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We address the problem of Byzantine agreement, to bring processors to agreement on a bit in the presence
of a strong adversary. This adversary has full information of the state of all processors, the ability to control
message scheduling in an asynchronous model, and the ability to control the behavior of a constant fraction
of processors which it may choose to corrupt adaptively.

In 1983, Ben-Or proposed an algorithm for solving this problem with expected exponential communica-
tion time. In this paper, we improve that result to require expected polynomial communication time and
computation time. Like Ben-Or’s algorithm, our algorithm uses coinflips from individual processors to re-
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processors that have thwarted this goal, by flipping biased coins.
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1. INTRODUCTION

How can we build a reliable system when many parts are unreliable? Byzantine agree-
ment is fundamental to addressing this question. The Byzantine agreement problem
is to devise an algorithm so that n processors, each with a private input can agree on
a single common output that is equal to some processor’s input. For example, if all
processors start with 1, they must all decide on 1. The processors should successfully
terminate despite the presence of t = O(n) bad processors. An adversary controls the
behavior of the bad processors which can deviate from the algorithm in arbitrary ways.
Byzantine agreement is one of the most fundamental problems in distributed comput-
ing; it has been studied for over 30 years and is referenced in tens of thousands of
papers.

In this paper, we consider Byzantine agreement in the challenging classic asyn-
chronous message-passing model. There is an authenticated channel between every
pair of processors. The adversary is adaptive: it can determine which processors to cor-
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0:2 King and Saia

rupt and what strategy these processors should use as the algorithm proceeds. Com-
munication is asynchronous: the scheduling of the delivery of messages is set by the
adversary, so that the delays are unpredictable to the algorithm. Finally, the adversary
has full information: it knows the states of all processors at any time, and is assumed
to be computationally unbounded. Such an adversary is also known as “strong” [Attiya
and Welch 2004].

We assume that each processor has its own fair coin and may at any time flip the
coin and decide what to do next based on the outcome of the flip. The major constraint
on the adversary is that it cannot predict future coinflips.

Communication time in this model is defined to be the maximum length of any chain
of messages (see [Chor and Dwork 1989; Attiya and Welch 2004]). In particular, all
computation by individual processors is assumed to be instantaneous, and sending a
message over the network is counted as taking 1 unit of time. In addition, we consider
computation time by individual processors, which is measured in the usual way.

The only results known to the authors for this classic model are the works of Ben-Or
(1983) [Ben-Or 1983] and Bracha (1984) [Bracha 1984; 1987a]. Ben-Or gave a Byzan-
tine agreement (BA) algorithm tolerating ¢ < n/5. Bracha improved this tolerance to
t < n/3. Unfortunately, both of these algorithms run in exponential expected commu-
nication time if t = ©(n). In 2006, Ben-Or, Pavlov and Vaikuntanathan [Ben-Or et al.
2006] wrote:

“In the case of an asynchronous network, achieving even a polynomial-rounds BA pro-
tocol is open. We note that the best known asynchronous BA protocols [Ben-Or 1983;
Bracha 1984] have exponential expected round-complexity”

To the authors’ knowledge, we present the first algorithm for this problem to achieve
better than exponential expected run time.

1.1. Main Results
The main results of this paper are as follows.

THEOREM 1.1. Byzantine Agreement can be solved in the classic model in expected
O(n®) communication time, expected polynomial computation time per processor, and
expected polynomial bits of communication. The number of faulty processors that can
be tolerated is linear, specifically t < 4.25 x 10~ "n.

We can improve communication time by using exponential computation time as fol-
lows.

THEOREM 1.2. Byzantine Agreement can be solved in the classic model in expected
O(n?%/logn) communication time, expected exponential computation time per proces-
sor, and expected polynomial bits of communication. The number of faulty processors
that can be tolerated is linear, specifically t < n/400.

Results here first appeared in conference proceedings [King and Saia 2013] and
[King and Saia 2014].

1.2. Other Contributions

Our algorithm involves repeated attempts to compute a global coin. We show that pro-
cessors which successfully thwart this goal must engage in behavior that is detectable
using spectral analysis. This suggests a new paradigm for secure distributed com-
puting: the design of algorithms such that an effective attack exposes the identity of
processors controlled by the adversary.

We also define the asynchronous blackboard model to simplify the presentation of
our algorithms. We show it can be implemented with only constant factor overhead in
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the classic model. The blackboard model depicts all communication among processors
as a sequence of matrices. Once a matrix is generated, all processors sync, i.e., they
read all the same values except perhaps one for each of ¢ processors, before generat-
ing the next matrix. We believe that the asynchronous blackboard model may be of
independent interest for developing algorithms in the classic model.

Paper Organization: The rest of this paper is organized as follows. Section 2 de-
scribes related work. In Section 3, we present our main algorithm. It is a modified
version of Bracha’s algorithm, MODIFIED-BRACHA, which calls upon a coinflip al-
gorithm we call GLOBAL-COIN. The blackboard model and the GLOBAL-COIN pro-
cedure are presented in Section 4.

In Section 5, we analyze properties of the coinflips generated and broadcast over
multiple calls to GLOBAL-COIN. In particular, we perform an analysis after O(n)
calls (an “epoch”) to GLOBAL-COIN.

We then describe two different methods for eliminating bad processors. In Section 6,
we describe PROCESS-EPOCH 1 which uses techniques from spectral analysis, and
has expected polynomial computation time and expected O(n?) communication time. In
Section 7, we describe PROCESS-EPOCH 2, which uses a brute-force approach, and
has expected exponential computation time and expected O(n?logn) communication
time.

Section 8 discusses future directions and open problems.

2. RELATED WORK
2.1. Byzantine agreement

Papers published on Byzantine agreement number into the thousands. We refer the
reader to [Attiya and Welch 2004; Lynch 1996] for a general overview of the problem.
For conciseness, we focus here only on the classic asynchronous model, where the ad-
versary is adaptive and has full information.

The Byzantine agreement problem was introduced over 30 years ago by Lamport,
Shostak and Pease [Lamport et al. 1982]. In the model where faulty behavior is lim-
ited to adversary-controlled stops known as crash failures, but bad processors other-
wise follow the algorithm, the problem of Byzantine agreement is known as consensus.
In 1983, Fischer, Lynch and Paterson (FLP) showed that a deterministic algorithm
cannot solve the consensus problem in an asynchronous model even with one faulty
processor [Fischer et al. 1985].

In 1983, Ben-Or introduced randomization, where each processor can flip a ran-
dom private coin, as a way to avoid the FLP impossibility result. His algorithm solved
Byzantine agreement in communication time exponential in the number of proces-
sors, in the classic asynchronous model. His algorithm consists of multiple rounds in
which each good processor flips a coin. The communication time is proportional to the
expected number of rounds before the number of heads exceeds the number of tails
by more than ¢. Thus, in expectation, this algorithm has constant running time if
t = O(y/n), but has exponential running time for ¢ any constant fraction of n, up to
t<n/5.

The resilience (number of faulty processors tolerated) was improved to ¢t < n/3 by
Bracha [Bracha 1984; 1987a]. The communication time remained exponential. This
resilience is the best possible even for randomized algorithms[Karlin and Yao 1984].

2.1.1. Variants on Classic Model. We note that the full-information assumption makes
the problem challenging. Randomized algorithms for Byzantine agreement with re-
silience ¢t = O(n) and constant expected time have been known for 25 years, under the
assumption of private channels (so that the adversary cannot see messages passed be-
tween processors) [Feldman and Micali 1985]. Under these assumptions, more recent
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work shows that optimal resilience can be achieved [Canetti and Rabin 1993]. With
cryptographic assumptions, it is possible to achieve Byzantine agreement in O(1) com-
munication time and polynomial computation time, even in the asynchronous model
when the adversary is adaptive (see e.g. [Cachin et al. 2005]).

Byzantine agreement was also more recently shown to require only polylogarithmic
time in the full information model if the adversary is static, meaning that the adver-
sary must choose the faulty processors at the start, without knowing the random bits
of the algorithm [Kapron et al. 2009]. The technique is to elect a very small subset of
processors which contain a less than 1/3 fraction of faulty processors; this subset then
runs the exponential time algorithm on their inputs. Such a technique does not seem
applicable when the adversary is adaptive and can decide to corrupt the elected set
after it sees the result of the election.

2.1.2. Lower Bounds. Randomized consensus (and Byzantine agreement) algorithms
are discussed extensively in Aspnes’s 2003 survey on the topic [Aspnes 2003]. That
paper includes a discussion of the solution to consensus in the shared memory model
when up to n — 1 crash failures occur. In the shared memory model, cost is measured
by the total step complexity. Algorithms with expected polynomial steps for consensus
with shared memory were introduced in 1990 [Aspnes and Herlihy 1990].

In 1998, Aspnes showed a Q(n?/log?n) bound on the number of coinflips required
for consensus [Aspnes 1998]. In 2008, Attiya and Censor-Hillel showed tight upper
and lower bounds of ©(n?) on the total number of steps required for consensus in
the shared memory model [Attiya and Censor 2008]. Any shared memory algorithm
for consensus can be simulated by a message passing algorithm with constant time
overhead, provided that the number of faults is less than n/2. The lower bound of
Q(n?) steps implies a (n) time bound for consensus! in the message passing model,
where at least n/2 processors may be executing in parallel.

In 2011, Lewko [Lewko 2011] considered a certain class of “fully symmetric round
protocols” for solving Byzantine agreement in the asynchronous model with an an
adaptive adversary with full information. In a fully symmetric protocol, “a processor
computes its message to broadcast in the next round as a randomized function of the
set of messages it has validated, without regard to their senders.” Lewko showed that
any such protocol could be forced by an adversary to run in exponential expected time.
Since our algorithm considers the identity of processors when processing coinflips, our
algorithm is not a fully symmetric round protocol.

2.2. Blackboard Model

Our blackboard model can be viewed as an extension of the Spread algorithm of [Ben-
Or and El-Yaniv 2003], and the algorithms to simulate identical Byzantine failure that
are due to Neiger and Toueg [Neiger and Toueg 1990] and Bracha [Bracha 1987b] (see
also Chapter 12 of [Attiya and Welch 2004]).

2.3. Spectral Methods

Spectral methods have been used frequently to identify trustworthy and untrustwor-
thy processors in decentralized systems. Perhaps one of the most prominent applica-
tions is identifying trustworthy web pages. The PageRank algorithm [Page et al. 1999]
(which was inspired by the spectral-based Clever algorithm of Kleinberg [Kleinberg
1999; Chakrabarti et al. 1999]) is well-known as the basis by which Google ranks web
documents. PageRank ranks web pages based on the top eigenvector of a stochastic ma-
trix that describes a random walk over the web graph. This eigenvector corresponds

las well as Byzantine agreement
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to the stationary distribution of the random walk, and pages that have high probabil-
ities in this stationary distribution are considered to be “authoritative” web pages. It
is known that PageRank is relatively robust to adversarial attempts to thwart it by
adding a small number of spurious links to the web graph [Zhang et al. 2004; Azar
et al. 2001].

The idea of PageRank is the basis of the eigentrust algorithm [Kamvar et al. 2003]
(see also [Xiong and Liu 2004; Guha et al. 2004; Zhang et al. 2004]). Eigentrust cal-
culates the stationary distribution (the top eigenvector) of a random walk in a trust
graph, where an edge from processor i to processor j has weight w; ; that indicates how
much processor ¢ trusts processor j. Processors with high probabilities in this station-
ary distribution are considered trustworthy. Eigentrust also provides some protection
against collusion by bad processors.

We note that, in a sense, our approach is the opposite of eigentrust. In our algo-
rithm, processors with high absolute values in the top right singular vector are not
trustworthy. Intuitively, this is because in our algorithm, good processors have ran-
dom coinflips, and so over time, the columns controlled by these processors will have
little “structure”, which translates to a small absolute value in the singular vector.

Our spectral approach shares some similarities with the hidden clique detection
problem. In this problem, proposed independently by Jerrum [Jerrum 1992] and
Kucera [Kucera 1995], a random G(n,1/2) graph is chosen and then a clique of size
k is randomly placed in the graph. Alon, Krivelivich and Sudakov [Alon et al. 1998]
described a spectral algorithm that can find a clique, with high probability (“w.h.p.”)
i.e., 1 — 1/n¢ for any fixed constant ¢, when £ = Q(y/n) [Alon et al. 1998]. Roughly, this
algorithm 1) finds the second eigenvector of the adjacency matrix of this graph; 2) sets
W to be the top k vertices when the vertices are sorted in decreasing order by their
absolute value in this eigenvector; and 3) returns as the clique the set of all vertices of
the graph that have at least 3k/4 neighbors in W.

3. THE BYZANTINE-AGREEMENT ALGORITHM

In this section, we describe our main algorithm BYZANTINE-AGREEMENT (Algo-
rithm 1). We first give an overview of the algorithm.

3.1. Algorithm Overview

Our algorithm BYZANTINE-AGREEMENT proceeds in epochs. Each epoch con-
sists of m = ©(n) iterations of MODIFIED-BRACHA, which is based on Bracha’s
1984 exponential expected time Byzantine agreement algorithm. Each iteration
of MODIFIED-BRACHA attempts to generate a global coin using the algorithm
GLOBAL-COIN. In each iteration, there is a “correct direction” that is unknown to
the algorithm. If the global coin is in the correct direction for enough good processors,
then Algorithm 1 will succeed in the next iteration.

Initially, each processor p has a whitelist, V,,, consisting of all processors. When pro-
cessor p calls GLOBAL-COIN, it uses coinflip messages only from processors in V.
If, for a constant fraction of processors p, V), consists of all good processors, then with
constant probability, the global coin will be in the correct direction, and the algorithm
will terminate in the next iteration.

The challenge for a processor p is to analyze coinflip messages received during an
epoch to decide which processors to remove from V,,. This is the purpose of PROCESS-
EPOCH. There are two variants of PROCESS-EPOCH, a spectral variant (Section 6)
and an exponential computational time variant (Section 7).

In both variants of PROCESS-EPOCH, each processor p analyzes data from the
epoch to assign “badness” in the form of score,(v) to processors v. When the score
value for a processor gets sufficiently high, that processor is removed from V). Only
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coinflips from processors in V), are used by p in future epochs. After c;n epochs, where
¢1 is a constant, if no agreement is reached, the sets V), are reinitialized to V, and the
algorithm is restarted from scratch.

A key technical detail remains: how to deal with asynchronicity. Our main tool for
this is the asynchronous blackboard model (Section 4). In this model, there is an ideal-
ized m by n matrix in which each of the n processors writes up to n values. We describe
an algorithm, x-synch (Section 4.1, that ensures each processor will read all the same
values from this matrix, except perhaps one value for each of ¢ processors. We use the
blackboard model to ensure that in each iteration, the adversary is not able to use
asynchronous message scheduling to throw out too many coinflip messages from good
processors.

In the rest of this section, we discuss details of MODIFIED-BRACHA (Section 3.3)
and Bracha’s Reliable Broadcast algorithm (Section 3.2), which is used as a primitive
in MODIFIED-BRACHA, and in many other algorithms throughout this paper.

ALGORITHM 1: BYZANTINE-AGREEMENT
1: while there is no decision do
2:  Foreachv €V, score,(v) < 0
3:  V, < the set of all processors
4: for e =1tocin {“pruns epoch ¢’} do
5: for i =1tom do
6: Run iteration : of MODIFIED-BRACHA
7
8
9

end for
Run PROCESS-EPOCH
:  end for
10: end while

3.2. Reliable Broadcast

ALGORITHM 2: Bracha’s Reliable Broadcast
1: Send (initial, m) to all processors.
2: Upon receiving (initial, m), send (echo, m) to all processors.
3: Upon receiving either n — ¢ messages (echo,m) or t + 1 (ready, m) messages, send
(ready, m) to all processors.
4: Upon receiving n — t (ready, m) messages, r-receive m.

Our algorithm makes use of reliable broadcast which we will use throughout this pa-
per. In this constant round primitive, a single player calls reliable broadcast [Bracha
1987a] for a particularly message m, and subsequently, all players may r-receive ex-
actly one message.

Our version of reliable broadcast Algorithm 2 has the following properties.

Reliable Broadcast Properties

(1) If a good player broadcasts a message m, then all good players eventually r-receive
m.

(2) If a bad player p broadcasts a message then either all good players r-receive the
message, or no good players r-receive the message.

(3) If a message is r-received, then at least n — 2¢ good processors participated in the
broadcast.
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While Property 3 is not typically stated, it is easy to see?, and is used in the proof of
Lemma 6 in [Ben-Or and El-Yaniv 2003].

Note: When a reliable broadcast is initiated by a processor, all processors continue
to participate in this reliable broadcast while executing other steps of the algorithm.

The next lemma describes the latency of this algorithm.

LEMMA 3.1. If a good processor reliably broadcasts a message, the latency of that
reliable broadcast is O(1). If a bad processor reliably broadcasts a message, then if 1
processor r-receives a message, then all good processors will r-receive that message in 2
units of time.

PROOF. To see this, note that if a good processor r-received a message m at time x
then it received n — ¢ (ready, m) messages at time z. Thus, n — 2t good processors sent
(ready, m) messages by time z. Then, every good processor will receive n — 2t > t + 1
(ready, m) messages by time z + 1 and will send (ready, m) messages. Hence at time
x + 2, all good processors will receive n — t (ready, m) messages and so will r-receive
m. O

3.3. MODIFIED-BRACHA

We refer to each iteration of the while-loop as an iteration of MODIFIED-BRACHA.
We assume every message is labelled with its step number and iteration number.

We say that processor p validates a message as follows. It validates all messages
r-received in step 1. It validates a message m from processor ¢ in step & > 1 if there
exists a subset of messages validated by p from steps less than k& which if received by ¢
could cause ¢ to send m in step k.

In Bracha’s 1984 algorithm, a global coin is created, with exponentially small proba-
bility, when each processor flips one coin and their values all coincide. We replace these
individual coin flips with a routine, GLOBAL-COIN involving up to n coin flips per
processor.

Note that some processors may participate in GLOBAL-COIN even though they do
not use its outcome, to ensure full participation by good processors. In MODIFIED-
BRACHA, v, is initialized to be the processor p’s input bit for Byzantine agreement.

ALGORITHM 3: MODIFIED-BRACHA for process p

: while there is no decision, repeat do
Reliably broadcast v, and wait until validate n — ¢ messages;
vp < majority of the r-received messages.
Reliably broadcast v, and wait until validate n — ¢ messages;
: If more than n/2 messages have same value v then v, + v
Reliably broadcast v, and wait until validate n — ¢ messages;
Let © = number of messages of the form v are r-received.
: a) CASE z > 2t: decide v;
: b) CASE t < z < 2¢:run GLOBAL COIN but set v, + v;
10: ¢) CASE z < t: v, + GLOBAL-COIN.
11: end while

PPN

©

LEMMA 3.2 ([BRACHA 1987A]). In an iteration of MODIFIED-BRACHA with
t<n/3:

2If less than n — 2t good processors participate, then the last step of Algorithm 2 will never be completed
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(1) Either there is agreement in the current or next iteration, or all good processors run
GLOBAL-COIN.

(2) If greater than 2n/3 good processors start with the same bit value v, then every
good processor will decide on v in that iteration. In particular, if GLOBAL-COIN
returns v (from Step 4(b)) to 2n/3 good processors then every good processor comes
to agreement in the next iteration.

4. THE BLACKBOARD MODEL

The goal of GLOBAL-COIN is to generate, with constant probability, a fair coinflip
that is agreed upon by a large fraction of good processors, or to provide data which,
after Q(n) iterations, will enable individual processors to identify bad processors. The
algorithm requires each processor to repeatedly perform a coinflip where heads is +1
and tails is -1, and broadcast up to n of these coinflips. Upon receiving sufficiently
many coinflips, each processor p computes the sum of coinflips received from each pro-
cessor ¢ € V,, and then decides on the sign of the total sum of coinflips received. In
order to implement GLOBAL-COIN, we introduce a new model, the asynchronous
blackboard model, which may be of independent interest.

4.1. The z-synch algorithm

The blackboard model where each player writes to a blackboard that all can see is a
model commonly used in the study of communication complexity. Here, we describe an
asynchronous blackboard model which can be simulated in our message-passing model
with ¢ processors controlled by the adversary.

The modified blackboard model runs in global time steps called z-syncs where z is
a parameter specified by the algorithm ahead of time. It has the following properties.
Each z-synch consists of up to x individual processor time steps. The communication
which results from an z-sync is described by what we call an asynchronous blackboard
denoted by BB. BB is defined globally, but each processor j; may have a different view
of BB, denoted B5;.

An z-synch ensures that 1) at least n —t processors write  messages and these mes-
sages are read by all processors; 2) all remaining processors p write up to x messages
and all of p’s messages, except possibly the last, are read by all other processors; and
3) the adversary must decide whether or not to allow a write to the blackboard by a
processor at time ¢ before the processor initiates a write at time ¢ + 1.

A 1-synch is more powerful than a usual “round” in an asynchronous message pass-
ing model in the following way. A typical round ends for a processor when it receives
n — t messages from any subset of processors in that round. A 1-synch is stronger in
that it ensures that there is a set of n — ¢ processors such that all processors read
messages from this set before termination. 3

We next give a detailed definition.

Properties of an z-synch For an x-synch with n processors, the asynchronous black-
board BB has n columns and m rows. We say that a value is written at time t to BB if
after time ¢, the adversary cannot prevent that value from being in BB.

If a cell has no value written to it, we say that that cell is null. A cell of the black-
board that is not null can be ambiguous, meaning that the value written to the cell
can be seen by some processors, but the cell appears as null to others. If a cell is not
ambiguous, then all processors read the same value at that cell when they terminate.
Every processor eventually terminates the z-synch.

3A 1-synch is a slightly extended version of the protocol Spread as described by Ben-Or and El-Yaniv [Ben-Or
and El-Yaniv 2003].
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Recall that the adversary can take over up to t processors. Once the adversary
takes over a processor, it controls it for the remainder of the algorithm. The adversary
decides which processor to take over at any time during the algorithm and knows the
state of all processors. An z-synch has the following key properties.

z-sync Properties:

(1) For all 1 < i < z, each processor j generates a value for BB[i, j] only after writing

(2) There are n — t columns, S, each containing z non-null entries on the black-
board. For every column j ¢ S, there is a row last(j) such that cells in
BB[1,j], ..., BB[last(j) — 1,j] have values written to them and are not ambigu-
ous; the cell BB[last(j),j] has a value written to it, but is ambiguous; and cells
BBlast(j + 1), ..., BB[m, j] are null.

(3) The adversary may see all messages generated by good processors during an z-
synch before writing the messages of the processors it controls.

Algorithm 4 performs an z-synch in our message passing model. We let message(i, j)
be the i-th message that processor j generates. For a processor j, the matrix 55; is the
output of the z-synch. We show later that for any entry (4, j) and any pair of processors
x and y, if both BB, (i, j) and BB, (i, j) are not null, then BB, (i, j) = BB, (i, j).

Hence we can define:

. | BB;(i,5) if BBj # null for some j’
BB(i,j) = { nuljl Otherjwise

“Participation” in reliable broadcast means to send messages in response to others’
messages but not to initiate a reliable broadcast. We assume that all processors par-
ticipate in reliable broadcasts initiated by others except where stated.

4.2. Analysis of the z-synch algorithm
LEMMA 4.1. Every processor eventually terminates in Algorithm 4.

PROOF. We first show that all processors leave the while-loop. We do this in two
parts. First, we show that if one good processor leaves the while-loop, then eventually
all good processors leave the while-loop. The one good processor must have r-received
message(1,j'),...,message(x,j') from n — ¢ processors j'. By the property of reliable
broadcast, every good processor will thus eventually r-receive these same messages.

We now show that one good processor will eventually leave the while-loop. Assume
no good processor ever leaves the while-loop. For each processor j let i; be the last i
value set by processor j. There are two cases.

Case 1: At least one good processor j has i; < z. Processor j has reliably broadcast
message(i;, j). Hence either i; = 1 or it has r-received n — ¢ acks for message(i; — 1, j).
Hence, these n — ¢ acks will eventually be r-received by all good processors. Thus,
all n — ¢ good processors will eventually participate in the reliable broadcast of
message(i;, j). By assumption, no good processors leave the while-loop, thus all n — ¢
good processors will eventually r-receive message(i;, j), and reliably broadcast an ack.
Finally, n — t acks will eventually be received by processor j for this message. Thus,
processor j will increment 4;, which is a contradiction.

Case 2: For all good processors j, i; = . Then all the n — ¢t good processors j have reli-

ably broadcast message(1, j), ..., message(z, j). Then every good processor will r-receive
these messages and will leave the while-loop and execute step 9.

Journal of the ACM, Vol. 0, No. 0, Article 0, Publication date: 2014.



0:10 King and Saia

ALGORITHM 4: z-synch for each processor j
11+ 1

{Generate Messages: }
2: While there are fewer than n — ¢ processors ;' such that message(1,5’), ..., message(z, ')
have been r-received do in parallel
3:  Generate and reliably broadcast message(i, 7). Participate in reliable broadcast for
message(i, j') for any processor j', only if i = 1 or have r-received n — t acks for
message(i — 1,j').
4:  Upon r-receiving message(i, j') for any processor j', reliably broadcast an ack for
message(i, j')
if acks for message(i, j) are r-received from n — t processors and i < z then
increment &
end if
: end while

® 2 p %

{Spread: }

9: Reliably broadcast the matrix BB; where BB; (i, ;') = message(i, j') if message(i, j') has
been r-received and null otherwise. Participate in the reliable broadcast of BB, for other
processors ;" only if the matrix contains n — ¢ full columns and each entry in the matrix has
been r-received. .

10: Wait until matrices BB;» are r-received from ¢ + 1 processors ;"

11: Update BB;: replace any null entry BB; (i, ;') by the non-null message(i, j’) which has been
r-received.

{Final Update: }

12: Reliably broadcast BB;

13: Wait until r-receive matrices BB;» from n — ¢ processors ;j”

14: Update BB;: replace any null entry BB; (i, ;') by the non-null value in BB;» (i, j') if it
appears in the BB, for t + 1 processors j”.

We have shown that all good processors eventually leave the while loop.

Now, let j be any good processor and BAB]» be the matrix reliably broadcast during
step 9. BB ;i has n —t columns where all entries have been r-received by j. Hence, each
entry in these n — ¢ columns of BB ; will eventually be r-received by all good processors.

Then all good processors will eventually participate in the reliable broadcast of BB s
and so all good processors will eventually r-receive BABJ-, and complete step 10, and

then enter step 12. As all good processors will enter step 12, they will complete steps
13 and 14 and terminate. O

Correctness: We now show that Algorithm 4 satisfies the properties of an z-synch.
We assume ¢ < n/4.

LEMMA 4.2. If message(i,j) is r-received by at least n — 2t good processors before
they execute step 12, then BBJi, j] is not ambiguous and not null.

PROOF. Let message(i, j) be any message that is r-received by n — 2t good processors
before they execute step 12. When any good processor, ;' finishes step 13, it must have
r-received matrices from n —t¢ processors, which includes at least n — 2t good processors,
of which all but at most ¢ have seen message(i, j) before broadcasting their matrices.
Therefore, at least n — 3t of the matrices received by processor j’ in step 13 contain the
value message(i, j) in the (i, j)-th entry of the matrix. Hence if n — 3¢ > ¢, processor ;'
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will set BB, [i, j] to message(i, j) in Step 14. Since j’ was arbitrary, all good processors
j' will do the same. 0O

LEMMA 4.3. At least n — t full columns of BB have no entries that are ambiguous
or null.

PRrROOF. In step 10, t + 1 matrices are r-received by processor j; there must be at
least one matrix which was broadcast by a good processor. Let BBj/ be the first such
matrix which is r-received by any good processor and ¢ be the time it was r-received.
Since ;' has exited the while-loop, BABJ-/ contains n — ¢ full columns of entries which j’
has r-received. Since BAB]‘/ is r-received, by Property 3 of reliable broadcast, n — 2t good
processors must have participated in the reliable broadcast of BB i+ before time t. As
specified in step 9, these processors must have r-received the entries of BABJ-/ at some
time ¢’ < t. Since 3Bj/ is the first such matrix, ¢ is prior to the time that any good
processor finishes step 10.

Hence in step 11, for at least n — 2t good processors j”, BAij will match the non-null

values of BB,
Thus, by Lemma 4.2, BB[i, j| is not ambiguous and not null, for all non-null entries

(i,7) of BB;. This includes the n — ¢ full columns of BB;,. O

LEMMA 4.4. In the matrix BB, all entries in a column that follow an ambiguous
entry are null, and all entries that precede it are non-null and non-ambiguous.

PROOF. Fix a processor j' and let i’ be the smallest value such that BB[/, j'] is am-
biguous or null. By the contrapositive of Lemma 4.2, fewer than n — 2¢ good processors
r-received message(i’, j') before they executed step 12. Thus, fewer than n — 2¢ proces-
sors r-received message(i’, j') before they terminated the while-loop. Therefore, fewer
than n — 2t good processors broadcast an ack for message(i’, ;') and no good processor
participated in a reliable broadcast of any message(i”, j') for i" > i'.

By the above, no good processor will r-receive any message(i”, j') for i > i’. Thus in
step 14, for all but at most ¢ processors j”, the entries for B85, (i, j') will be null. Thus,
for all good processors j, BB;(i”, ;') is null and the lemma follows. O

LEMMA 4.5. Forall 1 < i < z, each good processor j generates a value for BBJi, j]
only after writing BB[i — 1, j|

PROOF. For all 1 < i < x, each good processor j only generates message(i,j) af-
ter r-receiving acks from n — t processors (and at least n — 2t good processors) for
message(i—1, j). Since these n—2t good processors sent an ack, they have not yet exited
the while-loop and therefore message(i — 1, j) was r-received by them by step 11. Thus,
by Lemma 4.2, it will appear in BB[i — 1, j]. Hence it was written before message|(i, j)
was generated. O

THEOREM 4.6. If t < n/4, Algorithm 4 implements an xz-synch in the message-
passing model in time O(x).

PROOF. Correctness follows from Lemmas 4.3, 4.4, and 4.5.

All good processors will exit the while loop in O(x) time. This is true since each of
the reliable broadcasts by good processors take O(1) time (see Lemma 3.1). Any mes-
sage that is r-received by some good processor will be r-received by all good processors
within 2 time steps.

In step 9 if a good processor reliably broadcasts a matrix, it will take O(1) time to
r-receive all entries for that matrix. Thus it takes O(1) additional time for all good
processors to complete this step. A similar analysis holds to show that step 9 adds
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O(1) time. Finally the time to complete step 13 is O(1), which is the time for reliable
broadcast for good processors. O

4.3. The GLOBAL-COIN algorithm

Algorithm 5 creates a candidate global coin in the asynchronous blackboard model. For
each good processor p, each message that p broadcasts in the n-synch is the outcome of
a fair coinflip.

ALGORITHM 5: GLOBAL-COIN for processor p

{Perform an n-synch: }

1: Participate in an n-synch in which each message (7, p) is the outcome of a private fair
coinflip.
{After terminating the n — synch: }

2: {Exclude from V},:} If the sum of the coins in any column j have absolute value greater than
5vnlnn, remove j from V.
{Compute possible global coinflip : }

3: Sum up the entries in the blackboard B3, in columns V,, and set one’s vote to the sign of the
sum.

Let M denote the m x n matrix such that M(i, j) is the sum of coinflips written by
processor j in the i-th iteration of MODIFIED-BRACHA by processor j. Note that we
use the term “coinflips” to also refer to values set by the adversary.

Let M,, denote the m x n matrix such that M,(7, j) is the sum of coinflips received by
p in the i-th iteration of MODIFIED-BRACHA from processor j € V, (for all j ¢ V,,
M, (i, ) = 0 for all 7).

LEMMA 4.7. GLOBAL-COIN has the following properties:

(1) |(Mp(3,5) — M(i,7)| < 1 for all processors p, for each iteration i, and for all j € V),
(2) For any row i, there are n —t entries j such that M(i, j) is the sum of n coinflips and
(3) With probability greater than 1 —1/n8, for any iteration i and any good processor j,

M(i,j) < 5y/nlogn — 1.

PROOF. The first two properties follow directly from the properties of the black-
board model. For the last property, M(i,j) is the sum of up to n coinflips by a good
processor. Thus, this follows as a consequence of Chernoff bounds (see Fact 1 below):

Pr(X >5vVnlnn —1) < Pr(X > 4vnlnn) < e (16nmn)/2n — 1 /p8

5. PROPERTIES OF COINFLIPS

5.1. Useful lemmas about the distribution of coinflips

The deviation of a sequence of coinflips is the absolute value of its sum. We refer to
the sign of the sum as the direction of the deviation. Below we set a = /2n(n — 2t)
and 8 = a — 2t. We first analyze the deviations of the coinflips generated by the good
processors. We use the following facts about distributions of random coinflips:

Fact 1: (Chernoff): Let X be the sum of V independent coinflips. Then for any positive
a, Pr(X > a) < e=a"/2N

Fact 2: ([Feller 1968], Chapter 7) Let X be the sum of N independent coin-
flips. Let ®(a) = 1/v2r [ e V/*°dy. Then Pr(X > aVN) converges to

1—®(a) > (1/a—1/a®)(1/v27)e*"/2 E.g., Pr(X > v2N) > 1/20.
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By Fact 2 and the symmetry of +1’s and -1’s:

LEMMA 5.1. A set of at least n(n — 2t) good coinflips has a deviation of a@ =
v/2n(n — 2t) in any specified direction with probability at least 1/20.

LEMMA 5.2. A set of no more than nt good coinflips has a deviation of more than
B/2 = \/2n(n — 2t)/2 — t with probability at most e~(#/2*/2tn_[f < n/36, then 3/2 >
23n,/36 and this probability is at most ¢~ ((23/36)n)*/(2n*(1/36)) (=11,

From now on, we assume t < n/36.

5.2. No agreement implies unusual deviation by bad processors

In this subsection, we assume that no more than ¢ good processors have been removed
from V), for any p and assume that there is no agreement over m > n iterations. We let
G be the set of all good processors.

We show (Lemma 5.5) that this implies there is a set P’ of ©(n) good processors,
such that for every p € P’, there are O(m) iterations in which p detects large (at least
£/2) deviation by bad processors.

For each iteration of MODIFIED-BRACHA, there is a particular value for the
global coin flip (+1 or -1) which will result in agreement. We call this the correct di-
rection. For each iteration i € I let d; be its correct direction. For a given iteration or
row, we say that a sum is in the correct direction if its sign agrees with the sign of the
correct direction.

LEMMA 5.3. Assume that the number of good processors in V \ V, is no greater
than t for all processors p, and agreement is not achieved in m > n iterations of
MODIFIED-BRACHA. Then, with probability at least 1 — e=*("), in m > n iterations
of MODIFIED-BRACHA, there are at least 0.046m iterations I with the following
properties:

(1) Foralli€ I, d; ) cq Mli,j] > a;and
(2) For all i € I, there are 0.99n — t good processors S; such that for all p € S;,
di Y2 ey, Mli jl < B/2.

We denote the (bad) event that these conditions do not occur as &;.

PRrROOF. We start with condition (1). Let X be the number of rows ¢ in which
di Y jeqIMli gl > a. From Lemma 5.1, E(X) > m/20. Using Chernoff bounds,
Pr(X < (1—e 4)m/20) = e=m¢ /40 This implies Pr(X < 0.049m) < ¢~

We now consider condition (2). For a processor p, let Y, = 1if d; > o\, Mli, j] =
/2. Since [V \ V,| < t, Lemma 5.2 shows that Pr(Y, = 1) <e ' LetY = 3 _.Y,.
Then E[Y] < (n —t)e™ %

By Markov’s Inequality, Pr(Y > 0.01n) < (nte__ =6, Hence the expected num-

0.01n
ber of iterations in which the event Y > .0ln occurs is at most me=6. Let Z be the

number of iterations in which the event occurs. Since each iteration is independent,
we can use Chernoff bounds to bound Z: Pr(Z > (1 + e 2)me=5) < e~™m¢ '°/3. This
implies Pr(Z > 0.003m) = e~ ("),

By a union bound, Pr(Z < 0.003m) and X > 0.049m) is 1 — e~*("), But if both Z <
0.003m and X > 0.049m, then there are at least X — 7 > 0.046m iterations satisfying
conditions (i) and (ii). O
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The next lemma shows that if there is high deviation in the correct direction by good
processors, and the deviation of the coinflips by bad processors is low, then agreement
will result.

LEMMA 5.4. Fix an iteration i of MODIFIED-BRACHA. If
(D di Y jeq Mli,j] > o
and if there are 2n/3 good processors G; such that:
(2) for every p € G, d; Eje\/\vp M(i, j] < B/2; and
(3) fOf‘ every p S Gi; _di ZjeBﬁVp Mp[laj] < 6/2;
then all good processors will agree on a global coin in the correct direction, and all
processors will come to agreement in the next iteration of MODIFIED-BRACHA.

PRrROOF. By Statement (1) of Lemma 4.7, all processors will receive all coinflips gen-
erated by good processors except at most 1 coinflip from each of as many as ¢ good
processors. Hence the adversary may cause at most a ¢ change in deviation in the dis-
tribution of these otherwise random coinflips r-received from good processors. There
is also the special case when a good processor generates a private coinflip and then
is taken over by the adversary before this coinflip is written to the blackboard. This
results in a possible change to the deviation of ¢ over the course of the entire algorithm.

Fix any processor p € G;. If the deviation of the coins from good processors in V' \ V,,
is less than /2, and the deviation of the coins from bad processors which are in V,, is
less than /2, then d; >, Myli,j] > o= — 2t =0.

Thus, the global coin will be in the correct direction for all processors in G;. Hence, by
Lemma 3.2 (2), the next iteration of MODIFIED-BRACHA will result in Byzantine
agreement. O

The next lemma gives processors a tool for singling out processors which are exhibit-
ing unusually high deviation.

LEMMA 5.5. Assume that: t < n/36; for each good processor p, the number of good
processors in V\V,, is no more than t; and agreement is not achieved in m > n iterations.
Then, with probability 1 — Pr(&,), there is a set of 0.026n good processors, P’ such that
for every processor p € P’ there is a set I, of greater than cym “good” iterations such that
for every iteration i € I,, | ZjeBﬂVp Myi, j]| > B/2. (Here, c; = 0.001.)

PROOF. By Lemma 5.3, with probability 1 — Pr(&;), there is a set I’ of 0.046m itera-
tions such that precondition (1) of Lemma 5.4 is satisfied for each iteration in I’. Also
by Lemma 5.3, for each iteration i € I’, there is a set of 0.99n —t > 2n/3 good processors
which satisfy precondition (2) of Lemma 5.4. Let S; be that set.

Since agreement has not been reached, for every iteration 7 € I’, there is no set of
2n/3 processors in S; such that precondition (3) holds for all processors in that set.
Hence precondition (3) must not hold for at least |S;| — 2n/3 > (0.99n — t) — 2n/3 >
0.052n processors total (for ¢ < n/36). In particular, there is a set T; of at least 0.052n
processors, such that for every p € T;, —d; ZjeBmvp M,li, j] > B/2.

We now use an averaging argument to show for more than 0.026n good processors p,
—di 3= eprv, Mplis j] = B/2 for at least 0.026|/'| iterations i. There are 0.052n|I'| “good”
processor-iteration pairs (p, i) for which —d; 3. gy, Myli, j| = /2. Let x be the num-
ber of processors which appear in at least 0.026|1’| = 0.0001m “good” pairs. Then these x
processors appear in at most z|I’| “good” pairs, and the remaining n—0.026n processors
each appear in fewer than 0.026n|I’| “good” pairs. Then the total number of “good” pairs
is less than z|I’| + n(0.026|1'|), which is greater than 0.052n|I’| only when z > 0.026n.
The lemma follows by setting I, to {i : (p,7) is a “good” processor-iteration pair } O
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6. PROCESS-EPOCH, VARIANT 1

The previous section leaves the computational problem for each processor in P’ of iden-
tifying a suitably sized submatrix each of whose columns sum to a number whose ab-
solute value exceeds /2. Finding such a set of columns with the requisite sums does
not imply that these columns in the set are all controlled by bad processors, but it is
a first step. In this section, we give a polynomial time algorithm for each processor p
to measure a processor’s contribution to these sums as a means of deciding whether to
remove that processor from V/,.

Here we describe one method for implementing PROCESS-EPOCH, which is
called by algorithm BYZANTINE-AGREEMENT. This implementation requires
only polynomial time computation by each processor and results in a BYZANTINE-
AGREEMENT algorithm with expected O(n?) latency. In the next section, we give an
alternative implementation.

ALGORITHM 6: PROCESS-EPOCH- Variant 1
1: if (M| > (8/2)\/c1m/t then
2:  Let rp be the top right singular vector of M,
3:  For each 1 < i < n, increase score, (i) by (rp[i])?
4: For each 1 < i < n remove processor i from V}, if score, (i) > 1
5. end if

Throughout this section, we will be using the 2-norm of vectors and matrices.

The 2-norm of a vector v is |v]y = />, v?. The 2-norm of a matrix M is M|, =
max|,|,—1 |[Mul2. We will drop the subscript 2 from all norms for notational clarity. Re-

call that 8/2 = \/2n(n — 2t)/2 — t.

The following is a restatement of Theorem 3 from [Achlioptas and McSherry 2001].

THEOREM 6.1. [Achlioptas and McSherry 2001] Let R be a random m by n matrix
such that R(i,j) = r;; where {r;;} are independent random variables and for all i,j :
rij € [-K, K], E(r;;) = 0and Var(ri;) < o2 Forany v > 1, e > 0and m+n > 20, if

3
KS( 4e ) mg/m—o—n
44 3¢/ log”(m+n)

then
Pr(R| > 2+v+€ovm+n) < (m+ n)772

The remaining lemmas in this section hold for any fixed epoch e.

Let G be the matrix M where all entries in columns controlled by processors in B
are set to 0. Let &5 denote the (bad) event that some entry in G will have absolute value
exceeding 5v/nInn—1. From Lemma 4.7 and the union bound, Pr (&) < mn/n® = m/n’.

COROLLARY 6.2. Conditioned on &, for every e > 0, for n sufficiently large,
Pr(|G| > 3+ e)vn(m+n)) < (m+n)~%

PROOF. Note that §[i,j] are independent random variables with G[i,j] €

[-5vVnlnn + 1,5v/nInn — 1], E(G[i,j]) = 0 and Var(G[i,j]) = 0> < n. Let o = 1 and
€ > 0 in Theorem 6.1. Then for any positive constant ¢, for n sufficiently large, the
precondition of Theorem 6.1 is satisfied and the result follows. O

For every good processor p, let G, be the matrix M, where all entries in columns
controlled by processors not in G NV, are set to 0.
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LEMMA 6.3. Assume |G| < (3 + €)y/n(m +n)), for any fixed ¢ > 0. Then for all p,
Gp| < (4+€)y/n(m +n).

PROOF. Fix a processor p and let G, be M where all entries in columns controlled by
processors not in G NV}, are set to 0. It is easy to see that |G | < |G|. By Lemma 4.7, for
any processor j and iteration i, |M,,(i,j) — M(i,j)| < 1forall j € V,. Hence G, = G, +A
where all entries of A are integers between -1 and 1. Clearly, |A| < /mn. We thus have
1Gp| = 1G, + Al < 1G,| + |A| < |G| + /mn and the result follows by Corollary 6.2. O

For a given processor p, let 3, be the matrix M, where all entries in columns con-
trolled by processors not in B NV, are set to 0.
For the remainder of this section, we upperbound ¢ so that the following inequality

holds: (44¢)y/n(m + n) < (0.183)(8/2)+/c1m/t, for some constant ¢ > 0. When ¢t < n/36,
B/2 > 23n/36. We also have m = 2n, see proof of Lemma 6.6. Then this inequality holds
for t < 4.25 % 10~"n < (0.183)2(23/36)2(1/3)(.002)(4 + €)~'n. For the remainder of this
section, we assume this bound on ¢.

LEMMA 6.4. Assume |G| < (3 4 ¢)y/n(m + n). Then for any processor p such that

|By| > (8/2)/cim/t, we have |G,| < 0.183|5,|.
PROOF. By Lemma 6.3, |G,| < (4 + €)\/n(m + n). Then we have:
Gp| < (44 €)v/n(m+n);

0.183(5/2)\/c1m/t;
0.183(B,;

where the second line follows by the bound on ¢ discussed in the paragraph preceding
this lemma. DO

IN

<
<

LEMMA 6.5. Let P’ be the set of processors as defined in Lemma 5.5 and assume &;.
For any processor p € P/,

1Byl = (8/2)/ cxm/t.

Also, if |G| < (34 €)/n(m +n), then |G,| < (0.183)|5,].

PROOF. Let ¢, be the number of bad processors in V,,. Let x be a length ¢, unit vector,
where all entries equal 1/,/7,. Consider the vector y = B,x. Note that for at least c;m
entries of y, the square of the value of that entry is at least (3/2)?/t,. Hence |y| >

(B8/2)\/cim/[t, > (8/2)\/c1m/t. The second inequality follows from Lemma 6.4. O

For simplicity of analysis, we assume that the columns of M,, are arranged so that
the columns for the ¢ bad processors are to the left of the columns for the n — ¢ good
processors. We note that this rearrangement is equivalent to multiplying M, by a
permutation matrix and so will not effect the singular values of M,,.

Now let £, and r, be the top left and right singular vectors of M,. Note that by
definition, |M,| = £," M,rp.

Our analysis will focus on r,. Let b, be defined such that for all 1 < i <t, b,[i] = 7[i]
and all other entries of b, are 0. Similarly, define g, such that for all t + 1 < i < n,
gpli] = r[i] and all other entries of g, are 0. Note that by construction, r, = b, + gp.

LEMMA 6.6. Assume |G| < (3+ ¢)y/n(m + n)). Then for every processor p such that

|Mp| > (ﬁ/2)\/ cim/t, ‘gp|2 < |bp|2/2-
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PROOF. Assume by way of contradiction that |g,|> > |b,|?/2. Note that |g,|?+|b,|* =
|rp|? = 1. Thus, we have

>—-
|

= |gp|2 + |bp|2
|bp|*/2 + [bp|*
3/2|bp|*
This implies that |b,|* < 2/3 or |by| < +/2/3. We further note that |g,|> < 1, so
gp| < 1.
Now M7y = Bpbp + Gpgp. Hence [Mpry| < |By[|bp| + |Gy ||gpl-
Putting this together, we have:
[Bp| < [My]
" (Myrp)
[€p || MpTp|
1Bylbp| + 19|15
|B,|(|bp| 4+ 0.183|gp|) by Lemma 6.4

1B,|(v/2/3 4 0.183)
1B,|

which is clearly a contradiction. In the above inequalities, the third line follows by the
Cauchy-Schwartz inequality. O

LEMMA 6.7. With probability at least 1/2, Algorithm 1, using PROCESS-EPOCH
Variant 1, will terminate successfully in 116t epochs, each consisting of m = 2n iter-
ations, with resilience t < 4.25 x 10~ "n. When the algorithm terminates, all proces-
sors will achieve Byzantine agreement. The algorithm is Las Vegas with no more than
232tm < n? expected iterations of MODIFIED-BRACHA for a total of O(n?) rounds of
communication and polynomial time computation.

V

N

INININ I

VANVA

PRrROOF. By Corollary 6.2, in a fixed epoch, with probability at least 1 — 1/(m + n) —
Pr(&), G| < (3+¢€)y/n(m +n). As Pr(&) < m/n" (see discussion before Corollary 6.2),
this condition holds for an epoch with probability at least 1 — 1/(m +n) — m/n".

As long as this condition holds for each epoch, we claim that no more than ¢ good
processors are removed from V, for any processor p. First, observe that each processor
v is removed from V,, when score,(v) > 1. Each epoch can add no more than 1 to this
total for any processor. Hence, the maximum score,, accrued by a processor before its
removal is less than 2.

Assume by way of contradiction that more than ¢ good processors have been removed
from V,,. Then ), _,score,(i) > t. In any epoch where processor p adds to the score

values, it must be the case that |M,,| > (3/2)\/cim/t. Then Lemma 6.6 implies |b,|*> >
2|gp|?, Thus, by our assumption, >, score,(i) > 2t. Since there are no more than ¢
bad processors, this implies that for at least one bad processor i, score,(v) > 2, giving
a contradiction.

We next show that it is likely that all bad processors will be removed from each V,
for all p € G in 116t epochs. By Lemma 6.5, if event £; does not occur, then in every
epoch in which there is no agreement, there are 0.026n processors in the set P’ such
that |M,| > |B,| > /2y/cim/t. The value of ). score,(i) must increase by 1 for each
of these processors in a set P’.

Let 7' be the number of such epochs before all bad processors are removed from all V,,,
assuming no agreement occurs before then. Then with probability at least 1 —TPr (&),
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>p 2_;Scorey(i) > 0.026nT. As 2/3 of this score is attributable to processors in B, and
there are no more than ¢ processors in B, which each accrue a score of less than 2, we
know that (2/3)(.026nT) < n(2t). Solving for T', we find T' < 116t.

Then with probability at least 1 —T'(1/(m + n) + Pr(&) + Pr(&1)) > 1 —116¢(1/(m +
n) +m/n” +1/e(™ > 2/3 the entire algorithm will successfully run for less than 116t
epochs until all bad processors are removed. Once there are no more bad processors,
it will succeed with constant probability in any iteration and over the next epoch it is
very likely to succeed once. Thus total probability of success within 116t epochs is at
least 1/2. If the algorithm fails, it will repeat until Byzantine agreement is decided,
making the algorithm Las Vegas with an expected 232t epochs.

As each epoch contains O(n) iterations of MODIFIED-BRACHA; each execution
of MODIFIED-BRACHA contains one GLOBAL-COIN which in turn contains O(n)
rounds of communication, the total latency is O(n?) expected time.

We can analyze computation time per processor as follows. In the GLOBAL-COIN
algorithm, the n-synch costs O(n*) computation per processor. In particular, the reli-
able broadcast of a message requires each processor to receive O(n) messages. Since
O(n) n by n matrices are being reliably broadcast during the Spread and Final Update
parts of the n-synch, each processor receives O(n?) messages, each of size O(n?). After
each epoch the computation of the singular value decomposition requires O(n?).

Since there are O(n) expected epochs, each with O(n) calls to GLOBAL-COIN, the
expected computation cost per processor is O(n®). O

This concludes the proof of Theorem 1.1.

7. PROCESS-EPOCH- VARIANT 2

Fix an epoch e. During that epoch, when and if p determines there is a set S, C V,, of
no more than t processors and a set of ¢;m iterations I, such that for each iteration
i € Ip, [ > e, Mp(i,j)| = B/2, p also determines for each processor v € S, the indi-
vidual epoch deviation of the processor v. For each i € I, let sign, (i) be the sign of
> e s, Mp(i, j). Here we assume each processor will find a set 5, if it exists and this
may take exponential computation time. We also assume ¢t < n/400.

ALGORITHM 7: PROCESS-EPOCH- Variant 2

1: if p finds a set S, of processors of size at most ¢ and a set of ¢1m iterations I, in epoch e
such that for every iteration i € I, | > My (i,7)| > /2 then

JESp

2: for eachv € S, do
3: score, (v) < score,(v) + Zz‘elp M, (i, v)sign,, (4).
4 if score,(v) > 2(5v/nlnn)c;m then remove v from V,
5: end for
6: end if
7.1. Analysis

Recall that B is the set of bad processors and G is the set of good processors. For a good
processor p, a set of processors S, and an epoch e, let score, (S, ¢) be the sum over all
processors ¢ € S of the amount added to score,(g) in epoch e.

LEMMA 7.1. Assume Algorithm 1 using PROCESS-EPOCH- Variant 2 runs for at
most a polynomial number of epochs and t < n/400 and m = 1000n. Then with proba-
bility 1 = e~ (™), for any good processor p and any epoch e, score,(G,e) < (8/5)cim.
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PROOF. Assume that in some epoch e, p finds a set of a most ¢ processors S, and a
set of ¢;m iterations I, such that for every iteration i € Iy, [ ;cq My(i,5)] > 5/2. We

note that p only possibly changes score,(q) for processors ¢ € S,. Therefore we would
like to bound the amount added for all ¢ € G N S,,.

Let G, = GN S, and let X = Zie],“jec;; M(i, j)sign,(i). By Lemma 4.7 (1),
My (i, 7) — M(3,5)] < 1 for all processors p, for each processor j and iteration i. Re-
call that 8 = \/2n(n — 2t) — 2¢. Thus, if X < (8/6)ci1m, this implies that score, (G, e) =
score,(G,,e) < X +teym < (B/6 + t)eym < (B/5)cim when ¢ < /30 which is true
since ¢t < n/400. Further note that the probability that X > (5/6)c;m is maximized
when all processors in G, generate all n coinflips for each iteration in I,,. Thus, we will
pessimistically assume this is the case throughout the proof.

We now fix a set G, a set I, and a mapping sign from iterations in I, to {—1,1}.
Since X is the sum of independent trials, by Fact 1, and the fact that 52 > 1.9n2 (since
t < n/400), we have:

Pr(X = (8/6)cym) < e=(amp/6 /206, levmn)

e—clnLﬁz/(n72|G;\)

e~ mpB2/(72nt

VAN VAR VAN VAN

e—0.0?Gclmn/t

There are () < (me/cim)“™ ways to pick the iterations I,,; at most S () <2
ways to pick the set G};; and 2™ ways to pick the mapping d. Let ¢ be the event that
X > (B/6)(c1m) for any sets G, and I,,, and mapping sign. Then by a union bound, we
have the following.

cimgnogcim ,—ci mpB2/(72nt)

Pr(¢)

(me/cim)

8c1meclmec1me—0.026c1mn/t

10c¢1m—(0.026c1mn/t)

—(n) since n/t > 400

(VAN VAN VAR VAN

(&
(&
e

Another union bound over all good processors p and the polynomial number of epochs
e establishes the result. O

LEMMA 7.2. With probability 1 — e=*("), for all processors p, the number of good
processors removed from V, in T epochs is no more than t.

PROOF. Suppose a processor p detects a set S, as defined in Algorithm 1 in some
epoch e, for iterations I,. From Lemma 7.1, with probability 1 — e~ score,(G N
Sp,e) < (B/5)cim. Since the sum of the score, values assigned in the epoch is at least
(/2 for each of the ¢;m iterations, this implies that score,(BNS,) > (38/10)cim. Hence,
the total increase in score of bad processors in V,, is greater than 3/2 the total increase
in score of good processors in V}, in each epoch.

Fix some epoch. Then we show |G\ V},| < t. Suppose to the contrary, |G\ V,| > ¢t. Then
> vec\v, scorey(v) = 2(5vnInnteym. This implies . 5 score,(v) > 3(5v/nInn)teym.

Each processor v is removed from V,, when score,(v) > 2(5v/nInn)c;m. Each epoch,
including a processor’s last before its removal, adds no more than (5vnlnn)c;m to
score,(v). For any processor v, score,(v) < 3(5vnlnn)cym. This together with the fact
that there are at most ¢ bad processors gives a contradiction O

Journal of the ACM, Vol. 0, No. 0, Article 0, Publication date: 2014.



0:20 King and Saia

LEMMA 7.3. With probability 1 — O(1/n®), Algorithm 1 using PROCESS-EPOCH
Variant 2 will terminate in O(y/nlogn) epochs (O(n?5/logn) communication time. The
algorithm is Las Vegas with expected communication time that is O(n?%/logn).

PROOF. With probability 1 — n[Pr(&) + Pr(€1)], neither & nor &£ occur in the first
n epochs of the algorithm. Assume they do not occur. Let X be the sum over all pro-
cessors p and ¢ of the value score,(g). By the argument in the proof of Lemma 7.2,
for any processors p and ¢, score,(q) < 3(5vnlnn)c;m. Summing over all n? pairs
of processors, we see that X < n?(15v/nlInn)c;m. By Lemma 5.5, in each epoch in
which the algorithm does not terminate, the value of X must increase by at least
(0.026n)(8/2)cym. Let T be the number of epochs in which the algorithm does not
terminate. Thus, X > T(0.026n)(3/2)cym. Since X < n?(15v/nlnn)cym, this implies
T < n?15v/nInn/(0.026n)(3/2) = O(yv/nlogn). We conclude that with probability
1—n(e~ ™ 4m/n7) = 1-0(1/n°), the Algorithm terminates within O(/nlog n) epochs.

With very small probability, the entire algorithm will repeat until Byzantine agree-
ment is decided, making the algorithm Las Vegas with O(n?®°/logn) communication
time. O

This concludes the proof of Theorem 1.2.

8. CONCLUSION AND FUTURE WORK

We have described two algorithms to solve Byzantine agreement in the classic asyn-
chronous message-passing model in polynomial communication time. Our algorithm
works in the asynchronous message-passing model, when an adaptive and full-
information adversary controls a constant fraction of the processors. We demonstrated
that cryptographic assumptions or private channels are not necessary to solve this
long-standing fundamental problem. This may perhaps open the door to the solution
of other problems in a full-information model.

Our algorithm is designed so that in order to thwart it, corrupted nodes must engage
in statistically deviant behavior that is detectable by individual nodes. This suggests a
new paradigm for randomized distributed computing: the design of algorithms which
force attackers into behavior which a good processor might possibly engage in but is
statistically unlikely, and which is detectable in polynomial time.

Our result leaves much room for improvement, in terms of the resilience and ex-
pected communication time. Can the resilience be increased to the optimal bound of
t < n/3? Can we decrease the expected communication time to O(n*®) with polynomial
time computation? An intriguing open question is whether the expected communica-
tion time can be brought down to the known lower bound of 2(n) in the shared memory
consensus problem, or whether Byzantine agreement is intrinsically harder than con-
sensus, in terms of time or step complexity.
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