ANTS on a Plane
 Jared Saia

Joint with Abhinav Aggarwal

ANTS on a Plane Jared Saia

Joint with Abhinav Aggarwal

ANTS on a Plane Jared Saia

Joint with Abhinav Aggarwal

ANTS on a Plane Jared Saia

Joint with Abhinav Aggarwal

ANTS problem

\mathbf{N} agents start at node (nest) on infinite grid Target is placed on node at distance \mathbf{L}

Goal: Find the target ASAP

ANTS problem

\mathbf{N} agents start at node (nest) on infinite grid Target is placed on node at distance \mathbf{L}

Goal: Find the target ASAP

Synchronous agents; no communication
Advice: bits to encode \#agents, roles, etc
[Feinerman and Korman, 2017]

ANTS Results
N agents start at node (nest) on infinite grid
Target is placed on node at distance \mathbf{L}
Advice: bits to encode \#agents, roles, etc

ANTS Results

N agents start at node (nest) on infinite grid
Target is placed on node at distance \mathbf{L}
Advice: bits to encode \#agents, roles, etc
$O\left(L+L^{2} / N\right)$ time with $O(\log \log N)$ bits advice
$O\left(\left(L+L^{2} / N\right) \log ^{1+\epsilon} N\right)$ time with no advice, for any fixed $\epsilon>0$
[Feinerman and Korman, 2017]

$O\left(L+L^{2} / N\right)$ is Optimal

Area to Search $\approx L^{2}$
N agents
Need $\approx L^{2} / N$ to search area
Plus L time to reach target

Motivation: Drones seek CO_{2}

Use grid to approximate plane?

Use grid to approximate plane?

Problems:

Choosing grid granularity
Too low: May miss target
Too high: Computational load on agents
Hard to handle different target shapes

Use grid to approximate plane?

Problems:

Choosing grid granularity
Too low: May miss target
Too high: Computational load on agents
Hard to handle different target shapes
Solution: Formulate problem on Euclidean plane

Target Shape

What target shape can we handle?

Target Shape

What target shape can we handle?

A convex shape
Width: Smallest distance between two parallel lines touching boundary but not interior

L is distance to segment W . Assume $W \leq L$.

Our Result - No Advice

$o\left(\left(L+\left(\frac{L^{2}}{N W}\right)\right) \log L\right)$ search time
[F\&K'15] $O\left(\left(L+L^{2} / N\right) \log ^{1+\epsilon} N\right)$ time, for any $\epsilon>0$

Our Result - No Advice

$o\left(\left(L+\left(\frac{L^{2}}{N W}\right)\right) \log L\right)$ search time
[F\&K'15] $O\left(\left(L+L^{2} / N\right) \log ^{1+\epsilon} N\right)$ time, for any $\epsilon>0$
If $t<N$ agents removed by adversary
$O\left(\left(L+\frac{L^{2}(t+1)}{N W}\right) \log L\right)$ search time

Spokes

Spoke: line segment from nest and back
Say target is on circle of circumference 1
How many spokes are needed to find it?

Spokes

Spoke: line segment from nest and back
Say target is on circle of circumference 1
How many spokes are needed to find it?

Suffices: 1/W evenly spaced spokes

Spokes

Spoke: line segment from nest and back
Say target is on circle of circumference 1
How many spokes are needed to find it?

Suffices: 1/W evenly spaced spokes

How to get "evenly" space spokes, when don't know W in advance?

Idea: Use ϕ

Idea: Use $\boldsymbol{\phi}$

Idea: Use $\boldsymbol{\phi}$

Idea: Use ϕ

[Swierczkowski, '58] M points placed at arc distance $\phi \rightarrow \operatorname{arc}$ length between any neighboring points is $\mathrm{O}(1 / \mathrm{M})$

Moreover, $\boldsymbol{\phi}$ minimizes hidden constant over all numbers

Idea: Use ϕ

arc lengths between neighboring spokes are $\approx 1 / 4$
[Swierczkowski, '58] M points placed at arc distance $\phi \rightarrow \operatorname{arc}$ length between any neighboring points is $\mathrm{O}(1 / \mathrm{M})$

Moreover, ϕ minimizes hidden constant over all numbers

Why does $\phi \rightarrow$ well-spread?

Why does $\phi \rightarrow$ well-spread?

Any number can be written as: $x_{1}+$

$$
\overline{x_{2}+\frac{1}{x_{3}+\ldots}}
$$

where x_{i} are integers.

Why does $\phi \rightarrow$ well-spread?

Any number can be written as: $x_{1}+$

$$
\overline{x_{2}+\frac{1}{x_{3}+\ldots}}
$$

where x_{i} are integers.
Small x_{i} means rational approximation hard

Why does $\phi \rightarrow$ well-spread?

Any number can be written as: $x_{1}+$

$$
\overline{x_{2}+\frac{1}{x_{3}+\ldots}}
$$

where x_{i} are integers.
Small x_{i} means rational approximation hard
"Hardest to approximate" number \rightarrow all $x_{i}=1$

Why does $\phi \rightarrow$ well-spread?

Any number can be written as: $x_{1}+$

where x_{i} are integers.
Small x_{i} means rational approximation hard
"Hardest to approximate" number \rightarrow all $x_{i}=1$
To get this, set $y=1+\frac{1}{y}$. Solving yields: $y=\phi$

Why does $\phi \rightarrow$ well-spread?

Any number can be written as: $x_{1}+$

where x_{i} are integers.
"very irrational" \rightarrow well-spread
Small x_{i} means rational approxir
"Hardest to approximate" numbe
To get this, set $y=1+\frac{1}{y}$. Solvir

Why not powers of 2?

Q: Why not have 2^{i} evenly space spokes in iteration i?

Why not powers of 2?

Q: Why not have 2^{i} evenly space spokes in iteration i?
A1: Off from optimal number of spokes by \leq factor of 2 A2: Requires memory for the counter, and also adds algorithmic complexity.

How many spokes?

How many spokes?

$$
\theta=\sin ^{-1} \frac{W}{2 L}
$$

How many spokes?

$$
\theta=\sin ^{-1} \frac{W}{2 L}
$$

Let α be arc length on unit circle

How many spokes?

$$
\theta=\sin ^{-1} \frac{W}{2 L}
$$

Let α be arc length on unit circle
$\alpha=\frac{1}{\pi} \sin ^{-1} \frac{W}{2 L}$
Power Series: $\sin ^{-1} x \geq x$, for $|x| \leq 1$

How many spokes?

$$
\theta=\sin ^{-1} \frac{W}{2 L}
$$

Let α be arc length on unit circle

$$
\alpha=\frac{1}{\pi} \sin ^{-1} \frac{W}{2 L}
$$

Power Series: $\sin ^{-1} x \geq x$, for $|x| \leq 1$

Thus, $\alpha \geq \frac{W}{2 \pi L}$
So by [Swierczkowski, '58], need O(L/W) spokes

How many spokes?

$$
\theta=\sin ^{-1} \frac{W}{2 L}
$$

Let α be arc length on unit circle

$$
\alpha=\frac{1}{\pi} \sin ^{-1} \frac{W}{2 L}
$$

Power Series: $\sin ^{-1} x \geq x$, for $|x| \leq 1$
$O\left(L^{2} / W\right)$ search time!
If know L in advance

How to handle unknown L?

Spoke Length

		1	2	4	8	16
	1					
\mathscr{O}	2					
$\frac{\ominus}{\varrho}$	4					
\#	8					
	16					

How to handle unknown L?

Spoke Length

		1	2	4	8	16
	1	\checkmark				
\mathscr{O}	2					
$\frac{\ominus}{\varrho}$	4					
	8					
	16					

How to handle unknown L?

Spoke Length

How to handle unknown L?

Spoke Length

		1	2	4	8

How to handle unknown L?

Spoke Length

How to handle unknown L?

Spoke Length

Spoke Length

Spoke Length

Spoke Length

		1	2	4	8	16
	1	\checkmark		/		
	2					
	4					
	8					
	16					

Spoke Length

Stream Problem

1) Target hidden in a cell

	1	2	4	8	16
1					
2					
4					
8					
16	0				

2) Algorithm chooses a stream of cells
3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched
Cell $(\mathrm{x}, \mathrm{y}) \operatorname{costs} x \cdot y$

Stream Problem

1) Target hidden in a cell

	1	2	4	8	16
1	κ				
2					
4					
8					
16	0				

2) Algorithm chooses a stream of cells
3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched
Cell $(\mathrm{x}, \mathrm{y}) \operatorname{costs} x \cdot y$

Stream Problem

1) Target hidden in a cell

	1	2	4	8	16
1	\star	$/$			
2	\wedge				
4					
8					
16	0				

2) Algorithm chooses a stream of cells
3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched
Cell $(\mathrm{x}, \mathrm{y}) \operatorname{costs} x \cdot y$

Stream Problem

1) Target hidden in a cell

	1	2	4	8	16
1	k	\prime			
2	-				
4	-				
8					
16	0				

2) Algorithm chooses a stream of cells
3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched
Cell $(\mathrm{x}, \mathrm{y}) \operatorname{costs} x \cdot y$

Stream Problem

1) Target hidden in a cell

	1	2	4	8	16
1	\star				
2					
4					
8	\ddots				
16	0				

2) Algorithm chooses a stream of cells
3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched
Cell $(\mathrm{x}, \mathrm{y}) \operatorname{costs} x \cdot y$

Stream Problem

1) Target hidden in a cell

	1	2	4	8	16
1	\times				
2					
4					
8					
16	0				

2) Algorithm chooses a stream of cells
3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched
Cell $(x, y) \operatorname{costs} x \cdot y$

GoldenFA

For epoch $\mathrm{i}=1$ to ∞,
For each $1 \leq x \leq i$, Make 2^{i-x} spokes of length 2^{x}, rotated by ϕ

	1	2	4	8	16
1	\times	$/$		$/$	
2					
4					
8	$\boxed{ }$				
16					

GoldenFA

For epoch $\mathrm{i}=1$ to ∞,
For each $1 \leq x \leq i$, Make 2^{i-x} spokes of length 2^{x}, rotated by ϕ

	1	2	4	8	16
1	\times	$/$		$/$	
2					
4					
8	$\boxed{ }$				
16					

Number of epochs before reaching distance L: O(log L)

GoldenFA

For epoch $\mathrm{i}=1$ to ∞,
For each $1 \leq x \leq i$, Make 2^{i-x} spokes of length 2^{x}, rotated by ϕ

	1	2	4	8	16
1	\times	$/$		$/$	
2					
4					
8	$\boxed{ }$				
16					

Number of epochs before reaching distance L: O(log L)

GoldenFA

For epoch $\mathrm{i}=1$ to ∞,
For each $1 \leq x \leq i$, Make 2^{i-x} spokes of length 2^{x}, rotated by ϕ

	1	2	4	8	16
1		$/$		$/$	
2	\swarrow				
4					
8	$\boxed{ }$				
16					

Number of epochs before reaching distance L: O(log L)

Number of epochs before the spokes are sufficiently close: O(log (L/W))

GoldenFA

For epoch $\mathrm{i}=1$ to ∞,
For each $1 \leq x \leq i$, Make 2^{i-x} spokes of length 2^{x}, rotated by ϕ

	1	2	4	8	16
1		$/$		$/$	
2	\swarrow				
4					
8	$\boxed{ }$				
16					

Number of epochs before reaching distance L: O(log L)

Number of epochs before the spokes are sufficiently close: O(log (L/W))

GoldenFA

For epoch $\mathrm{i}=1$ to ∞,
For each $1 \leq x \leq i$, Make 2^{i-x} spokes of length 2^{x}, rotated by ϕ

	1	2	4	8	16
1	\times	$/$		$/$	
2					
4					
8					
16					

Number of epochs before reaching distance L: O(log L)

Number of epochs before the spokes are sufficiently close: O(log (L/W))

Cost for epoch i: 2^{i}. i

GoldenFA

For epoch $\mathrm{i}=1$ to ∞,
For each $1 \leq x \leq i$, Make 2^{i-x} spokes of length 2^{x}, rotated by ϕ

	1	2	4	8	16
1	\times	$/$		$/$	
2					
4					
8					
16					

Number of epochs before reaching distance L: O(log L)

Number of epochs before the spokes are sufficiently close: O(log (L/W))

Cost for epoch i: 2^{i}. i

GoldenFA

For epoch $\mathrm{i}=1$ to ∞,
For each $1 \leq x \leq i$, Make 2^{i-x} spokes of length 2^{x}, rotated by ϕ

	1	2	4	8	16
1	\times	$/$		$/$	
2					
4					
8					
16					

Number of epochs before reaching distance L: O(log L)

Number of epochs before the spokes are sufficiently close: O(log (L/W))

Cost for epoch i: 2^{i} - i
Total cost dominated by last epoch:

GoldenFA

For epoch $\mathrm{i}=1$ to ∞,
For each $1 \leq x \leq i$, Make 2^{i-x} spokes of length 2^{x}, rotated by ϕ

	1	2	4	8	16
1	\times	$/$		$/$	
2					
4					
8					
16					

Number of epochs before reaching distance L: O(log L)

Number of epochs before the spokes are sufficiently close: O(log (L/W))

Cost for epoch i: 2^{i} - i
Total cost dominated by last epoch:
$O\left(\frac{L^{2}}{W} \log \frac{L^{2}}{W}\right)=O\left(\frac{L^{2}}{W} \log L\right)$

GoldenFA

For epoch $\mathrm{i}=1$ to ∞,
For each $1 \leq x \leq i$, Make 2^{i-x} spokes of length 2^{x}, rotated by ϕ

	1	2	4	8	16
1	\times	$/$		$/$	
2					
4					
8					
16					

Number of epochs before reaching distance L: O(log L)

Number of epochs before the spokes are sufficiently close: O(log (L/W))

Cost for epoch i: 2^{i} - i
Total cost dominated by last epoch:
$O\left(\frac{L^{2}}{W} \log \frac{L^{2}}{W}\right)=O\left(\frac{L^{2}}{W} \log L\right)$

Multiple Searchers?

Multiple Searchers?

Random Initial Orientation!

N Agents

Each agent chooses a random initial heading In epoch $\mathrm{i}=1$ to ∞,

For each $1 \leq x \leq i$,
$N=3$
Make 2^{i-x} spokes of length 2^{x}, rotated by ϕ

N Agents

Each agent chooses a random initial heading In epoch $\mathrm{i}=1$ to ∞,
For each $1 \leq x \leq i$,
$N=3$
Make 2^{i-x} spokes of length 2^{x}, rotated by ϕ

N Agents

Each agent chooses a random initial heading In epoch $\mathrm{i}=1$ to ∞,
For each $1 \leq x \leq i$,
$N=3$
Make 2^{i-x} spokes of length 2^{x}, rotated by ϕ

N Agents

Each agent chooses a random initial heading In epoch $\mathrm{i}=1$ to ∞,
For each $1 \leq x \leq i$,
$N=3$
Make 2^{i-x} spokes of length 2^{x}, rotated by ϕ
$t<N$ faults
Expected search time:
$o\left(\left(L+\frac{L^{2}(t+1)}{N W}\right) \log L\right)$

N Agents; $t<N$ faults

N Agents; $t<N$ faults

Expected search time:
$O\left(\left(L+\frac{L^{2}(t+1)}{N W}\right) \log L\right)$

N Agents; $t<N$ faults

Expected search time:
$O\left(\left(L+\frac{L^{2}(t+1)}{N W}\right) \log L\right)$
Lower bound on expected search time for "spoke-based":
$\Omega\left(L+\left(\frac{L^{2}(t+1)}{N W}\right) \log L\right)$
"Spoke-based": All search via line segments from nest

N Agents; $t<N$ faults

Compute expected \# agents finding target in
Expected search time:
$O\left(\left(L+\frac{L^{2}(t+1)}{N W}\right) \log L\right)$ each epoch

Lower bound on expected search time for "spoke-based":
$\Omega\left(L+\left(\frac{L^{2}(t+1)}{N W}\right) \log L\right)$
"Spoke-based": All search via line segments from nest

N Agents; $t<N$ faults

Compute expected \# agents finding target in each epoch Use this expectation to bound probability $\leq t$ agents find target

Expected search time:
$O\left(\left(L+\frac{L^{2}(t+1)}{N W}\right) \log L\right)$

Lower bound on expected search time for "spoke-based":
$\Omega\left(L+\left(\frac{L^{2}(t+1)}{N W}\right) \log L\right)$
"Spoke-based": All search via line segments from nest

N Agents; $t<N$ faults

Compute expected \# agents finding target in each epoch Use this expectation to bound probability $\leq t$ agents find target

Expected search time:
$O\left(\left(L+\frac{L^{2}(t+1)}{N W}\right) \log L\right)$

Lower bound on expected search time for "spoke-based":
$\Omega\left(L+\left(\frac{L^{2}(t+1)}{N W}\right) \log L\right)$

Yao's Lemma
on Stream Problem
"Spoke-based": All search via line segments from nest

Experiments

F\&K Advice

Each agent does the following:
For stage $\mathrm{j}=1$ to ∞
For phase $\mathrm{i}=1$ to j
Go to a random point at distance $\leq 2^{i}$ Spiral search for time $2^{2 i+2} / N$ Return to nest

F\&K Advice

Each agent does the following:
For stage $\mathrm{j}=1$ to ∞
For phase i = 1 to j
Go to a random point at distance $\leq 2^{i}$ Spiral search for time $2^{2 i+2} / N$ Return to nest

$\log N$ bits of advice to know N
$\log \log N$ bits of advice to know 2-approximation to N

F\&K NoAdvice (fix $\epsilon>0$)

Each agent does the following
For epoch $\ell=0$ to ∞
For stage $\mathrm{i}=0$ to ℓ
For phase $\mathrm{j}=0$ to i
Go to a random point at distance $\leq \sqrt{\frac{2^{i+j}}{\left\lceil\log ^{1+c} 2^{j}\right\rceil}}$
Spiral search for time $\frac{2^{2 i+2}}{\left\lceil\log ^{1+\epsilon} 2^{j}\right\rceil}$
Return to nest

Algorithms Tested

Algorithm	Advice (bits)	Robustness	Runtime
F\&K (advice)	$O(\log \log N)$	Not Robust	$O\left(L+\frac{L^{2}}{N}\right)$ for $W=\Theta(1)$
F\&K (no advice)	0	Not Robust	$O\left(\begin{array}{c}\left.\left.L+\frac{L^{2}}{N}\right) \log ^{1+\varepsilon} N\right) \text { for fixed } \\ \varepsilon>0 \text { and } W=\Theta(1)\end{array}\right.$ GoldenFA 00
$t<N$	$O\left(\left(L+\frac{L^{2}(t+1)}{N W}\right) \log L\right)$		

Algorithms Tested

Algorithm	Advice (bits)	Robustness	Runtime
F\&K (advice)	$O(\log \log N)$	Not Robust	$O\left(L+\frac{L^{2}}{N}\right)$ for $W=\Theta(1)$
F\&K (no advice)	0	Not Robust	$O\left(\begin{array}{c}\left.\left(+\frac{L^{2}}{N}\right) \log ^{1+\varepsilon} N\right) \text { for fixed } \\ \varepsilon>0 \text { and } W=\Theta(1)\end{array}\right.$ GoldenFA 0$\quad t<N$

GoldenFA-Heuristic:
In epoch i, make $\lceil c(1+\alpha)\rceil$ spokes of length $(1+\alpha)^{i}$ $c \leftarrow 1.9 ; \alpha \leftarrow 7$
F\&K-NoAdvice:
$\epsilon \leftarrow .01$

Varying W; Varying N

$L=500 ; N=1$
$L=500 ; W=4$

Faults

$$
L=500 ; D=4 ; N=100
$$

Conclusion

Till

 \%\$@\#!@\$\%!
 \%\$@\#!@\$\%!

Results Recap

$\mathrm{L}=$ target distance; $\mathrm{W}=$ target width;
N = \# agents; t = \# faults

Results Recap

$\mathrm{L}=$ target distance; $\mathrm{W}=$ target width;
N = \# agents; t = \# faults
Expected search time:
$O\left(\left(L+\frac{L^{2}(t+1)}{N W}\right) \log L\right)$

Results Recap

$\mathrm{L}=$ target distance; $\mathrm{W}=$ target width;
N = \# agents; t = \# faults
Expected search time:
$O\left(\left(L+\frac{L^{2}(t+1)}{N W}\right) \log L\right)$
Lower bound on expected search time for "spoke-based":
$\Omega\left(L+\left(\frac{L^{2}(t+1)}{N W}\right) \log L\right)$

Future Work

Get the \%\$@\#\%! ANTS off the \%\$@\#\%! plane

Get the \%\$@\#\%! ANTS off the \%\$@\#\%! plane

Theoretical Problem: Search in \mathbb{R}^{3}

Get the \%\$@\#\%! ANTS off the \%\$@\#\%! plane

Theoretical Problem: Search in \mathbb{R}^{3}
Practical Problem: Many searches have properties that simplify search along third dimension

Target Density

Target Density

Assume: Agent can sense local target density

Target Density

Assume: Agent can sense local target density
General Problem: Order statistics

Target Density

Assume: Agent can sense local target density
General Problem: Order statistics
Problem 1: Efficiently estimate target mass

Target Density

Assume: Agent can sense local target density
General Problem: Order statistics
Problem 1: Efficiently estimate target mass
Problem 2: Find max target density

Target Density

Assume: Agent can sense local target density
General Problem: Order statistics
Problem 1: Efficiently estimate target mass
Problem 2: Find max target density
Gradient Descent

Questions?

