixed}$ $\varepsilon > 0 \text{ and } W = \Theta(1)$
GoldenFA	0	t < N	$O\left(\left(L + \frac{L^2(t+1)}{NW}\right)\log L\right)$

GoldenFA-Heuristic: In epoch *i*, make $\lceil c(1 + \alpha) \rceil$ spokes of length $(1 + \alpha)^i$ $c \leftarrow 1.9; \alpha \leftarrow 7$

F&K-NoAdvice: $\epsilon \leftarrow .01$

Varying W; Var

Ratio of Diameter of the pile to the distance from the nest (D/L)

L = 500; D = 4; N = 100

Conclusion

Results Recap

L = target distance; W = target width; N = # agents; t = # faults

Results Recap

L = target distance; W = target width; N = # agents; t = # faults

Expected search time: $O\left(\left(L + \frac{L^2(t+1)}{NW}\right)\log L\right)$

Results Recap

L = target distance; W = target width; N = # agents; t = # faults

Expected search time:

$$O\left(\left(L + \frac{L^2(t+1)}{NW}\right)\log L\right)$$

Lower bound on expected search time for "spoke-based":

$$\Omega\left(L + \left(\frac{L^2(t+1)}{NW}\right)\log L\right)$$

Future Work

Get the %\$@#%! ANTS off the %\$@#%! plane

Get the %\$@#%! ANTS off the %\$@#%! plane

Theoretical Problem: Search in \mathbb{R}^3

Get the %\$@#%! ANTS off the %\$@#%! plane

- Theoretical Problem: Search in \mathbb{R}^3
- Practical Problem: Many searches have properties that simplify search along third dimension

Assume: Agent can sense local target density

Assume: Agent can sense local target density

General Problem: Order statistics

Assume: Agent can sense local target density

General Problem: Order statistics

Problem 1: Efficiently estimate target mass

Assume: Agent can sense local target density

General Problem: Order statistics

Problem 1: Efficiently estimate target mass

Problem 2: Find max target density

Assume: Agent can sense local target density

General Problem: Order statistics

Problem 1: Efficiently estimate target mass

Problem 2: Find max target density

Gradient Descent

Questions?